D. Pace, Leishmaniasis, vol.69, pp.10-18, 2014.

N. Galindo-sevilla, Low serum levels of dehydroepiandrosterone and cortisol in human diffuse cutaneous leishmaniasis by Leishmania mexicana, Am J Trop Med Hyg, vol.76, issue.3, pp.566-572, 2007.

S. M. Gossage, M. E. Rogers, and P. A. Bates, Two separate growth phases during the development of Leishmania in sand flies: Implications for understanding the life cycle, International Journal for Parasitology, vol.33, issue.10, pp.1027-1034, 2003.

C. Cantacessi, F. Dantas-torres, M. J. Nolan, and D. Otranto, The past, present, and future of Leishmania genomics and transcriptomics, Trends in Parasitology, vol.31, issue.3, pp.100-108, 2015.
DOI : 10.1016/j.pt.2014.12.012

URL : https://doi.org/10.1016/j.pt.2014.12.012

A. Mondelaers, M. P. Sanchez-cañete, and S. Hendrickx, Genomic and Molecular Characterization of Miltefosine Resistance in Leishmania infantum Strains with Either Natural or Acquired Resistance through Experimental Selection of Intracellular Amastigotes, PLoS ONE, vol.11, issue.4, p.154101, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01870304

N. Ravooru, S. Ganji, N. Sathyanarayanan, and H. G. Nagendra, Insilico analysis of hypothetical proteins unveils putative metabolic pathways and essential genes in Leishmania donovani, Frontiers in Genetics, vol.5, p.291, 2014.

S. Alsford, D. J. Turner, and S. O. Obado, High-throughput phenotyping using parallel sequencing of RNA interference targets in the African trypanosome, Genome Research, vol.21, issue.6, pp.915-924, 2011.

E. Rico, A. Ivens, L. Glover, D. Horn, and K. R. Matthews, Genome-wide RNAi selection identifies a regulator of transmission stage-enriched gene families and cell-type differentiation in Trypanosoma brucei, PLoS Pathogens, vol.13, issue.3, 2017.

S. M. Beverley, Protozomics: Trypanosomatid parasite genetics comes of age, Nature Reviews Genetics, vol.4, issue.1, pp.11-19, 2003.
DOI : 10.1038/nrg980

S. Dean, J. Sunter, R. J. Wheeler, I. Hodkinson, E. Gluenz et al., A toolkit enabling efficient, scalable and reproducible gene tagging in trypanosomatids, Open Biology, vol.5, issue.1, 2015.
DOI : 10.1098/rsob.140197

URL : http://rsob.royalsocietypublishing.org/content/5/1/140197.full.pdf

M. Dacher, M. A. Morales, and P. Pescher, Probing druggability and biological function of essential proteins in Leishmania combining facilitated null mutant and plasmid shuffle analyses, Molecular Microbiology, vol.93, issue.1, pp.146-166, 2014.
DOI : 10.1111/mmi.12648

URL : https://hal.archives-ouvertes.fr/hal-01178772

K. A. Robinson and S. M. Beverley, Improvements in transfection efficiency and tests of RNA interference (RNAi) approaches in the protozoan parasite Leishmania, Molecular and Biochemical Parasitology, vol.128, issue.2, pp.217-228, 2003.

A. Cruz, C. M. Coburn, and S. M. Beverley, Double targeted gene replacement for creating null mutants, Proceedings of the National Acadamy of Sciences of the United States of America, vol.88, pp.7170-7174, 1991.

M. B. Rogers, Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania, Genome Res, vol.21, issue.12, pp.2129-2142, 2011.

F. Dumetz, H. Imamura, and M. Sanders, Modulation of Aneuploidy in, mBio, vol.8, issue.3, pp.599-616, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01974269

N. Lander, M. A. Chiurillo, and R. Docampo, Genome Editing by CRISPR/Cas9: A Game Change in the Genetic Manipulation of Protists, Journal of Eukaryotic Microbiology, vol.63, issue.5, pp.679-690, 2016.

L. Sollelis, First efficient CRISPR-Cas9-mediated genome editing in Leishmania parasites, Cell Microbiol, vol.17, issue.10, pp.1405-1412, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01992713

W. Zhang and G. Matlashewski, CRISPR-Cas9-mediated genome editing in Leishmania donovani, mBio, vol.6, issue.4, pp.861-876, 2015.

W. Zhang, P. Lypaczewski, G. Matlashewski, and I. J. Blader, Optimized CRISPR-Cas9 Genome Editing for Leishmania and Its Use To Target a Multigene Family, Induce Chromosomal Translocation, and Study DNA Break Repair Mechanisms, mSphere, vol.2, issue.1, 2017.

T. Beneke, A CRISPR Cas9 high-throughput genome editing toolkit for kinetoplastids, Article ID 170095, vol.4, 2017.

U. Knippschild, A. Gocht, S. Wolff, N. Huber, J. Löhler et al., The casein kinase 1 family: Participation in multiple cellular processes in eukaryotes, Cellular Signalling, vol.17, issue.6, pp.675-689, 2005.

U. Knippschild, M. Krüger, and J. Richter, The CK1 family: Contribution to cellular stress response and its role in carcinogenesis, Frontiers in Oncology, vol.4, issue.96, 2014.

M. Dan-goor, A. Nasereddin, H. Jaber, and C. L. Jaffe, Identification of a secreted casein kinase 1 in Leishmania donovani: Effect of protein over expression on parasite growth and virulence, Article ID e79287, vol.8, issue.11, 2013.

