W. M. Stark, Making serine integrases work for us, Curr. Opin. Microbiol, vol.38, pp.130-136, 2017.

N. Hirano, T. Muroi, H. Takahashi, and M. Haruki, Site-specific recombinases as tools for heterologous gene integration, Appl. Microbiol. Biotechnol, vol.92, pp.227-239, 2011.

D. P. Brown, K. B. Idler, D. M. Backer, S. Donadio, and L. Katz, Characterization of the genes and attachment sites for site-specific integration of plasmid pSE101 in Saccharopolyspora erythraea and Streptomyces lividans, Mol. Gen. Genet, vol.242, pp.185-193, 1994.

A. Kubo, A. Kusukawa, and T. Komano, Nucleotide sequence of the rci gene encoding shufflon-specific DNA recombinase in the IncI1 plasmid R64: homology to the site-specific recombinases of intergrase family, Mol. Genet. Genomics, vol.213, pp.30-35, 1988.

Z. Wang, G. Xiong, and F. Lutz, Site-specific integration of the phage phi CTX genome into the Pseudomonas aeruginosa chromosome: characterization of the functional integrase gene located close to and upstream of attP, Mol. Gen. Genet, vol.246, pp.72-79, 1995.

B. Lesic, S. Bach, J. Ghigo, U. Dobrindt, J. Hacker et al., Excision of the high-pathogenicity island of Yersinia pseudotuberculosis requires the combined actions of its cognate integrase and Hef, a new recombination directionality factor, Mol. Microbiol, vol.52, pp.1337-1348, 2004.

D. N. Farrugia, L. D. Elbourne, B. C. Mabbutt, and I. T. Paulsen, A novel family of integrases associated with prophages and genomic islands integrated within the tRNA-dihydrouridine synthase A (dusA) gene, Nucleic Acids Res, vol.43, pp.4547-4557, 2015.

R. M. Hall and C. M. Collis, Mobile gene cassettes and integrons: capture and spread of genes by site-specific recombination, Mol. Microbiol, vol.15, pp.593-600, 1995.

C. M. Johnson and A. D. Grossman, Integrative and conjugative elements (ICEs): what they do and how they work, Annu. Rev. Genet, vol.49, pp.577-601, 2015.

A. Landy, Dynamic, structural, and regulatory aspects of lambda site-specific recombination, Annu. Rev. Biochem, vol.58, pp.913-949, 1989.

F. X. Barre, B. Soballe, B. Michel, M. Aroyo, M. Robertson et al., Circles: the replication-recombination-chromosome segregation connection, Proc. Natl. Acad. Sci. U.S.A, vol.98, pp.8189-8195, 2001.

O. Z. Hughes, K. , and T. , In vivo identification of intermediate stages of the DNA inversion reaction catalyzed by the Salmonella Hin recombinase, Genetics, vol.149, pp.1649-1663, 1998.

Y. Liu, S. Sau, C. H. Ma, A. H. Kachroo, P. A. Rowley et al., The partitioning and copy number control systems of the selfish yeast plasmid: an optimized molecular design for stable persistence in host cells, 2014.

. Microbiol and . Spectr, , vol.2

S. Austin, M. Ziese, and N. Sternberg, A novel role for site-specific recombination in maintenance of bacterial replicons, Cell, vol.25, pp.729-736, 1981.

D. Mazel, Integrons: agents of bacterial evolution, Nat. Rev. Microbiol, vol.4, pp.608-620, 2006.

A. C. Groth and M. P. Calos, Phage Integrases: Biology and Applications, J. Mol. Biol, vol.335, pp.667-678, 2004.

P. C. Fogg, S. Colloms, S. Rosser, M. Stark, and M. C. Smith, New applications for phage integrases, J. Mol. Biol, vol.426, pp.2703-2716, 2014.

J. A. Lewis and G. F. Hatfull, Control of directionality in integrase-mediated recombination: examination of recombination directionality factors (RDFs) including Xis and Cox proteins, Nucleic Acids Res, vol.29, pp.2205-2216, 2001.

S. Saha, E. Haggard-ljungquist, and K. Nordstrom, The cox protein of bacteriophage P2 inhibits the formation of the repressor protein and autoregulates the early operon, EMBO J, vol.6, pp.3191-3199, 1987.

