L im HFBHH2 +2HHb KB; 12 BMiQ M/ +Q

BKKmMQ/2}+B2M+v pB mb 2THB+ iBQM B

7TQHHB+H2b BM 7 B+ M ; 22M KQMF

LB+QH b >mQi-"0i B+2C +[m2HBM- h? HQ : +B @

JB+F H SHQ[MBM-uQ MM J /2+- E2Bi? 22p2b-L i?
JB+? 2H JCHH2 @h mirBM

hQ +Bi2 i?Bb p2 ' bBQM,

LB+QH b >mQi-"0 i'B+2 C +[mM2HBM- h? HQ : "+B @h2HH2x- S?BHBTT
m> H FBHH2  +2HHDb KB;  i2 BMiQ M/ +QMi'QH bBKB M BKKmMQ/2}+B
7QHHB+H2b BM 7B+ M;'22M KQMF2vbX L im 2 J2/B+BM2-L im 2 Sm#
Rk3eX RyXRYj3fMKX99kR X T bi2m @yRN39e8y

> G A/, T biZ2Zm @yRN39e8y
21iTbh,ff?2 H@T bi2m X "+?Bp2b@Qmp2 i2bX7 fT bi2]
am#KBii2/ QM Rd C M kyRN

> G Bb KmHiB@/Bb+BTHBM v GOT24WB p2 Dmbp2 "i2 THm B/BbBIBTHBN
"+?Bp2 7Q i?72 /2TQbBi M/ /Bbb2KIBEBMBR MNQ@T™+B2® " H /BzmbBQM /2 /
2MiB}+ "2b2 "+?2 /Q+mK2Mib- r?2i?@+B2MMiB}2mM2b#/@ MBp2 m "2+?22 +?22- T
HBb?2/ Q° MQiX h?2 /IQ+mK2Mib MK VW+RK2Z2EF IQKHBbb2K2Mib /62Mb2B;M
i2 +?BM; M/ "2b2 "+? BMbiBimiBQWER BM?8 7M#M2I @b Qm (i~ M;2 b- /2b H
#Q /-Q 7 QK Tm#HB+ Q T ' Bp i2T2HRAB+B @2MT2BIpXib X

Bbi'B#mi2/ mM/2  * 2 iBpRi*BEMOKBRM @ LQM*QKK2 +B H @ a? "2 HB|
AMi2 M iBQM H GB+2Mb?2


https://hal-pasteur.archives-ouvertes.fr/pasteur-01984650
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://hal.archives-ouvertes.fr

[

10
11
12
13
14
15
16

17

18
19

20
21
22
23
24
25
26
27
28
29

NK cells migrate into andontrol SIV replication in lymph node

follicles in African green monkeys

Nicolas Huot'? Beatice Jacquelin!, Thalia Garcia-Tellez!, Philippe Rasde“??

Mickad J Ploquin’, Yoann Madec?, R Keith Reeves’, Nathalie Derreudre-Bosquef

& MichaelaMiill er-Trutwin?

Ynstitut Pasteur, HIV, Inflammation and Pesistence Unit, Paris, France; 2Vaccine
Research Ingitute, Créteil, France; Université ParisDiderot, SarbonneParis Cité, Paris,
France ; “Institut Pateur, Epidemiology Unit, Paris, France; °Center for Virology and
Vaccine Reseach, BIDMC, Harvard Medicd School, Boston, MA, USA; °CEA-
Univergté Pais Sud 11 INSERM U1184, Immunology of Viral Infections and
Autoimmune DiseasegIMVA), IBJF, IDMIT Depatment, Fontenay-auxRoses,France.

Keywords: NK cells, SIV, HIV, non human primates, IL-15, CXCR5, lymph node,
spleen, B cdl follicles, natual hods, viral reservoir

Corresponding author: MichaelaMduller-Trutwin
Institut Pasteur

HIV, Inflammation and Persisence Unit

28 rue du Dr Roux

75015 Paris, France

mmuller@pasteur.fr


mailto:mmuller@pasteur.fr

30

31

32

33

35

36

37

38

39

41

42

43

44

Abstract

Natural Killer (NK) cells play an essentialrole in antiviral immunity, but knowledge of their
function in secomlary lymphoid organsis incomplete. Lymph node follicles corgtitute a major
viral reservoir during HIV-1 and SIVmac infections. In contrast, during non-pathogeic SIVagm
infection of African green monkeys (AGM), follicles remain generaly virus-free. We show that
NK celsin secondary lymphoid organs from chronically SIVagminfeced AGM were frequently
CXCR5" and ertered and perdsted in lymph node follicles throughout the follow-up (240 days
postinfection). Thesefollicles were strorgly positive for IL-15, which was primarily preseited in
its membrane-bound form by follicular dendritic cells. Anti-IL-15-induced NK cell-depletion
during chronic SIVagm infection resultedin high viral replicaton (follicles and T zone) and viral
DNA increase in lymph nodes. Our daa reveal that in non-pathogenic SIV infection, NK cdls

migrate into follicles andplay a mgjor role for viral reserwir control in lymph nodes.
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The persigence of Human immunodeiciency virus (HIV) in individuals treaed effi ciently with
combined antiretroviral therapy (CART) remains a tremendous obstale to achieving sustained
virologic remission in HIV-infected individuals’. A major anatomical HIV resewoir are lymph
nodes(LN)?®. Studies in the non-human primate model for HIV, macaques(MAC) infected by
SIVmag showed that during the first weeks postinfection (p.i.), the virus replicatessolely in the
T cell zone of LNs*, Only later on the virus spreads to B cell follicles, where it replicatesto a
large extent in follicular helperT cells (Tgy)*®. Moreover, numerous viral particles are trapped by
follicular dendritic cells (FDC) and remain infectious'®. Finally, in chronic infection, more virus

is presat in follicles than in the T zore''*

. In HIV controllers, thevirus also pesists
preferentidly in theseLN follicles and productve infection is markedy restricted to Ty cells®.
Follicles thus seem to corstitute 'sanctuaries' for persstent viral replicaion even in HIV
controllers who are cagpable of developing potent arti-viral CD8" T cell reponses™. Indeed, B
cell follicles aremostly devad of CD8" T cells exceptfor the rarefollicular cytotoxic T cells®. In
patientsunder long-term cART, Tg4 cdls equaly representthe major viral reservoir, potentialy
complicating efforts to cure HIV infection with T cell immumtherapyls'le.