J. M. Silverman, J. Clos, and C. C. De'oliveira, An exosomebased secretion pathway is responsible for protein export from Leishmania and communication with macrophages, Journal of Cell Science, vol.123, issue.6, pp.842-852, 2010.

N. Rachidi, J. F. Taly, and E. Durieu, Pharmacological assessment defines Leishmania donovani casein kinase 1 as a drug target and reveals important functions in parasite viability and intracellular infection, Antimicrobial Agents and Chemotherapy, vol.58, issue.3, pp.1501-1515, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01433412

E. Durieu, E. Prina, and O. Leclercq, From drug screening to target deconvolution: a target-based drug discovery pipeline using Leishmania casein kinase 1 isoform 2 to identify compounds with antileishmanial activity, Antimicrobial Agents and Chemotherapy, vol.60, issue.5, pp.2822-2833, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01299756

L. A. Dillon, K. Okrah, and V. K. Hughitt, Transcriptomic profiling of gene expression and RNA processing during Leishmania major differentiation, Nucleic Acids Research, vol.43, issue.14, pp.6799-6813, 2015.

M. Fiebig, S. Kelly, E. Gluenz, and P. J. Myler, Comparative life cycle transcriptomics revises Leishmania mexicana genome annotation and links a chromosome duplication with parasitism of vertebrates, PLoS Pathogens, vol.11, issue.10, 2015.

H. Pawar, S. Renuse, and S. N. Khobragade, Neglected tropical diseases and omics science: Proteogenomics analysis of the promastigote stage of leishmania major parasite, OMICS: A Journal of Integrative Biology, vol.18, issue.8, pp.499-512, 2014.

Y. Saar, A. Ransford, and E. Waldman, Characterization of developmentally-regulated activities in axenic amastigotes of Leishmania donovani, Molecular and Biochemical Parasitology, vol.95, issue.1, pp.9-20, 1998.

S. Goyard, H. Segawa, and J. Gordon, An in vitro system for developmental and genetic studies of Leishmania donovani phosphoglycans, Molecular and Biochemical Parasitology, vol.130, issue.1, pp.31-42, 2003.

M. A. Morales, R. Watanabe, and C. Laurent, Phosphoproteomic analysis of Leishmania donovani pro-and amastigote stages, Proteomics, vol.8, issue.2, pp.350-363, 2008.

G. Schumann-burkard, P. Jutzi, and I. Roditi, Genome-wide RNAi screens in bloodstream form trypanosomes identify drug transporters, Molecular and Biochemical Parasitology, vol.175, issue.1, pp.91-94, 2011.

R. J. Wheeler, E. Gluenz, and K. Gull, Basal body multipotency and axonemal remodelling are two pathways to a 9+0 flagellum, Nature Communications, vol.6, 2015.

C. Kemena and C. Notredame, Upcoming challenges for multiple sequence alignment methods in the high-throughput era, Bioinformatics, vol.25, issue.19, pp.2455-2465, 2009.

L. Cong, F. A. Ran, and D. Cox, Multiplex genome engineering using CRISPR/Cas systems, Science, vol.339, issue.6121, pp.819-823, 2013.

T. Downing, H. Imamura, and S. Decuypere, Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance, Genome Research, vol.21, issue.12, pp.2143-2156, 2011.

P. Pescher, T. Blisnick, P. Bastin, and G. F. Späth, Quantitative proteome profiling informs on phenotypic traits that adapt Leishmania donovani for axenic and intracellular proliferation, Cellular Microbiology, vol.13, issue.7, pp.978-991, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-01433560

D. Peng and R. Tarleton, EuPaGDT: a web tool tailored to design CRISPR guide RNAs for eukaryotic pathogens, Microb Genom, vol.1, issue.4, 2015.

C. Branche, L. Kohl, G. Toutirais, J. Buisson, J. Cosson et al., Conserved and specific functions of axoneme components in trypanosome motility, Journal of Cell Science, vol.119, issue.16, pp.3443-3455, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00108209

K. S. Ralston, A. G. Lerner, D. R. Diener, and K. L. Hill, Flagellar motility contributes to cytokinesis in Trypanosoma brucei and is modulated by an evolutionarily conserved dynein regulatory system, Eukaryotic Cell, vol.5, issue.4, pp.696-711, 2006.

G. F. Spath and J. Clos, Joining forces: first application of a rapamycin-induced dimerizable Cre system for conditional null mutant analysis in Leishmania, Molecular Microbiology, vol.100, issue.6, pp.923-927, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01440873

M. Aslett, TriTrypDB: a functional genomic resource for the Trypanosomatidae, Nucleic Acids Res, 2010.

M. D. Urbaniak, T. Mathieson, and M. Bantscheff, Chemical proteomic analysis reveals the drugability of the kinome of trypanosoma brucei, ACS Chemical Biology, vol.7, issue.11, pp.1858-1865, 2012.

K. Gunasekera, D. Wüthrich, S. Braga-lagache, M. Heller, and T. Ochsenreiter, Proteome remodelling during development from blood to insect-form Trypanosoma brucei quantified by SILAC and mass spectrometry, BMC Genomics, vol.13, issue.1, 2012.

M. D. Urbaniak, Casein kinase 1 isoform 2 is essential for bloodstream form Trypanosoma brucei, Molecular and Biochemical Parasitology, vol.166, issue.2, pp.183-185, 2009.