M. Krupovic and E. V. Koonin, Multiple origins of viral capsid proteins from cellular ancestors, Proc Natl Acad Sci, vol.114, issue.12, pp.2401-2411, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01977364

R. J. Nichols, C. Cassidy-amstutz, T. Chaijarasphong, and D. F. Savage, Encapsulins: molecular biology of the shell, Crit Rev Biochem Mol Biol, vol.2017, issue.5, pp.583-94

T. O. Yeates, C. S. Crowley, and S. Tanaka, Bacterial microcompartment organelles: protein shell structure and evolution, Annu Rev Biophys, vol.39, pp.185-205, 2010.

C. A. Kerfeld and O. Erbilgin, Bacterial microcompartments and the modular construction of microbial metabolism, Trends Microbiol, vol.23, issue.1, pp.22-34, 2015.

T. A. Bobik, B. P. Lehman, and T. O. Yeates, Bacterial microcompartments: widespread prokaryotic organelles for isolation and optimization of metabolic pathways, Mol Microbiol, vol.98, issue.2, pp.193-207, 2015.

H. Liu, J. L. Koh, S. B. Atanasov, I. Schein, S. Wu et al., Atomic structure of human adenovirus by cryo-EM reveals interactions among protein networks, Science, vol.329, issue.5995, pp.1038-1081, 2010.

C. San-martín, Latest insights on adenovirus structure and assembly, Viruses, vol.4, issue.5, pp.847-77, 2012.

N. G. Abrescia, J. J. Cockburn, J. M. Grimes, G. C. Sutton, J. M. Diprose et al., Insights into assembly from structural analysis of bacteriophage PRD1, Nature, vol.432, issue.7013, pp.68-74, 2004.

X. Zhang, S. Sun, Y. Xiang, J. Wong, T. Klose et al., Structure of sputnik, a virophage, at 3.5-a resolution, Proc Natl Acad Sci, vol.109, issue.45, pp.18431-18437, 2012.

T. O. Yeates, M. C. Thompson, and T. A. Bobik, The protein shells of bacterial microcompartment organelles, Curr Opin Struct Biol, vol.21, issue.2, pp.223-254, 2011.

M. Krupovic and E. V. Koonin, Polintons: a hotbed of eukaryotic virus, transposon and plasmid evolution, Nat Rev Microbiol, vol.13, issue.2, pp.105-120, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01977391

N. G. Abrescia, D. H. Bamford, J. M. Grimes, and D. I. Stuart, Structure unifies the viral universe, Annu Rev Biochem, vol.81, pp.795-822, 2012.

F. Cai, M. Sutter, J. C. Cameron, D. N. Stanley, J. N. Kinney et al., The structure of CcmP, a tandem bacterial microcompartment domain protein from the beta-carboxysome, forms a subcompartment within a microcompartment, J Biol Chem, vol.288, issue.22, pp.16055-63, 2013.

M. Sutter, B. Greber, C. Aussignargues, and C. A. Kerfeld, Assembly principles and structure of a 6.5-MDa bacterial microcompartment shell, Science, vol.356, issue.6344, pp.1293-1300, 2017.

L. Holm and P. Rosenstrom, Dali server: conservation mapping in 3D, Nucleic Acids Res, vol.38, pp.545-554, 2010.

A. J. Ninfa and P. Jiang, PII signal transduction proteins: sensors of alphaketoglutarate that regulate nitrogen metabolism, Curr Opin Microbiol, vol.8, issue.2, pp.168-73, 2005.

L. F. Huergo, G. Chandra, and M. Merrick, P(II) signal transduction proteins: nitrogen regulation and beyond, FEMS Microbiol Rev, vol.37, issue.2, pp.251-83, 2013.

J. L. Llacer, A. Contreras, K. Forchhammer, C. Marco-marin, F. Gil-ortiz et al., The crystal structure of the complex of PII and acetylglutamate kinase reveals how PII controls the storage of nitrogen as arginine, Proc Natl Acad Sci, vol.104, issue.45, pp.17644-17653, 2007.

J. Jorda, D. Lopez, N. M. Wheatley, and T. O. Yeates, Using comparative genomics to uncover new kinds of protein-based metabolic organelles in bacteria, Protein Sci, vol.22, issue.2, pp.179-95, 2013.

V. Arcus, OB-fold domains: a snapshot of the evolution of sequence, structure and function, Curr Opin Struct Biol, vol.12, issue.6, pp.794-801, 2002.

R. L. Flynn and L. Zou, Oligonucleotide/oligosaccharide-binding fold proteins: a growing family of genome guardians, Crit Rev Biochem Mol Biol, vol.45, issue.4, pp.266-75, 2010.

J. Söding, Protein homology detection by HMM-HMM comparison, Bioinformatics, vol.21, issue.7, pp.951-60, 2005.

S. Tanaka, C. A. Kerfeld, M. R. Sawaya, F. Cai, S. Heinhorst et al., Atomic-level models of the bacterial carboxysome shell, Science, vol.319, issue.5866, pp.1083-1089, 2008.

N. M. Wheatley, S. D. Gidaniyan, Y. Liu, D. Cascio, and T. O. Yeates, Bacterial microcompartment shells of diverse functional types possess pentameric vertex proteins, Protein Sci, vol.22, issue.5, pp.660-665, 2013.

T. Wang, H. Li, G. Lin, C. Tang, D. Li et al., Structural insights on the mycobacterium tuberculosis proteasomal ATPase Mpa, Structure, vol.17, issue.10, pp.1377-85, 2009.

S. Djuranovic, M. D. Hartmann, M. Habeck, A. Ursinus, P. Zwickl et al., Structure and activity of the N-terminal substrate recognition domains in proteasomal ATPases, Mol Cell, vol.34, issue.5, pp.580-90, 2009.

L. Holm and C. Sander, Dali: a network tool for protein structure comparison, Trends Biochem Sci, vol.20, issue.11, pp.478-80, 1995.

E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt et al., UCSF chimera-a visualization system for exploratory research and analysis, J Comput Chem, vol.25, issue.13, pp.1605-1617, 2004.