NK cells play an essetial role in viral infeciions'”®. Little attenton has however beengiven to
them in LN astheir frequencyis low in thesetissuesin contrastto otherbody compartments, such
asliver or uterus'™. In rodentLN, NK cells are more derse in the medullathanin T or B cell areas
andthey are mainly locaid within lymphatic sinuses”®?.. Upon immunization or viral chalenge
in rodents, NK cells infiltrate draining LNs?*? Little information is available regardng the
trafficking of NK cells to LN during viral infections in humans and on NK cell migratay
behavior within LN in general. During HIV-1 or SIVmac infections, LN display limited
recrutment of NK cels that instead seems to be deviated toward the intestinal mucosa, and
therefore provide a niche where the virus can replicate unabated by early NK-cell-mediated innate
pressure®?,

Non-human primates from Africa, such as African Green monkeys (AGM), are natural hostsof

SIV®. They usually do not experiencediseaseprogession, despite displaying high viremia and
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high viral replicationin the intestine concomitant with massiveacute depleton of mucosal CD4"
T cell$®. A major distinction of SIV infecion in natral hostsis the rapid resdution of viral
inflammation andthe lack of microbial trandocation®**. In addition, AGM display a rapid cortrol
of viral replication in the secondary lymphoid organs and lack of viral trapping by FDC in
follicles” 3, Another natral host of SIV, the sooty mangabey, also showed strong viral control
in LN®34,

In AGM, most pro-inflammatory cytokines suchasTNF- ¢ IL-6, IFN- = ard IL-8 are not or only
wealy induced upon SIV infection®. However, AGM display high plasma levels of IFN- ¢and
IL-15 during acue infecion®. IL-15 is well known to promote mobilization and homeostaic
proliferaion of T cells and to be essetial for the survival of NK cells®®*¥. Moroever, IL-15
contributes to the preservation of cytotoxic CD8'T cells and also enhances NK cell suppressor
function *. We have observed increaes in NK cell proliferation aswell asof CD1074 NK cells
in peripheral LN during acute SIVagn infecion®. We therdore raised the quegion whether NK
cells play a role during non-pathogaic SIV infection in LN. Here we demonstratethat NK cells
accumulate in a CXCR5- and IL-15-dependentmanner in follicles of secondary lymphoid organs
in SIV-infected AGM and exert efficient control of viral replication within LN contributing to a

low viral resevoir in theseorgans.

RESULTS

Lack of virus in lymph node follicles during non-pathogenic SIV infection

We first detemined the level and distribution of virus in LN of six AGM and six MAC infected
with SIVagm.s#92018 and SIVmac251, respectivey. Plasma viral RNA copies were aways at
least as high in AGM as in MAC (Supplementary Fig.1lac). The viremia peak was reached
aroundday 9 p.i. for all animals. The quantification of the cell-associated (ca) viral RNA and ca
viral DNA copy numbersin LN cells showedsimilar high levels for both SIVagm and SIVmac
infections at peak viremia (Fig.1a and Supplementary Fig.1d). However, astrong decrase was
obseved after the viral peakin AGM LN (p=0.001). This viral controlin AGM LN resultedin a

strong difference compared to SIVmac infection, asthe median quantity of ca-viral RNA and
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DNA in LN were,respective}, 2.5 log and 1.5 log lower in AGM thanMAC during the chronic
phase (Fig.1a and Supplementary Fig.1d). In situ evduaion of viral RNA showedindeed a
dramatic decreaseof productively infected cells in the T zone of AGM LN during the chronic
phase of infection and a constantabsenceof productively infected cells within the follicles of
AGM throughout the follow-up (240 days p.i.) (Fig.1b,c). These results contrast with SIVmac
infection where, as expeced, large amounts of viral RNA were detecied both in the T zone and

within follicles during chranic infection throughout the follow-up (Fig.1b,c).

Accumulation of NK cellsin lymph node follicles during non-pathogenic SIV infection

NK cells were gated as previously reported (Supplenentary Fig.2)35'39

. A progressve and
persstent reduction in the frequency of LN NK cels was obseved during chranic infection as
comparedto pre-infection levds in the pathogenic model (p<0.001), but not in AGMs where,
after a transient decline, NK cells recovered to pre-infection levels (p=0.8) (Fig.1d). The deaease

in MAC was due to a decline of the mgor NK cell populationin LN (i.e. CD16 NK cells), while,

asin a previous repat in macajue LN39, there was an increase in CD16" NK cells in SIVmac

infection (p<0.001) (Fig.19).

Evaluaion of NK cell distribution in situ showed that in uninfected animas, NK cels were
localized as expeded in the marginal and parafollicular zone in both species (Supplementary
Fig.3a). The localization of NK cells howeverchangeddramatically in response to SIV infedion.
Indeed, many NK cells were found outside the marginal zonesfollowing SIV infection in both
species (Supplementay Fig.3b+c). Of note, the distribution became highly distinct between
pahogaiic and non-pathogenic SIV infection. In SIV-infected AGM, NK cells were mostly
found around or within follicles (Fig.1e,fand Supplementary Fig.3b), whereasMAC NK cells
followed a randbm distribution within the LN after SIV infecion and did not accumulate in
follicles (Fig.1e,f and Supplementary Fig.3c). The total numbers of NK cells decreasedn the T
cell zonein both speciesafter SIV infection. In contrast NK cell numbers increased in follicles of

AGM (Fig.1h).
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These analyses rewveal that NK cell distribution within LN changessignificantly in regonse to
SIV infection and differently between pathogenic and nonpahogenic infectons. Moreover, the
study in the non-pathogenic SIV infection uncowers that NK cells are ade to migrate into

follicles.

Decreases in LN homing receptors on NK cdls in both pathogenic and non-pathogeric SIV
infection

Since MAC showed perdstently decreasedNK cell levels in contrast to AGM, we wondered
whether AGM NK cel's have a better LN homing capacty than MAC during SIV infection. We
examined the expresson of major LN homing markers for NK cells (CCR7, CD62L, CX3CR1
and CXCR3). No significant changes as compared to pre-infection levelswere deteced on total
petipheral blood NK cels for both species (SupplementaryFig.4at+b), while CD16 NK cells
displayed decreaes in CXCR3 and CX3CR1 (SuplementaryFig.5atb).

In LN, the frequenciesof NK cells expresing CCR7, CD62L or CX3CR1 were markedly down-
regulated in both pahogenic and nonpathogenic SIV infections (Suplementary Fig.4). The
deaeaseswere again more pronouncedin the CD16 thanin the CD16" subses (Supplementary
Fig.5).

Altogether, strong decreases of homing receptors were observed for both species, in particular for
CD16 NK cells. The homing recegtor profiles were in most tissuessimilar between AGM and
MAC and do not clealy expldan the differences in NK cell levels in LN beween AGM and

MAC.

AGM NK cellsexpress CXCRS5 in secondarylymphoid organsduring SIV infection

The preferantial localization of NK cels in follicles during non-pathogeic SIV infection could
be dueto specific trafficking towards follicles and/or to an erhanced survival inside the follicles.
In orderto address the hypothesis of specific trafficking, we measuredthe expression of CXCR5
on NK cells. CXCRS5 is known to be both necessary and sufficient for B and Tgy cell migration

into follicles™*'. We comparedthe level of CXCR5 expression on B cells, CD8" T cells and NK
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cells of LN from chranically infectedanmals (Fig.2a). As expected, the mgjority and minority of
B and CD8'T cells, respectivel, expressed CXCR5 (Fig.2a,b). The frequenaes of CXCR5'NK
cells were aso low for MAC NK cells but, surprisingly, were elevated in AGM (Fig.2ab). In
contrag to spleen and LN, the levels of CXCR5'NK cells were similarly low in AGM and MAC
in blood andgut (jejunum, colon) (Fig.2b).