C. Frumerie, L. Sylwan, A. Ahlgren-berg, and E. Haggard-ljungquist, Cooperative interactions between bacteriophage P2 integrase and its accessory factors IHF and Cox, Virology, vol.332, pp.284-294, 2005.

S. Cali, E. Spoldi, D. Piazzolla, I. B. Dodd, F. Forti et al., Bacteriophage P4 Vis protein is needed for prophage excision, Virology, vol.322, pp.82-92, 2004.

, Nucleic Acids Research, vol.46, issue.5, p.2535, 2018.

G. Meinke, A. Bohm, J. Hauber, M. T. Pisabarro, and F. Buchholz, Cre recombinase and other tyrosine recombinases, Chem. Rev, vol.116, pp.12785-12820, 2016.

B. Gibb, K. Gupta, K. Ghosh, R. Sharp, J. Chen et al., Requirements for catalysis in the Cre recombinase active site, Nucleic Acids Res, vol.38, pp.5817-5832, 2010.

B. O. Krogh and S. Shuman, Catalytic mechanism of DNA topoisomerase IB, Mol. Cell, vol.5, pp.1035-1041, 2000.

S. E. Nunes-duby, H. J. Kwon, R. S. Tirumalai, T. Ellenberger, and A. Landy, Similarities and differences among 105 members of the Int family of site-specific recombinases, Nucleic Acids Res, vol.26, pp.391-406, 1998.

A. J. Clore and K. M. Stedman, The SSV1 viral integrase is not essential, Virology, vol.361, pp.103-111, 2007.

C. Letzelter, M. Duguet, and M. C. Serre, Mutational analysis of the archaeal tyrosine recombinase SSV1 integrase suggests a mechanism of DNA cleavage in trans, J. Biol. Chem, vol.279, pp.28936-28944, 2004.

M. C. Serre, C. Letzelter, J. R. Garel, and M. Duguet, Cleavage properties of an archaeal site-specific recombinase, the SSV1 integrase, J. Biol. Chem, vol.277, pp.16758-16767, 2002.

Z. Zhan, S. Ouyang, W. Liang, Z. Zhang, Z. J. Liu et al., Structural and functional characterization of the C-terminal catalytic domain of SSV1 integrase, Acta Crystallogr. D Biol. Crystallogr, vol.68, pp.659-670, 2012.

Z. Zhan, J. Zhou, and L. Huang, Site-specific recombination by SSV2 Integrase: substrate requirement and domain functions, J. Virol, vol.89, pp.10934-10944, 2015.

Q. She, B. Shen, and L. Chen, Archaeal integrases and mechanisms of gene capture, Biochem. Soc. Trans, vol.32, pp.222-226, 2004.

Q. She, H. Phan, R. A. Garrett, S. V. Albers, K. M. Stedman et al., Genetic profile of pNOB8 from Sulfolobus: the first conjugative plasmid from an archaeon, Extremophiles, vol.2, pp.417-425, 1998.

M. Krupovic, P. Forterre, and D. H. Bamford, Comparative analysis of the mosaic genomes of tailed archaeal viruses and proviruses suggests common themes for virion architecture and assembly with tailed viruses of bacteria, J. Mol. Biol, vol.397, pp.144-160, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00506375

K. S. Makarova, Y. I. Wolf, P. Forterre, D. Prangishvili, M. Krupovic et al., Dark matter in archaeal genomes: a rich source of novel mobile elements, defense systems and secretory complexes, Extremophiles, vol.18, pp.877-893, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01977394

M. K. Pietilä, E. Roine, A. Sencilo, D. H. Bamford, and H. M. Oksanen, Pleolipoviridae, a newly proposed family comprising archaeal pleomorphic viruses with single-stranded or double-stranded DNA genomes, Arch. Virol, vol.161, pp.249-256, 2016.

Y. Liu, J. Wang, Y. Liu, Y. Wang, Z. Zhang et al., Identification and characterization of SNJ2, the first temperate pleolipovirus integrating into the genome of the SNJ1-lysogenic archaeal strain, Mol. Microbiol, vol.98, pp.1002-1020, 2015.

