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Abstract

For most archaeal viruses, the mechanisms of genome replication are poorly understood, while the nature and provenance

of their replication proteins are usually unknown. Here we show that replication of the circular double-stranded DNA

genome of the halophilic Natrinema virus SNJ1, a member of the family Sphaerolipoviridae, is associated with the

accumulation of single-stranded replicative intermediates, which is typical of rolling-circle replication. The homologues of

RepA, the only enzyme that is indispensable for SNJ1 genome replication, are widespread in archaea and are most closely

related to bacterial transposases of the IS91 and ISCR family insertion sequences, as opposed to other viral rolling-circle

replication initiation proteins. Our results provide insights into the replication mechanism of archaeal viruses and emphasize

the evolutionary connection between viruses and other types of mobile genetic elements.

The viruses that infect archaea represent one of the most
enigmatic components of the virosphere [1, 2]. These
viruses display a wide range of virion morphologies, many
of which have never been observed among viruses infecting
bacteria and eukaryotes. The gene contents of archaeal
viruses are also unique, with most genes having no homo-
logues in other known viruses [3, 4]. Interestingly, several
groups of archaeal viruses display evolutionary connections
to non-viral mobile genetic elements (MGEs) [5], such as
various plasmids and casposons, a recently discovered group
of transposon-like integrative MGEs encoding Cas1-like
endonucleases [6]. In particular, viruses and these non-viral
MGEs share the main proteins responsible for genome repli-
cation, suggesting that some archaeal viruses could have
evolved directly from non-viral MGEs, or that the genome
replication modules have been recurrently exchanged across
different MGE classes. Nevertheless, genome replication
remains poorly understood for the vast majority of archaeal
viruses and has only been studied experimentally for a
handful of virus–host systems [7–10]. We have recently
described the minimal module required for the replication
and maintenance of the circular double-stranded (ds) DNA
genome (16.3 kb) of halophilic archaeal virus SNJ1 [9, 11],

the type species of the genus Betasphaerolipovirus within the
family Sphaerolipoviridae [12]. Unlike alphashaerolipovi-
ruses, which have linear dsDNA genomes and are lytic [12–
16], SNJ1 is a temperate virus propagating within its host
Natrinema sp. J7-1 cells as a circular episome, and it can be
induced by mitomycin C (MMC) treatment [11, 17]. The
only gene that is indispensable for SNJ1 genome replication
encodes for a 481 aa-long protein RepA, a divergent endo-
nuclease of the HUH superfamily [9], a group of enzymes
responsible for the initiation of rolling-circle replication in
various viruses and plasmids, as well as for the transposition
of certain transposons [18–20]. Homologues of the SNJ1
RepA protein are encoded by small euryarchaeal plasmids,
Halorubrum saccharovorum plasmid pZMX101 (3.9 kb) and
Methanosarcina acetivorans plasmid pC2A (5.4 kb) [9].
Interestingly, however, whereas pC2A was predicted to rep-
licate via the rolling-circle mechanism [21], it was suggested
that pZMX101 employs a theta-like replication strategy
[22], raising questions regarding the actual genome replica-
tion mechanism utilized by the two plasmids as well as by
the virus SNJ1.

To gain insights into the replication mechanism of the SNJ1
genome and clarify the discrepancy reported in the
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literature, we analysed lysogenic Natrinema sp. J7-1 cells for
the presence of single-stranded replicative intermediates of
the SNJ1 genome, a signature of rolling-circle replication
[20, 23–25]. To this end, total DNA was purified from the
SNJ1 virions as well as from Natrinema sp. J7-1 cells with or
without MMC induction of the SNJ1 provirus. The DNA
preparations were electrophoresed on two 1% agarose gels
and soaked in either denaturing (Fig. 1a) or non-denaturing
(Fig. 1b) buffer. The DNA bands were then transferred onto
positively charged nylon membranes and hybridized with
DIG-labelled probes that were complementary to either
strand of the SNJ1 genome (Table 1). As expected, under
denaturing conditions the probes hybridized with the SNJ1
genome extracted from both viral particles as well as from
the Natrinema sp. J7-1 cells with or without MMC induc-
tion (Fig. 1a). By contrast, when the gel was soaked in the
non-denaturing buffer a positive signal was obtained exclu-
sively with the samples extracted from the Natrinema sp.
J7-1 cells, and not from the SNJ1 virions (Fig. 1b). Notably,
SNJ1-specific ssDNA was detected in both MMC-induced
and non-induced samples, which was not unexpected given
the stable replication of the SNJ1 provirus in Natrinema sp.
J7-1 and the detection of RepA in Natrinema sp. J7-1 by
Western blot, with and without MMC induction [9]. The
observed ssDNA bands disappeared when the DNA prepa-
rations were treated with the ssDNA-specific mung bean
nuclease (Fig. 1b). These results demonstrate the presence
of ssDNA replicative intermediates of the SNJ1 genome in
Natrinema sp. J7-1 cells, strongly suggesting that SNJ1
employs a rolling-circle mechanism of genome replication.