Thus we have identified high levels of CXCR5'NK cells in LN of SIVagm-infeced AGM.

CXCRS5 expresson on AGM NK cells most likely allows their accessto lymphoid tissue follicles.

Elevated frequencies of CD107a" and CD32'CXCR5'NK cells in secondry lymphoid
organs during non-pathogenic SIVagm infection

We wondered whether these CXCR5'NK cells coud exert a suppressor functon and
chaacerized their funcional phenotype. Major differences were obseved between CXCR5™ and
CXCR5 NK cells in LN from SIV-infected AGM. Indeed CXCR5'NK cels expressedmore
frequently CD69, CD16, CD107a and the Fc receptor CD32 and more rarely NKG2D and
NKp46 (Fig.2 c,d). These cells might thus possess both an ADCC aswell ascytoxic activity. The
majority of CXCR5'NK cells (median 60%) were CD16" (not showr). CXCR5" NK cells were
also more often PD-1" than CXCR5 NK cells (Fig.2d), which might be assocated with their
locaton in follicles.

We wondered whether thesereallts are representative of other seandary lymphoid organs and
analzed spgeen NK cells from 10 AGM and 10 MAC in chronic infection (Fig.3). First we
quantified the caviral RNA andDNA loads in spleen.As in LN, they were significantly lower in
AGM thanin MAC (Fig.3a). Theviral DNA levels werenegaively correlated with NK cell leves
in AGM but not in MAC (Fig.3c). As in LN, NK cell frequencies in spleenwere higher in
Slvagm than in SIVmac infection (Fig.3d). The frequency of CXCR5'NK cels in spleen was
agan significantly higher in AGM thanin MAC, while the CXCR5'CDS8'T cell frequencies were
similar betweenthe two species(Fig.3b,e). The major phenotypic difference between spleen

CXR5'NK and CXCR5NK cells consstedin the higher leves of cells positive for CD107A" and
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CD32" (Fig.3f). Also similar to LN, sgeen CXCR5'NK cdls were more often PD-1" and less
often NKp46".

We then conpared the NK cell phendypes betweenAGM and MAC in LN and spleen. Since
CXCR5'NK célls are rare in MAC, we compared total NK cels corsisting in the majority of
CXCR5NK cells. No significant differerces in the phenotype of these cels were observed
betweenAGM and MAC, exceptthat total NK cells from AGM in spleen were more frequently
CD32" than in MAC but the difference was weaker than for CXCR5'NK cdls and was not
obseved in LN (Fig.2e and Fig.3g).

Altogether, we obsaved elevated levels of CXCR5'NK cdls expressing CD32" and CD107a" in

secondarylymphoid organsfrom SIVagm-infected AGM.

Follicles of AGM lymph nodesconstitute a niche for trans-presentation of 1L-15

SinceNK cdl numbers increasedin follicles during SIVagm infection without cleaty showing a
better homing receptor expression profile than in macajues, we wondered whether additional
mechanisms, such asin situ proliferaion or increasedsurvival, participde in the accumulaton of
NK cells in follicles during SIVagm infection. The levels of NK cell proliferation in LN, as
measuredby Ki-67 staining, were not higher during SIVagm than SIVmac infection (not shown).
Because IL-15 is essentialfor NK cell survival, we studied 1L-15 production and distribution in
LN in respamse to SIV infection. We deteded IL-15 in LN during both infedions, but IL-15
producion was significantly higher in chronically infected AGM than MAC (Fig.4a,b and
Suppkmentary Fig.6). In addition, it was primarily limited to follicles, whereasin MAC the
producion was diffuse (Fig.4b and Supplementary Fig.6). Remarkably, we observed NK cells in
AGM follicles most often only if thefollicles werelL-15 postive (Fig.4d).

To identify the cellular sourceof IL-15 in the follicles, we examined the ex vivo expression of IL-
15in distinct hemaopoietc andstromal cell subpopulations from the LN of infected animals. The
gaing wasperformed in sucha way asto allow the identification of asmanyasseven distinct cell
populations (Suppkmentary Fig.7a). We did not detect significant 11-15 production by

intracelular staining evenif the cells were stimulated with PMA/lonomycin (data not shown).
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Sinceintracdlular detection of cytokines by flow cytometry was probably not sersitive enough,
we evaluated IL-15 mRNA in situ expression by FISH. Expression of IL-15 mRNA washigherin
AGM thanin MAC LN (Fig.4e). Moreover, IL-15 mRNA was expressed predominantly within
follicles during SIVagm infection. Many mRNA-positive cells had dendritic-like shapeand might
thuscorrespondo FDC andbr dendritic cellslocatedwithin the follicles.

IL-15 is particularly potent for simulating immune respnses if presentedmembranebound. We
therefore co-stained the hematopoietic and stromal cell subpopulations for IL-15 and IL-15R .
surface expression(SupplementaryFig.7). Most of the cells that presented membrane-bound IL-
15 (mblL-15; i.e. IL-15'IL-15R ¢ cells) correspomled to APC-like cels (CD3 CD4") and stromal
cells, including follicular dendritic cels (FDC). The most pronounceddifference in the levels of
mblL-15 betweenAGM andMAC was observedfor FDC (Fig.4c).

We next addressedthe question whether distinct levels of IL-15R. beween AGM and MAC
could explain these profiles. IL-15R . expresson was measuredon the same cell popuations as
above. The percentaes of IL-15R." cells were highest for FDC, while the meanintensities of
expression were higheston APC-like cells (CD3'CD4") and FDC (Supplementary Fig.7o,c). This
was the case for both AGM and macaques. Thus the IL-15R. expresson levels were not
respnsible for higherlevelsof mbIL-15 in AGM.

Altogether, NK cell acwmulation in follicles during nonpahogenic SIVagm infecion was
associaed with the presence of high levels of IL-15. IL-15 was produced within the follicles and

preserted membrane-bound, in particularon FDC.