R. C. Edgar, MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res, vol.32, pp.1792-1797, 2004.

J. D. Thompson, D. G. Higgins, and T. J. Gibson, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res, vol.22, pp.4673-4680, 1994.
DOI : 10.1093/nar/22.22.4673

URL : https://academic.oup.com/nar/article-pdf/22/22/4673/7122285/22-22-4673.pdf

A. Marchler-bauer, Y. Bo, L. Han, J. He, C. J. Lanczycki et al., CDD/SPARCLE: functional classification of proteins via subfamily domain architectures, Nucleic Acids Res, vol.45, pp.200-203, 2017.
DOI : 10.1093/nar/gkw1129

URL : https://academic.oup.com/nar/article-pdf/45/D1/D200/8846941/gkw1129.pdf

S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res, vol.25, pp.3389-3402, 1997.
DOI : 10.1093/nar/25.17.3389

URL : https://academic.oup.com/nar/article-pdf/25/17/3389/3639509/25-17-3389.pdf

J. Soding, A. Biegert, and A. N. Lupas, The HHpred interactive server for protein homology detection and structure prediction, Nucleic Acids Res, vol.33, pp.244-248, 2005.
DOI : 10.1093/nar/gki408

URL : https://academic.oup.com/nar/article-pdf/33/suppl_2/W244/7622924/gki408.pdf

J. Pei and N. V. Grishin, PROMALS3D: multiple protein sequence alignment enhanced with evolutionary and three-dimensional structural information, Methods Mol. Biol, vol.1079, pp.263-271, 2014.
DOI : 10.1007/978-1-62703-646-7_17

URL : http://europepmc.org/articles/pmc4506754?pdf=render

S. Capella-gutierrez, J. M. Silla-martinez, and T. Gabaldon, trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses, Bioinformatics, vol.25, pp.1972-1973, 2009.
DOI : 10.1093/bioinformatics/btp348

URL : https://academic.oup.com/bioinformatics/article-pdf/25/15/1972/564069/btp348.pdf

S. Guindon, J. F. Dufayard, V. Lefort, M. Anisimova, W. Hordijk et al., New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0, Syst. Biol, vol.59, pp.307-321, 2010.
URL : https://hal.archives-ouvertes.fr/lirmm-00511784

S. Kumar, G. Stecher, and K. Tamura, MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets, Mol. Biol. Evol, vol.33, pp.1870-1874, 2016.

Y. Wang, L. Sima, J. Lv, S. Huang, Y. Liu et al., Identification, characterization, and application of the replicon region of the halophilic temperate sphaerolipovirus SNJ1, J. Bacteriol, vol.198, pp.1952-1964, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01977378

J. P. Huff, B. J. Grant, C. A. Penning, and K. F. Sullivan, Optimization of routine transformation of Escherichia coli with plasmid DNA, Biotechniques, vol.9, pp.570-577, 1990.

Y. Wang, B. Chen, L. Sima, M. Cao, and X. Chen, Construction of expression shuttle vectors for the Haloarchaeon natrinema sp. J7 based on its chromosomal origins of replication, Archaea, p.4237079, 2017.

S. N. Ho, H. D. Hunt, R. M. Horton, J. K. Pullen, and L. R. Pease, Site-directed mutagenesis by overlap extension using the polymerase chain reaction, Gene, vol.77, pp.51-59, 1989.
DOI : 10.1016/0378-1119(89)90358-2

B. Bartolomé, Y. Jubete, E. Martínez, and F. De-la-cruz, Construction and properties of a family of pACYC184-derived cloning vectors compatible with pBR322 and its derivatives, Gene, vol.102, pp.75-78, 1991.

G. Bitan-banin, R. Ortenberg, and M. Mevarech, Development of a gene knockout system for the halophilic archaeon Haloferax volcanii by use of the pyrE gene, J. Bacteriol, vol.185, pp.772-778, 2003.

M. Brenneis, O. Hering, C. Lange, and J. Soppa, Experimental characterization of cis-acting elements important for translation and transcription in halophilic archaea, PLoS Genet, vol.3, p.229, 2007.