To further validate that RepA is a genuine member of the
HUH superfamily, we performed site-directed mutagenesis
of the conserved sequence motifs known to be essential
for the catalytic activity in other HUH endonucleases.
First, we targeted the diagnostic HUH motif (also known
as motif 2 [26]), which coordinates a divalent metal ion
facilitating DNA cleavage by localizing and polarizing the
scissile phosphodiester bond [18]; the two His residues
within the ‘HVH’ motif of SNJ1 RepA were changed to
Ala (Fig. 2a). Second, we mutated the catalytic Tyr residue
to Phe within motif 3 (Fig. 2a). The mutants were gener-
ated by amplification of the NcoI-SmaI restriction frag-
ment of the SNJ1 genome containing the repA gene using
the overlapping PCR approach with primers carrying the
desired mutations (Table 1). After sequencing, the frag-
ments were ligated into NcoI-SmaI predigested shuttle
vector pYC-SHS, which relies on the SNJ1 repA gene for
replication in Natrinema cells [9]. The resulting plasmids,
pYC-SHS-Ala and pYC-SHS-Phe, carry mutations within
motifs 2 and 3, respectively. The two vectors, as well as
pYC-SHS, a positive control, were transformed into Natri-
nema sp. CJ7 cells and the transformation efficiencies
were measured. Whereas the transformation of pYC-SHS
yielded 0.85±0.17�103 c.f.u. per µg of DNA, the transfor-
mation efficiencies for pYC-SHS-Ala and pYC-SHS-Phe
were both equal to zero in three independent experiments.
This result confirms that the HUH motif (motif 2) and
the catalytic Tyr residue in motif 3 (Fig. 2a) are both
essential for the functionality of RepA.

Fig. 1. Southern blot analysis of replicative SNJ1 DNA intermediates. The DNA preparations were electrophoresed on agarose gels at

30 V for 3 h and soaked in either denaturing (a) or non-denaturing (b) buffer. The DNA bands were then transferred onto positively

charged nylon membranes and hybridized with DIG-labelled SNJ1-specific probes (Table 1). Lane 1, DNA extracted from SNJ1 virions;

lane 2, DNA extracted from virions and linearized with SacI; lane 3, DNA extracted from Natrinema sp. J7-1 cells; lane 4, as in lane 3,

but treated with ssDNA-specific mung bean nuclease (MBN); lane 5, DNA extracted from Natrinema sp. J7-1 cells after mitomycin C

(MMC) induction; lane 6, as in lane 5, but treated with MBN. Denaturing buffer: 0.4 M NaOH and 1 M NaCl; non-denaturing buffer: 3 M

NaCl and 0.3 M trisodium citrate dihydrate (pH=7, adjusted using NaOH).
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In our previous work we reported that the closest homo-
logues of the SNJ1 RepA are encoded in halophilic and
methanogenic archaea from the phylum Euryarchaeota [9].
Given the substantial expansion of the sequence databases
during the past 2 years, we decided to perform a more
exhaustive sequence analysis of the SNJ1 RepA-like pro-
teins to investigate the extent of their distribution and
explore their relationship to other HUH endonucleases.
Position-Specific Iterative Basic Local Alignment Search
Tool (PSI-BLAST) searches [27] initiated with the SNJ1
RepA sequence resulted in the identification of homologues
encoded in highly diverse archaea (Fig. 2b). Consistent
with the previous analysis, the closest relatives, retrieved
during the first iteration (E value cutoff 5e-03), were
encoded in haloarhaea (class Halobacteria), but following
additional iterations, more divergent (13–19% identity)
homologues were also identified in euryarchaea of the
orders Methanosarcinales and Thermoplasmatales, as well
as in ammonia-oxidizing archaea of the phylum Thau-
marchaeota. Furthermore, we also identified a RepA homo-
logue in an uncultivated archaeon belonging to the
candidate MSBL1 division [28]. The wide spread across
diverse archaeal lineages notwithstanding, the distribution
of RepA-like proteins within the respective groups was
highly sporadic, consistent with them being encoded by
MGEs. Notably, besides the SNJ1 RepA, only three genes
were carried by plasmids, whereas the rest of the homo-
logues were encoded on cellular chromosomes, within the
so-called archaeal ‘dark matter’ islands [29], most likely
corresponding to integrated MGEs. Maximum-likelihood
phylogenetic analysis has shown that RepA-like sequences
form clades that are consistent with the host phylogeny
(Fig. 2b), pointing towards coevolution of the correspond-
ing MGEs with their respective hosts, with limited (if any)
horizontal exchange between distantly related archaea.