Anti-IL15 treatment of SIVagm-infected AGM inducesNK cdl depletion

A major questionis if NK cellsin AGM LN have a crucial impact on viral load. We therefore
aimed to deplete NK cdls in vivo in AGM. While thereis preseitly no antibody specific for NK
cells in primates, it has been recently reported that anti-IL-15 treament preferentialy and
dramaticaly depletes NK cells in MAC®. We treaed five chronicaly infected AGM with this
anti-IL-15 mAb using the same doses as previously described for MAC for a short period (2

weeks) (Fig.5a).
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Blood NK cells were rapidly depleted (Fig.5b,c). The nadir was observed in 3 animals at day 7

posttreament and for the two othersat day 14. The latter two animals had higher NK cels at

baseline. The levds remained low until auopsy at day 42 posttreament. In contrast, the
percentages of total blood CD4" T cells showed only a slight, transient increase(p=0043) andthe
absolute CD4" T cell counts did not show any significant changes (p=0.21) (Fig.5d). The transiant
increasesof CD4" T cells might be explained by strong proliferation at days 7 and 14 (Fig.5f).

Blood CD8" T cell counts displayed a decreae that was mostly due to defetion of effector

memory T cells (Fig.5e).

Anti-IL-15 deplded NK cells in all analyzed tissues,i.e. in LN, spleen and gut (Fig.5b and

Suppkmentary Fig.8). In contrastto NK cells, the CD4" and CD8" T cell frequenciesin LN were

not different between day 0 and day 42 posttreament (Fig.5g,h), with two exceptims. The

frequencies of central memory CD4" and effector memory CD8" T cells were decreased in LN at
days 21 and 42 post-treament (Fig.5i,k).

Altogether, we show thatanti-IL15 treament induces a marked depletion of NK cellsin SIVagm

infected AGM in blood andtissues, including LN.

NK cell depletion during SIVagm infection leads to high viral replication in lymph nodes
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We quantified the viral load in the anti-IL-15 treatedanimals. The viremia levels significantly
increased and reached a medan plateau around 10 viral RNA copiedml atday 14 post-treament
(Fig.6a). Notably, in LN, both the caviral RNA and DNA were significantly increased(Fig.6b).
In situ hybridization at days 21 and 42 posttreament revealedmany viral RNA-positive cellsin
LN of all treatedanimals (Fig.6¢c) and largefoci of viral RNA-positive cells were deteded in the
T zoneandwithin follicles. The increasein viremia in the blood of the anti-IL-15 treated animals
is most likely the result of this increasein viral replicaton in the lymph nodes.There was no
statistically significant corelation between the cell-assocated VRNA or vDNA levds in LN and
the proliferaion (Ki-67) of total, naiveor or naive, memory or effecor CD8" T cellsin LN.

This is the first time that a high number of SIV-infected cells are observed within follicles of

AGM.

DISCUSSION

We present here the first documented evidence for a distinct anatomical locaion of NK cells in
respnse to a lentiviral infection within LN in any species. Previous studesin mice have shown,
thatinfections by L. major induceNK cells to be recruited to the paracortex?®. Similarly, we show
that NK cells are recruited to the paracortex in responseto SIV infection, but in addition we
demondrate herethat NK cells canalso acaumulate around and within follicles of pelipheral LNs
in SIV-infected AGMs. This is animportant observation, becaise it suggestshe potential of NK
cells to interactdirecty with other cells presat in LN follicles, suchasB cels and Tgy cdls. It
has been shown in murine modds that NK cells can influence Ty and geminal center B-cell
respnsed®*. Our reallts highlight the needfor further studies on the effects of viral infections
and vacchation on NK cdl-B cell interactionsand antibady respoises, and on the potential role
of NK cell localizaton within folli cles in mediating theseresponses.

In contrast to B and T cells, the mechansms governing NK cell trafficking remain poorly
dissectd. In this study, we correlaed the capaity of NK cells to migrate into the follicles with

CXCR5 expresson. Moreoverwe show that IL-15, a NK survival molecule, was found at high
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levds in follicles of SIVagm-infected AGM. IL-15 expression has beenrecertly reportedin LN
of HIV-infected individuals, but only in the T zore®. We have shown that IL-15 is produed
within follicles and preseted as membranebound in particular by FDC, but also by APC-like
cells during SIVagm infection. This finding agrees with previous reports showing that human
APC and FDC can present mblL-15*“% The IL-15-mediated promotion of NK cell survival
would thenreallt in the acawmulation of thesecells in a critical region of the LN. Thesereallts
support previous repotts suggesting the existence of in situ differentiated NK cellsin LN39%.

The effect of IL-15 on NK cell survival, differentiation and function is much stronger when
preserted in trans, as it is the casehere, thanin its soluble form™®.. In vitro studies have indeed
shown that the decreased control of HIV-1 infection in CD4" T cells by NK cells is due, at leastin

vitro, to the decreasegresentaton of mblL-15"". IL-15 inducesLFA-1 expression which is a late

steprequired for cytotoxic differentiaion®’. Thus, in addition to promoting NK cell survival, the

IL-15 in the AGM follicles might contribute to the differentiaton toward a mature cytotoxic
phenoype™. The study revealsthat most of the CXCR5" NK cells were indeedwithin the CD16"
subset and many expressedCD107a. In addition, the phenotypic analses demonstrded that even
more CXCR5" NK cells expressed the Fc @ recegptors CD16 and CD32. TheseNK cells might thus
display superior antibody-dependent cellular cytotoxicity (ADCC). This needls to be confirmed by
functional studies. Altogether, CXCR5'NK cells cleaty showed a distinct pherotype that could
explain their supeior capacity for viral control.

We confirm here a strongviral control in LN during SIVagm infection. We cannot exclude that
only follicles from peripheral secondary lymphad organs are virus-free. It is still possible that
lymphoid strudures from the gut show viral replicaion and/or trapgng since viral replication is
not controled in the gut in naural hosts. We also cannotexdude thatin AGM the viral control in
LN is stronger thanin other natural hogs such assooty mang#eys. However, our data arein line
with previous reportson a stong SIVsm control in both the LN T zone and follicles of sooty
margabeys °*. HIV infection in LN causesinflammation that when untreatedleadsto collagen
deposition, fibrosis and disruption of the LN architectue™. In addition, persstent HIV infection

in LN might severelyimpactthe developnent of effective immune cells >, Our resultshighlight
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that AGM havethe extraordinay capacity to mount atissuespedfic viral control. Togeher with

other studies showing that memory CD4'T cells are less infeced in nawral hosg®, our data
suwggest that natural hogs, while unéble to control viremia, developed mechanisms to specfifically

protect those key organs and cells which are critical for the educationand memory of immune

resppnses and protect secondarylymphad strudures from viral-induced damages. In addition,

strong contol of viral refication in the secaxdary lymphoid organs might contribute to the lack
of inflammation during chroric infection in natural hosts.