Z. Zhang, Y. Liu, S. Wang, D. Yang, Y. Cheng et al., Temperate membrane-containing halophilic archaeal virus SNJ1 has a circular dsDNA genome identical to that of plasmid pHH205, Virology, vol.434, pp.233-241, 2012.
DOI : 10.1016/j.virol.2012.05.036

URL : https://doi.org/10.1016/j.virol.2012.05.036

F. Castillo, A. Benmohamed, and G. Szatmari, Xer site specific recombination: double and single recombinase systems, Front. Microbiol, vol.8, p.453, 2017.
DOI : 10.3389/fmicb.2017.00453

URL : https://www.frontiersin.org/articles/10.3389/fmicb.2017.00453/pdf

D. Cortez, S. Quevillon-cheruel, S. Gribaldo, N. Desnoues, G. Sezonov et al., Evidence for a Xer/dif system for chromosome resolution in archaea, PLoS Genet, vol.6, p.1001166, 2010.

E. Pagaling, R. D. Haigh, W. D. Grant, D. A. Cowan, B. E. Jones et al., Sequenceanalysis of an Archaeal virus isolated from a hypersaline lake in InnerMongolia, China. BMC Genomics, vol.8, p.410, 2007.

R. Klein, U. Baranyi, N. R-¨-ossler, B. Greineder, and H. Scholz,

A. Witte, Natrialbamagadii virus phiCh1: first complete nucleotide sequence and functionalorganization of a virus infecting a haloalkaliphilic archaeon, Mol. Microbiol, vol.45, pp.851-863, 2002.

R. Klein, N. Rossler, M. Iro, H. Scholz, and A. Witte, Haloarchaeal myovirus phiCh1 harbours a phase variation system for the production of protein variants with distinct cell surface adhesion specificities, Mol. Microbiol, vol.83, pp.137-150, 2012.

M. Cossu, C. Badel, R. Catchpole, D. Gadelle, E. Marguet et al., Flipping chromosomes in deep-sea archaea, PLoS Genet, vol.13, p.1006847, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02109460

R. F. Peck, S. Dassarma, and M. P. Krebs, Homologous gene knockout in the archaeon Halobacterium salinarum with ura3 as a counterselectable marker, Mol. Microbiol, vol.35, pp.667-676, 2000.

J. Soppa, Normalized nucleotide frequencies allow the definition of archaeal promoter elements for different archaeal groups and reveal base-specific TFB contacts upstream of the TATA box, Mol. Microbiol, vol.31, pp.1589-1592, 1999.

L. Cai, S. Cai, D. Zhao, J. Wu, L. Wang et al., Analysis of the transcriptional regulator GlpR, promoter elements, and posttranscriptional processing involved in fructose-induced activation of the phosphoenolpyruvate-dependent sugar phosphotransferase system in Haloferax mediterranei, Appl. Environ. Microbiol, vol.80, pp.1430-1440, 2014.

J. A. Lewis and G. F. Hatfull, Identification and characterization of mycobacteriophage L5 excisionase, Mol. Microbiol, vol.35, pp.350-360, 2000.

L. A. Bibb and G. F. Hatfull, Integration and excision of the Mycobacterium tuberculosis prophage-like element, phiRv1, Mol. Microbiol, vol.45, pp.1515-1526, 2002.

D. Salmi, V. Magrini, P. L. Hartzell, and P. Youderian, Genetic determinants of immunity and integration of temperate Myxococcus xanthus phage Mx8, J. Bacteriol, vol.180, pp.614-621, 1998.

K. Abremski and S. Gottesman, Site-specific recombination Xis-independent excisive recombination of bacteriophage lambda, J. Mol. Biol, vol.153, pp.67-78, 1981.

T. Khaleel, E. Younger, A. R. Mcewan, A. S. Varghese, and M. C. Smith, A phage protein that binds phiC31 integrase to switch its directionality, Mol. Microbiol, vol.80, pp.1450-1463, 2011.

A. Pokhilko, J. Zhao, O. Ebenhoh, M. C. Smith, W. M. Stark et al., The mechanism of varphiC31 integrase directionality: experimental analysis and computational modelling, Nucleic Acids Res, vol.44, pp.7360-7372, 2016.