Unexpectedly, following three PSI-BLAST iterations against
the non-redundant NCBI database of prokaryotic and viral
sequences, numerous (n>50) significant matches were
obtained to transposases of the IS91 family, rather than to
rolling-circle replication initiation proteins encoded by
other archaeal plasmids and viruses [23, 30–34]. The

insertion sequences of the IS91 family are predominantly
found in gammaproteobacteria [35] and are usually located
adjacent to pathogenicity- and virulence-related genes [36].
Unlike for the majority of bacterial IS elements, IS91 trans-
pose via a rolling-circle-like mechanism, which leads to the
accumulation of ssDNA transposition intermediates [37]
that are similar to those observed in this study for SNJ1
(Fig. 1). Consistently, IS91 family transposases are related to
the replication-initiation HUH endonucleases encoded by
the pUB110 family plasmids [38]. A characteristic feature of
IS91 transposases is the presence of a unique N-terminal
Zn-binding domain carrying six Cys residues, which pre-
cedes the HUH endonuclease domain (Fig. 2a) [36]. The
homologous region between the SNJ1 RepA-like and IS91-
like sequences detected by PSI-BLAST encompassed both the
Zn-binding and the HUH endonuclease domains. Detailed
inspection showed that all six Cys residues of the Zn-bind-
ing domain are conserved in SNJ1 RepA, although in some
archaeal RepA-like homologues some of the Cys residues
were substituted, occasionally to functionally equivalent His
residues. Unlike bona fide IS91-like transposases, which
have two active site Tyr residues (Y2 transposases) [18], all
archaeal RepA-like proteins contain a single catalytic Tyr
(Fig. 2a). Notably, the IS91 family includes a subgroup of
transposases encoded by ISCR elements, which are often
associated with multiple antibiotic-resistance regions [39,
40] and contain only one Tyr residue in the active site (Y1
transposases) [18]. Y1 transposases are also encoded by bac-
terial IS200/IS605 elements [18, 41]. However, the latter
transposases do not contain the Zn-binding domain, display
unique signatures within the endonuclease domain (Fig. 2a)
and could not be retrieved by PSI-BLAST analysis, suggesting
that they are not closely related to SNJ1 RepA-like sequen-
ces. To gain further insight into the evolution of SNJ1
RepA-like proteins, we collected a non-redundant dataset of
IS91-like and ISCR-like transposases and performed maxi-
mum-likelihood phylogenetic (Fig. 2b) and sequence clus-
tering (Fig. 2c) analyses.

Phylogenetic analysis has shown that archaeal SNJ1 RepA
homologues form a well-supported monophyletic clade sep-
arated from the IS91-like and ISCR-like transposases

Table 1. Primers and probes

Primers and probes Sequences

Primers for mutagenesis

SHS-3312-Phe-F 5¢-CGAGCCGTCGTCTTCGCGCTCAGTCACTGCG-3¢

SHS-3312-Phe-R 5¢-CGCAGTGACTGAGCGCGAAGACGACGGCTCG-3¢

SHS-3149-Ala-F 5¢-AATACCGGCCGGCCGTTGCCCTGATCGGTG-3¢

SHS-3149-Ala-R 5¢-ATTAGGCACCGATCAGGGCAACGGCCGGCCGGT-3¢

SHS-NcoI-1555-F 5¢-AATCCATGGGAAACCTCCTAGCTAGCGCTC-3¢

SHS-SmaI-6014-R 5¢-TAACCCGGGGAGGGGTCACAGTTCCCTC-3¢

SNJ1-specific probes

ORF7-F 5¢-CGTTGAGGCGACGAAGCTCGGTGA-3¢

ORF11-R 5¢-CCTCTTTCGTCAGCGTGTCCAAGCTCT-3¢

Wang et al., Journal of General Virology 2018;99:416–421

418



Downloaded from www.microbiologyresearch.org by

IP:  157.99.52.61

On: Thu, 07 Feb 2019 13:15:37

(Fig. 2b). Notably, the archaeal homologue of the IS91 fam-
ily Y2 transposases is found exclusively in the genome of a
methanogen Methanococcoides burtonii [42], which in our
phylogeny is nested among bacterial transposases, suggest-
ing that IS91 transposase was introduced into this archaeon

relatively recently by horizontal transfer. ISCR-like Y1
transposases emerged from within one of the two major
clades of bacterial IS91-like Y2 enzymes, suggesting their
evolution from IS91-like Y2 transposases, independently
from the Y1 SNJ1 RepA-like proteins. The results of the