NK cell depletion during SIVagm infection was associatedwith strong increasesof viral

replication in LN. This confirms the key role of NK cells for viral control in LN. The increaseof

viral replication wasobservedboth in the T zone and within follicles. It is unclearwhich NK cdl

phenoype is associded with viral control in the T zone. It is possble that in AGM, NK cels are
not exhaused in contrastto MAC, since AGM are capdle to resdve chronic inflammaion®*
We also cannottotally excludethatin the IL-15 treatd animals, increaes of CD4" targetcels or
deaeases of CD8" T effector cells or their function contributed to the increasesin viral load.
However, in LN, the memory CD4'T cells were either decreased or unchanged. Regardig
CDS8'T cels, previous studies have shown that AGMs infected by SIVagm do not exhibit strong
suppressve CDS8'T cell capacities nor significant infiltrations of CD8T cells into LN
follicles®®*°’. In addition, in vivo defetion of CD8'T cells in SIVagm-infeded AGM have not

lead to strong increasesin viral load®®*. It is still possible that CD8'T cells contritute to the

control of viral load in the LN during SIVagm infedion, butit is unlikely that they play a major
role in this model.

Genetic and functional studies have long highlighted that NK cells impact significantly HIV
infection®. However, the role of NK cells in the control of HIV/SIV resewoirs might have been
underatimated in the past. NK cells play an important role for immune-surveillance in cancer.
Clinical trials tesing approades for enhancing NK cell expanson and syppressoractivity during
cancertheragies are expanding. Basedon our results, we antid pate that a better comprehensbn of
NK cell biology in lymphoid tissuesas provided here will erdorse the seach for novel NK-cdll

basedimmunotheraies in HIV infection.
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Taken together, this studyrevealsthat SIV infection inducesa trafficking of NK cells within LNs.
Most importantly, we discovered the potential of a unique, CXCR5" and IL-15 dependent
localization of NK cells within LN follicles. This study therefore uncoversa new feature of NK
cellsduring viral infections. Furthemore, we provide herethe evidencethat NK cells during non-
pahogeaic SIVagm infedion play an unforeseen key role in the control of viral replicaton in
lymph nodes. The discovery that NK cells have the potental to efficiently control the viral

reservir in follicles might have importantimplications for cure andvaccine research.

METHODS

Methodsare available online.
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ONLINE METHODS

Animals, SIV infections and anti-IL15 treatment

Fifteen African green monkeys (Caribbean Chlorocebus aethiops) and fifteen cynomolgus
macagues (Macaca fasdcularis) were used in this study. The anmas were free of simian
retrovirus type D and simian T-lymphotropic virus type 1 andwere housed in single cageswithin
level 3 biosafdy facilities at the IDMIT Certer (Fortena/-aux-Roses, France). Becase H6
haplotypes are significanly associted with viral control in cynomolgus macaques,macaques
with H6 haploype were exduded from this study. The average weight of the monkeys was
between3 and 5 kg. All monkeys were young adults and with an averageof 3 to 4 years at
inclusion. Both males and females were used (60 % of females and 40 % of males for each
species).The sample size varied between 5 and 10 animals per group (N=6 in most expefiments),
chosen accordingto the tripartite harmonized 1CH Guideline on Methodlogy (previously coded
Q2B). Sample collecion was detemined in a random order. The investigators were unblinded,
while the animal hardlers were blinded.

Animals were sedated with Ketamine Chlorhydrate (Rhone-Mérieux, Lyons, France) before
hardling. All expelimental procedures were conducted in strict accordancewith the international
European guidelines 2010/63UE on protecton of animals use for experimentation and other
scientific purposes (French decree2013-118) and with the reaommendaibns of the Weatherd
report. IDMIT cener complies with Standards for Human Care and Use of the Office for
Laboratoy Animal Welfare (OLAW, USA) under OLAW Assurance number #A5826-86. The
monitoring of the anmals was under the supervision of the veterinarians in charge of the animal
facilities. Animal expefimental protocols were approved by the Ethical Committee of Animal
Experimertation (CETEA-DSV, IDF, France)(Notification #12-098). AGM and macaues were
infected IV with, respedtvely, 250 TCIDs, of SIVagm.sabgygig and 5000 AlDs, of SIVmacs;, as
previously reported®®,

From the six AGM and six MAC described in Figure 1, four of each species were randomly

chosen for sacrifice at day 240 p.i., andthe tissues(spleenand gut) colleded at sacrifice usedfor
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the analysesdescribed in Figures 2 and 3. The spleens from the additional 6 animals described in
Figure 3 correspond to randomly chosen, chronically SIVagm.sab®018-infected AGM from
previous studies™®® . The two remahing AGM from Figure 1 were incuded in the group of
arimals treaed with the simianized ani-IL15 mAb. The three other AGMs treatedwith the anti-
IL-15 mAb derived from previous studies andwere also randomly chosen®. The five AGMs were
chronically infected with SlVagm.sah92018 for 1 to 3 years at the time of anti IL-15

administration.

Tissue collection and processing

Blood and LN biopdes were collecied longitudinally. Whole venous blood was collected in
EDTA tubes.Mononudear cells were isolated by Ficoll densty-gradient centifugation. Biopsies
of peripheral LNs were performed by excision. Other tissues (spleen, gut) were colleced at
auopsy. After careful removal of adherng connective and fat tissues, LN and spleen were
digested using Collagenase IV, Collagenae D and DNasel and at 37°c for 5min. The tissue was
thenmechanicdly disruptedand filtered through a40 m cell straner. Gut was washedwith cold
medium and cut in pieces.A 20 min digeston with CollagenaselV was performed at 37°C. The
cell suspeni®n wasfiltrated subsegently through 100 and40 m cell strainersand cells washed
with cold PBS. Cells were eitherimmediately staired for flow cytometry or cryopreserved in 90%

FBS 10% DMSO and storedin liquid nitrogen vapor.

Vir al detecion assays

Plasma viral load wasdetamined by reattime PCRasdesaibed®®. For cell-associatedviral RNA,
RNA was extraced as follows: samples were lysed in NaCl (3M), EDTA (0.5M, pH 8), SDS
(10%, Bio-Rad) and Praeinase K (1mg/mL, Qiagen)in a 45min incubation at55° C. Then, NaCl
(5M) was addedand incubatedat 4° C between 15 and 60min, followed by centrifugation for
15min at 3000mm at 4° C. DNA was precipitated in Phenol:Chloroform:isoamyl alcohol 25:24:1
(pH = 8, Sigma Aldrich). Viral RNA was measured by gPCRin duplicate. SIVagm and SIV mac

products of T7 transcription from plasmids were usel as stangrds to calculate SIV RNA copy
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numbers. 18SrRNA and CCR5 DNA quanttification was used for normalization Sample
preparation,enzyme mix prepaation and PCR setup were pefformed in three separateroomsto

avoid PCR confamination. Negativecontrols were usedto exclude sample contamination.