A. Sencilo, L. Paulin, S. Kellner, M. Helm, and E. Roine, Related haloarchaeal pleomorphic viruses contain different genome types, Nucleic Acids Res, vol.40, pp.5523-5534, 2012.

Y. Hori, K. Shirahige, C. Obuse, T. Tsurimoto, and H. Yoshikawa, Characterization of a novel CDC gene (ORC1) partly homologous to CDC6 of Saccharomyces cerevisiae, Mol. Biol. Cell, vol.7, pp.409-418, 1996.

N. L. Held and R. J. Whitaker, Viral biogeography revealed by signatures in Sulfolobus islandicus genomes, Environ. Microbiol, vol.11, pp.457-466, 2009.

A. P. Farruggio and M. P. Calos, Serine integrase chimeras with activity in E. coli and HeLa cells, Biol. Open, vol.3, pp.895-903, 2014.

J. Boch, H. Scholze, S. Schornack, A. Landgraf, S. Hahn et al., Breaking the code of DNA binding specificity of TAL-type III effectors, Science, vol.326, pp.1509-1512, 2009.

M. K. Pietila, E. Roine, L. Paulin, N. Kalkkinen, and D. H. Bamford, An ssDNA virus infecting archaea: a new lineage of viruses with a membrane envelope, Mol. Microbiol, vol.72, pp.307-319, 2009.

M. K. Pietila, N. S. Atanasova, V. Manole, L. Liljeroos, S. J. Butcher et al., Virion architecture unifies globally distributed pleolipoviruses infecting halophilic archaea, J. Virol, vol.86, pp.5067-5079, 2012.

M. Dyall-smith and K. Porter, A strange family, or how a new pleolipovirus reveals its friends and relatives, Mol. Microbiol, vol.98, pp.995-997, 2015.

A. B. Futcher, Copy number amplification of the 2 micron circle plasmid of Saccharomyces cerevisiae, J. Theor. Biol, vol.119, pp.197-204, 1986.

T. D. Petes and D. H. Williamson, A novel structural form of the 2 micron plasmid of the yeast Saccharomyces cerevisiae, Yeast, vol.10, pp.1341-1345, 1994.

K. Abremski and S. Gottesman, Purification of the bacteriophage lambda xis gene product required for lambda excisive recombination, J. Biol. Chem, vol.257, pp.9658-9662, 1982.

K. Brüggerbr¨brügger, P. Redder, Q. She, F. Confalonieri, Y. Zivanovic et al., Mobile elements in archaeal genomes, FEMS Microbiol. Lett, vol.206, pp.131-141, 2002.

A. Wagner, R. J. Whitaker, D. J. Krause, J. H. Heilers, M. Van-wolferen et al., Mechanisms of gene flow in archaea, Nat. Rev. Microbiol, vol.15, pp.492-501, 2017.

J. Iranzo, E. V. Koonin, D. Prangishvili, and M. Krupovic, Bipartite network analysis of the archaeal virosphere: evolutionary connections between viruses and capsidless mobile elements, J. Virol, vol.90, pp.11043-11055, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01977374

M. Z. Demaere, T. J. Williams, M. A. Allen, M. V. Brown, J. A. Gibson et al., High level of intergenera gene exchange shapes the evolution of haloarchaea in an isolated Antarctic lake, Proc. Natl. Acad. Sci. U.S.A, vol.110, pp.16939-16944, 2013.

M. Krupovic, M. Gonnet, W. B. Hania, P. Forterre, and G. Erauso, Insights into dynamics of mobile genetic elements in hyperthermophilic environments from five new Thermococcus plasmids, PLoS One, vol.8, p.49044, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00748527

M. Krupovic, Recombination between RNA viruses and plasmids might have played a central role in the origin and evolution of small DNA viruses, Bioessays, vol.34, pp.867-870, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01977405

S. Erdmann, B. Tschitschko, L. Zhong, M. J. Raftery, and R. Cavicchioli, A plasmid from an Antarctic haloarchaeon uses specialized membrane vesicles to disseminate and infect plasmid-free cells, Nat. Microbiol, vol.2, pp.1446-1455, 2017.