Fig. 2. Evolutionary relationship between SNJ1 RepA and other HUH endonucleases. (a) Top: domain organization of SNJ1 RepA and

location of the conserved sequence motifs (M1-M3). Bottom: sequence conservation of the Zn-binding and HUH endonuclease domains

in archaeal RepA-like proteins, IS91-like Y2 transposases (Tnp), ISCR-like Y1 Tnp and IS200/IS605 Tnp. Sequence logos were generated

using WebLogo [47]. Residues of the SNJ1 RepA subjected to site-directed mutagenesis are indicated by asterisks. (b) Maximum-likeli-

hood phylogeny of SNJ1 RepA-like and IS91-like HUH endonucleases. Haloarchaea, green; other archaea, red; IS91-like Y2 transpo-

sases, magenta; ISCR-like Y1 transposases, blue. The IS91-like homologue from Methanococcoides burtonii is underlined. The

sequences were aligned using MAFFT [48] and manually corrected, and the uninformative positions were removed using the gappyout

function of the trimAL program [49]. Phylogenetic trees were constructed using the PhyML [50] with an automatic selection of the

best-fit substitution model for a given alignment (WAG +G+I+F). A Bayesian-like transformation of aLRT (aBayes), as implemented in

PhyML [50], was used to estimate branch support. (c) Clustering of archaeal SNJ1 RepA-like proteins with HUH transposases of the

IS91 and IS200/IS605 families. The colour scheme is the same as in (b).
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sequence clustering analysis using CLANS [43] (Fig. 2c)
were generally consistent with those of the phylogenetic
analysis (Fig. 2b). Y2 and Y1 transposases each formed two
discrete, tightly interconnected subclusters. The SNJ1
RepA-like sequences were considerably more loosely con-
nected to each other and showed closest similarity to Y2
transposases rather than ISCR-like Y1 enzymes. By contrast,
the IS200/IS605 family transposases remained disconnected
from either IS91-like or SNJ1 RepA-like HUH endonu-
cleases (Fig. 2b), emphasizing the close evolutionary rela-
tionship between the latter two groups. The long branches
in the phylogeny, as well as the results of clustering analysis,
both suggest that the sequences of archaeal RepA homo-
logues are more divergent than bacterial IS91 and ISCR
family transposases, which is indicative of an ancient associ-
ation and diversification of RepA-like endonucleases in
archaea.

Collectively, our results indicate that IS91-like transposases
are the closest known relatives of the archaeal SNJ1 RepA-
like rolling-circle replication initiation proteins, and that the
two groups have shared the most recent common ancestor,
which displayed the characteristic domain architecture with
the N-terminal Zn-binding and C-terminal HUH endonu-
clease domains. Although it is not possible at this point to
confidently conclude whether the ancestral enzyme of this
group functioned as a transposase or a replication initiator,
it is clear that in the evolution of HUH endonucleases alter-
nations between replication and transposition have
occurred on multiple independent occasions. For instance,
the HUH family endonuclease responsible for the rolling-
hairpin replication of the linear ssDNA genomes of parvovi-
ruses is known to mediate site-specific integration of the
viral genome into the host chromosome [44] and some par-
voviruses have apparently switched to exclusively transpo-
son-like propagation [45]. It has been further suggested that
many ssDNA viruses, particularly in eukaryotes, occasion-
ally integrate into the cellular genomes with the aid of the
rolling-circle replication initiation proteins (reviewed in
[46]). It is thus conceivable that the integration of an ances-
tral plasmid or viral genome into the cellular chromosome,
as observed in the archaeal genomes described in this study,
and subsequent fixation of the corresponding MGEs could
promote the refunctionalization of their Rep proteins into
transposases. More generally, transitions between different
classes of MGEs appear to be a pervasive and common phe-
nomenon in the evolution of viruses, plasmids and transpo-
sons, which amalgamates them into one global genetic
network.
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