Flow cytometry

All analses on blood cells and most analses on LN cells, including those on the homing
recepors, were performed on fresh cells. Hypotonic ammonium chloride solution was usedto
lyse contaminaing red blood cells. Cytofix/Cytoperm (BD Biosciences, La Jolla, CA) was used
for all intracelllar stanings. Intra cdlular staining for IL-15 was performed without and after
simulation with Phabol Myristate Acette (PMA) and lonomycin at final concentrations of
respectivelyl0ng/mL and  JmL. After 1 hour of incubaton, 10 pug/mL of Brefddin A was
addel. FcR blocking reagent (Miltenyi) was used to block unspecific antibody binding.
Antibodies used are shown in Supplementary Table 1. Flow cytomety acquisitions were done on
an LSR Fortessa(BD Biosciences), and FlowJo software (version 9.6.4, Tree Star, Ashland, OR)

was used for all analyses.

Immunohistology

FreshLN tissueswere embedded and snap frozenin optimum cold temperaure compound (OCT)
and 10um frozen secions were staned using unconjugated primary antibodies followed by
appropriate secondary antibodies conjugated to Alexa 488 (green), Alexa 568 (red) (Molecular
Probes, Eugene,OR). Antibodiesused are shown in Suppkementary Table 2. Stained slides were
incubatedwith 1002  / of ice cold methanol and 5% acetic acid, placed at -20°C for 10 min
and then washed.Image anaysis was pefformed using a Leica TCS SPB confocal microsmpe

equippedwith white lasers (Leica Microsystems, Exton, PA).

Fluorescentin situ hybri dization
The probeswere prepaed as follows. SIVenv ard IL-15 mRNA were RT-PCR amplified and

cDNA was cloned, usng the CloneJET PCR Cloning Kit (Thermo Fisher Scientific) as
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recommended by the manufacturer. The vedors were digesed and in vitro transcibed using T7
RNA polymerase (Ambion) to make Alexa Fluor 488 [Life Techrologies] single-strand RNA
probes The FISH assay combined with immundiuorescert staining was performed as follows:
Cryosections were rehydrated in PBS for 15 minutes and then permeabilized by incubating in
0.5% (v/v) Triton X-100 in PBSfor 20 minutes at RT. The slides were placedin container filled
with 200 ml of 10 mM sodium citrate buffer (pH 6.0) and the RNA unmasked by putting the
contaner in a microwave set at 700 W, before heaing for 2.5 minutes or until first signs of
boiling. This step was repeatedseven times. The slides were transferred to 2X SSC and
subseaguently incubated in formamide-SSC solution for at least4 hours. The probe was mounted
using glass chambers. Prehybridizaion was performed by incubating the slideswith the mounted
probe for 1-2 hoursat 37°C. Cellular RNA and RNA probeswere simultaneously dendured by
incubating the slideswith a mounted probe on a heding block for 5 minutesat 80°C, followed by
hybridizaion in humid dark chambers for 1 day at 37°C. Sections wee washed three times at
high stringency in 0.1X SSC at 60°C and three times in 2X SSC buffer. Finaly they were
incubatedin 0.05 g¢/ml DAPI in SSC/Tween for 10 minutes, rinsed briefly in 2X SSC and
mounted. As negafve controls, we used a RNAse degaded probe, as well as LNs from
uninfected animals. 1mages were acquired on a Confocal Laser ScanningMicros®pe Leica TCS
SP8, running LAS AF 3 (Leica Application Suite Advanced Fluorescence). Individual optical
sliceswere colleded at 1024 x 1024 pixel resoluton. ImageJ software was used to assign colors

to the chamels collected.

Statigtical analyses

Nonpalmetric MannWhitney U-tests was used to compare continuous factors beween two
groups, while nonparaméric Wilcoxon signed rank test was used to compare paired variables.
The Speaman rank correlation was used to assess the association between 2 continuous variables.
These statistcal analyses as well asgraphic treaments were performed with GraphPad Prism 7.0
software(GraphPad Software,La Jolla, CA). To evduate charges overtime, mixed effect models

were usedto accountfor multiple repeatedmeasurements, with testing of interactions between



612 time and spedes, time being consgdered asa categorical or continuous variable depending on the
613 number of values. We first assessedif the marker$§ distribution was Gaussian; if not, a
614  logarithmic trandormaion was used and tested if efficient. Secondly, a LOWESS (locally
615  weighted scatteplot snoothing) curve was used to as®ss whether the mark H §)tflajectory was
616 linea. Finaly, a mixed effect linear or piecewise-linear model wasapplied. Stata 13 (StataCorp.,
617 College Staton, TX, USA) was used for the analyses. In all aralyses, p-values <0.05 were
618 conddered significant.
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LEGENDS

Figure 1. Numbers and distribution of SIV RNA and NK cdls in lymph nodes. Peiipheral
LNs from six AGM and six macaquesinfeded by SIVagm and SIVmac, respecively, were
analzed. (a) Cell-as®ciated viral RNA in total LN cells. (b) Representative confocal images of
LN sectonsfrom chronically infected animals stained for CD20 (green), SIV RNA (red) and total
nucleus (blue). Cells containing viral RNA were detected by in-situ hybridization. The picture
represents the distribution of the productively-infected cdls in LNs. One representatve picture in
the B and T zones is shown for each species. The time points analyzed in chronic phase
corresponded to days 80, 150and 250 days p.i. (¢) The graph on the left shows the numbers of
SIV RNA positive-cells per follicle. A total of 24 follicles were counted.The graph on the right

shows the numbers of follicles positive for SIV RNA. A total of 8 LN sections per anmal were

counted. (d) Frequecies of NK cells among total CD45' lymphocytes in LNs of AGM (purple)
and MAC (grey). (e) Percentage®f follicles positive for at leastone NK cel. A total of 32 LN
sectons were counted. (f) Examples of the distributon of NK cels in LNs during chronic
SIVmac and SIVagm infections as evaluated by confocal imaging. NK cels were stained with
anttNKG2A (green) andB cells with ant-CD20 (purple). Staning of NK cells were verified with
other markers, such asNKp30" and NKp80* (not shown). The analysis reveas the localizaton of
NK cels in and around follicles during SIVagm infection in AGM. (g) Frequencies of CD16 NK
and CD16" NK cels of LN in AGM (purple) and MAC (grey). (h) Numbers of NK cellsinthe T
and B cell zones.A total of 32 LN sectons from 6 animals per specieswere counted (4-6 sedions
per animal). A nonpamametric MannWhitney U-tests, for panels c,e and h were applied. For
panelsd andg a mixed effect model wasused.Asterisks indicate significant differences *p<0.05;

**p< 0.005; **p< 0.001. Median and inter-quartile range are shown. Dpi= days post-infecion.

Figure 2. CXCR5 expression on NK cells and phenayping of CXCR5" NK cells in AGM.

CXCR5 was measured on cells from six chronically infected AGM and six chronically infected
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macagues. (a) Gaing strategy usedto analze CXCR5 expression on B cells, CD8" T cells and
NK cells. Cells from macajue are plotted in grey and from AGM in purple. Representative plots
are shown. (b) Frequendes of CXCR5" cels for a given cell populaton in LNs from distinct
tissues.(c) Phenotype of CXCR5 and CXCR5" lymph node NK cells in AGM. A representative
dot plot for one animal is shown. (d) Frequencies of CXCR5" and CXCR5 NK cells expressing a
given marker in AGM LN. (e) NK cdl subsetfrequenées in LN from AGM and MAC.

Individual values for AGM are shown as purple circles andfor MAC as grey squaes. A

nonpaametric MannWhitney U-test,wasapgied *p<0.05; **p <0.005; ***p <0.001.

Figure 3. Viral load and NK cells in spleenfrom chronically infected AGM and MAC. Ten
animals per species were analyzed. (a) Cell-associatedSIV DNA andRNA in spleen(b) CXCR5'
NK cells. Representative dot plots for 5 out of 10 randbmly chosenarimals (alphaetic order) are
shown. (c) Cell-assodiated viral DNA in spleen was plotted against the frequency of spleen NK
cells of MAC (left) and AGM (right). (d) Frequenies of NK cells among CD45" cellsin spleen
(e) Frequencies of CXCR5" among NK and CD8" T cells in spleen. (f) Frequenciesof
CXCR5" ard CXCR5 NK cells expressinga given marker in spleen. (g) NK cell subsetsin
spleen from AGM and MAC. Individual valuesfor AGM are shavn aspurple circles and
of MAC asgrey squaresin panel ¢ a norparametric Speaman's rank-order correlation
was run to detgmine the relationshipbetween LOG(DNAsIv) and NK cell frequencies
for each species. For all panels exept pand ¢, a norparametric MannWhitney U-test,

was applied*p < 0.05; **p<0.005.

Figure 4. 1L-15 expresdon in lymph nodesduring SIV infection in AGM and macaques.
LNs from six chronically infected AGM and six chronically infected macagues were andyzed.
(a) Percertage of follicles positive for at least one IL-15" cell per analyzed LN section. A total of
10 LN sections per animal were counted. (b) Confocal image of LN sections staned for IL-15

(red) and total nucleus(blue). The picture represets the distribution of IL-15 positive cels for
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eachspecies. IL-15 staning was strongin LNs from SIVagm-infected AGM and predominant in
the follicles (c) Frequenies of cels positive for both IL-15 and IL-15R. ammg distinct cell
subpopulations of stromal (CD45-) and hemaopoiefc (CD45+) cells. (d) Confocd image of LN
sectons staned for NK cells (green), IL-15 (red) and nuclews (blug), showing the spatial
associaton between IL-15 and NK cels. The zooms on the right side show enlarged images of
AGM follicles showing typical NK cell distribution in AGM fallicles, i.e. within and surrounding
IL-15 positive follicles during SIVagm infection (€) Confocal imageof LN sectios hybridized
with a IL-15 RNA probe (red) and staned with DAPI (blue). IL-15 mRNA positive cells were
mainly deteded in follicles in both speges. The enlargements display represatative examples of
the shape of the IL-15 mRNA positive cells. Nonparametric Mann-Whitney U-testswere applied.
Asterisks indicate significant differences (p<0.05). Median and interquertile range are shown.

AGM : purde circle; MAC: grey squares. FDC= follicular derdritic cell.

Figure 5. Anti 4L -15 administration results in near-complete NK cell depletion in AGM. (@)
Schematic representationof the ani #L-15 treatment schedule used in this study. Five chronically
infected AGM receved 20 mg/kg of anti4L-15 mAb on day 0 and 10 mg/kg on day 14. The red
arrows show the days of ani #L-15 mAb administration. The blue arrow indicates the day of
neaopsy (Nx). (b) Dot plots showing NK cells (CD3'NKG2A") in peripheral blood of one
representaive AGM before and after ani #L-15 administraion (c) Follow up of NK cells in
blood andLN. In blood, five arimals werefollowed. LN wereavailable for 4 and 5 animals LN at
day 21 and d42 posttreatment, respectiely. In blood, grey ard purple lines represent the
trajedories for each animal and the median values from all animals, respectively. For the
statistical analyses, the mean valuesof the three pre-infecion time points were used. (d) Follow
up of CD4'T cells and CD4'T cell subpgpulations in blood during ant-IL-15 treament. (e)
Follow up of CD8'T cels and CD8'T cell subpopuations in blood during anti-IL-15 treament.
(f) Levels of CD4'T ard CD8'T posiive for Ki-67 in blood. (g) CD4'T cellsin LN (h) CD8+ T

cells in LN (i) CD4'T cell sutpopulations in LN (k) CD8'T cel subpopulations in LN. Median

values and interquartile range are indicaed. Each dot representsthe values of an individual
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anmal. Ty: naive T cells; Ty: central memory T cells; Tg: Effector memory T cells.

Nonpaametric Mann-Whitney U-testswereapplied*p < 0.05; **p<0.005.

Figure 6. NK cell depletion results in increasesof SIV RNA, SIV DNA and productively
infected cels in lymph nodes. (a) Quantificaion of SIVagm.sabyxs RNA in plasma by gRT-
PCR in 5 chronically infected AGM (the same as in Fig.5), before and after anti#L-15
administration. The grey line represents the viremia levels in individual monkeys over time and
the purple line represents the median viremia. The black arrows show the days of anti4L-15
administration. (b) Quantification of the cell-associated SIV RNA and DNA in LN. The LN of 6
anmals without treament were compared to LN from 5 anti-IL-15 treated monkeys. Each dot
represents anindividual animal (c) Virus-producing cells (SIV RNA, red) in the LN of NK cell-
depletedAGM. Represetative imagesof an inguinal LN from five different animals. One image
for eachof the five anti-lL-15 treatedarimals is shown. Follicles are delineaed by the dashed
white lines. Images derived from mounted multiple confocd projected z-scans. Pictures were
ohtained using a Leica SP8confocal microscope and processedwith ImageJsoftware. Confocal
images were collected with a 40X objective. Tx= antiIL15 treatment. Nonparametic Mann-

Whitney U-teds were applied *p < 0.05; **p<0.005.



749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

Supplemenary Figure 1: Viral load in peripheral blood and lymph nodes from AGM and
macaques (a) Quantiication of SIVmac RNA in plasmain six maagues. (b) Quantification of
SIVagm RNA in plasma in six AGM. (c) Median (interquartile rarge) vdues of plasma viral
RNA in the six AGM and six macaquegd) Median (interquartile range)values of caviral DNA

load in peripheral LN of the six AGM and six macagues.

Supplemenary Figure 2. Gating strategy for identifying NK cells within blood and lymph

nodesfrom MAC and AGM. Dot plots representthe main stepsof the gaing strateyy that was
the same as reported for other NHP studies™*. NK cells were defined by morptology and as
CD45" CD20' CD3 CD4 NKG2A" CD8". NK cdls from LN were CD8°"™? in contrastto
blood NK cells that were CD8". NKG2A was idertified asthe most inclusive NK cell marker in

both AGM and macaques,aspreviously reported®™*.

Supplemertary Figure 3. Localization of NK cells in lymph nodes. (a) SIV-nave anmals
Representate LN tissue secton from a SIV-nave macaque staned with anttNKG2A (pink) to
label NK cdls, DAPI (blue) to label nucleus and antrER-TR7 (green) to label stromal cells
(reticular fibroblasts). The enlaged figure shovs NK cells (pink) and high endbthelial venules
(green).NK cells were mostly locaked in the medullaand sometimes in the paracotex. The same
distiibution was obseved for NK cells in LN from non-infected AGMs. (b) Localzaion of NK
cells in lymph nodes of chronically SlIVagm-infected African green monkeys. (i+ii)
Rereentaive LN tissuesections staned with anti NKG2A (white) to label NK cells and with
DAPI (blue) to label nucleus of all cells. (i) Inguinal LN from arimal SV083 (AGM) at day 150
p.i. (ii) Axillary LN from anmd SV091 (AGM) at150 day p.i. (iii) Magnification showng NK
cells stained in green, B cells in white and nuclei in blue. Enlargementsshow examplesof NK
cells for both the B zoneand T zone. NK cells were predaminantly localized in the B zones
(follicles), showing two types of predaminant localization: most of the times they accunulated
within follicles and sometimes they acaimulated around the follicles (see also Fig.1f). (c)

Localizaion of NK cells in lymph nodes of chronicdly SlVmac-infected macaques (i+ii)
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Representate LN tissuesectionsstaned with anti NKG2A (white) to label NK cells and DAPI
(blue) to label nucleus of all cells. (i) Ingunal LN section from animal CA275 (macaque) at day
150 p.i. (ii) Axillary LN section from animal CBBO00l(macaque) at 150 days p.. (iii)
Magnificatons showing B cells in white, NK cells in green and cell nuclei in blue. Starting from
the acue phase,the distribution of NK cells in LN from SIV-infected macaques was different
from that of non-infeded animals. While in infected AGM and MAC, NK cells were found more
often outside the medulla than in noninfected animals, NK cells in SIV-infected MAC were
rancomly distributed in the tissue and did not acaimulate in follicles in cortrast to SIVagm-

infected AGM.

Supplementary Figure 4. Dynamics of lymph node homing markers on blood and lymph
node NK cells in resporse to SIVmac and SIVagm infection. Blood and LN cells were
analzed, respectively, 3 times and one time before infection and 3 timesduring the chronic phase
(days 80, 150, and250 p.i.) (a) The levels of NK cels expressing homing markers were
compared in the same animals before and in chronic infection. The values for the six AGM are
depicted in green and for the six macaquesin red. Statistcaly significant differences are
indicated by asterisks(*p<0.05; ***p<0001 ;). (b) The levels of NK cells expressig homing
markersare shown before infecton and longitudinaly for eachtime point in chronic infection.
The values for the six AGM are depicted in violet and for the six macaques in grey. Median and

interquartile rangeare shown Nonparanetric Mann-Whitney U-testswere applied for each

panel.

Supplementary Figure 5. Follow up of homing markers on CD16+ and CD16- NK
cells in blood and lymph nodesfrom AGM and MAC before and in chronic SIV
infection. Blood and LN cells were analzed, repecivey, 3 times and onetime before
infection and 3 timesduring the chronic phase (days 80, 150, and250p.i.) from six AGM

and six macaques(a). The levels of CD16 and CD16 NK cels expressingspeific
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homing markers were compared in the same animals before andin chranic infection. (b)
Thelevels of CD16+ and CD16- NK cdls expressingspecifichoming markers areshovn
before infection and for eachtime point in chroric infection. Nonparanetric Mann-
Whitney U-tests were appled. Statstically significant differences are indicated by

asteriskq*** p<0.001; * p<0.05).Medianandinterquartilerangesare shown.

Supplementary Figure 6. IL-15 expresson in lymph nodes from chronically SIV-infected
AGM and macaques. Representate LN tissue sectionsstained with anti IL-15 (red), CD20
(white) and Dapi (blue). The first two rows at the top show inguinal and axillary LN sedions
from chronicaly infected AGM. The third row shows axillary LN secton from a chronicaly
infected macaque. More IL-15 staning wasobseved in AGM. In AGM, IL-15 positive cells were
mainly presentin follicles. In macaque, IL-15 was weak and IL-15-podtive cells were

distributed randomly in the LNs.

Supplementary Figure 7. Represenative gating strategy for identifying membrane-bound
IL-15 in total lymph node cells from chronically SlIV-infected AGM and macaques. (a)
Frozen LN cells from chronically SIV-infected animals were used for the andysis. Living cels
were identified as Aqua dye-negatve. LN cell sup-populations were defined as follows: stromal
cells asCD45 CD16 Podoplanin’ ; FDC as CD45 CD16" Podoplanin® ; CD4 T cells as CD45"
CD3" CD4"; CD8 T cells asCD45" CD3" CD8"; NK cells as CD45 CD3 NKG2A"; and two
other populaion asCD45" CD3 CD8 CD16 NKG2A CD4"". Positive cels for mbIL-15 were
defined when cells were double positive for IL-15 and IL- 5. (b) Mean of fluorescentintensity
of IL-15R. onthe LN cel-subpopulations described above (c) Frequecy of IL-15R." cellsin LN
cell-subpopulations Nonparametric Mann-Whitney U-tests were applied. Staistically significant
differences are indicated by asterisks(*** p<0.001 ; * p<0.05). Median and interquartile ranges

areshown.
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Supplemenary Figure 8. Cell phenotypes and frequencies in chronically infected AGM

treated with anti IL -15. (top) NK cdl, T CD4 cell and T CD8 cell frequenciesin tissues from
chronically SIVagm-infected AGM without and after antiIL-15 treamert. Tissues (speen and
four gut compatments) were obtaned at necropsy. Samples from 4 non-treaed (black circles)
and five anti 4L -15 treaed AGM (grey squares) were available for the analyses.NK cells were
significantly depleted in duoderum, ileon,jejunum and spleen, while no significant changeswere
obseved for CD4+ and CD8+ T cellsin gut or spleen.(middle) Frequercies of each T cell subset
within CD45" cells in blood. Five AGMs were studied. Individual animas are depicted by grey
lines and the purple line represets the median values. (bottom) Frequencies of Ki-67+ cells for
eachT cell subsetat days 0, 21 and 42 posttreament. LN from 4 AGM at day 21 and 5 animals
at day 42 posttreament were availeble. Eachcircle representghe value of anindividual AGM.

The black arows indicat the days of anti-IL15 admhistration. Ty: naive T cells; Ty: central
memory T cells; Tg: effector memory T cells. Nonpaametric Man-Whitney U-tests were
applied. Statstically significant differences areindicated by astersks (*** p<0.001 ; * p<0.05).

Median and interquartilerangesare shown.
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