R. S. Hegde and E. J. Androphy, Crystal structure of the E2 DNA-binding domain from human papillomavirus type 16: implications for its DNA binding-site selection mechanism, J Mol Biol, vol.284, pp.1479-89, 1998.

A. A. Antson, J. E. Burns, and O. V. Moroz, Structure of the intact transactivation domain of the human papillomavirus E2 protein, Nature, vol.403, issue.6771, pp.805-814, 2000.

A. Bochkarev, J. A. Barwell, R. A. Pfuetzner, E. Bochkareva, L. Frappier et al., Crystal structure of the DNA-binding domain of the Epstein-Barr virus origin-binding protein, EBNA1, bound to DNA, Cell, vol.84, pp.791-800, 1996.

A. A. Mcbride, J. G. Oliveira, and M. G. Mcphillips, Partitioning viral genomes in mitosis: same idea, different targets, Cell Cycle, vol.5, pp.1499-502, 2006.

M. Boulabiar, S. Boubaker, M. Favre, and C. Demeret, Keratinocyte sensitization to tumour necrosis factor-induced nuclear factor kappa B activation by the E2 regulatory protein of human papillomaviruses, J Gen Virol, vol.92, pp.2422-2429, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-00620950

S. Blachon and C. Demeret, The regulatory E2 proteins of human genital papillomaviruses are pro-apoptotic, Biochimie, vol.85, pp.813-822, 2003.

S. Bellanger, S. Blachon, F. Mechali, C. Bonne-andrea, and F. Thierry, High-risk but not low-risk HPV E2 proteins bind to the APC activators Cdh1 and Cdc20 and cause genomic instability, Cell Cycle, vol.4, pp.1608-1623, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00016360

S. Blachon, S. Bellanger, C. Demeret, and F. Thierry, Nucleo-cytoplasmic shuttling of high risk human Papillomavirus E2 proteins induces apoptosis, J Biol Chem, vol.280, pp.36088-98, 2005.
URL : https://hal.archives-ouvertes.fr/pasteur-00177457

J. L. Parish, A. Kowalczyk, and H. T. Chen, E2 proteins from high-and low-risk human papillomavirus types differ in their ability to bind p53 and induce apoptotic cell death, J Virol, vol.80, pp.4580-90, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00277438

R. Pfefferle, G. P. Marcuzzi, and B. Akgul, The human papillomavirus type 8 E2 protein induces skin tumors in transgenic mice, J Invest Dermatol, vol.128, pp.2310-2315, 2008.

K. B. Choo, C. C. Pan, and S. H. Han, Integration of human papillomavirus type 16 into cellular DNA of cervical carcinoma: preferential deletion of the E2 gene and invariable retention of the long control region and the E6/E7 open reading frames, Virology, vol.161, pp.259-61, 1987.

S. A. Corden, L. J. Sant-cassia, A. J. Easton, and A. G. Morris, The integration of HPV-18 DNA in cervical carcinoma, Mol Pathol, vol.52, pp.275-82, 1999.

S. Bellanger, C. L. Tan, Y. Z. Xue, S. Teissier, and F. Thierry, Tumor suppressor or oncogene? A critical role of the human papillomavirus (HPV) E2 protein in cervical cancer progression, Am J Cancer Res, vol.1, pp.373-89, 2011.

W. Huang-da, B. T. Sherman, and X. Zheng, Extracting biological meaning from large gene lists with DAVID, Curr Protoc Bioinformatics, vol.13, p.11, 2009.

M. Muller, Y. Jacob, and L. Jones, Large scale genotype comparison of human papillomavirus e2-host interaction networks provides new insights for e2 molecular functions, PLoS Pathog, vol.8, p.1002761, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00965872

C. Demeret, C. Desaintes, M. Yaniv, and F. Thierry, Different mechanisms contribute to the E2-mediated transcriptional repression of human papillomavirus type 18 viral oncogenes, J Virol, vol.71, pp.9343-9352, 1997.

G. Dong, T. R. Broker, and L. T. Chow, Human papillomavirus type 11 E2 proteins repress the homologous E6 promoter by interfering with the binding of host transcription factors to adjacent elements, J Virol, vol.68, pp.1115-1142, 1994.

N. Dostatni, P. F. Lambert, R. Sousa, J. Ham, P. M. Howley et al., The functional BPV-1 E2 trans-activating protein can act as a repressor by preventing formation of the initiation complex, Genes Dev, vol.5, pp.1657-71, 1991.

M. C. Guido, R. Zamorano, E. Garrido-guerrero, P. Gariglio, and A. Garciacarranca, Early promoters of genital and cutaneous human papillomaviruses are differentially regulated by the bovine papillomavirus type 1 E2 gene product, J Gen Virol, vol.73, pp.1395-400, 1992.

I. E. Sanchez, M. Dellarole, K. Gaston, . De-prat, and G. Gay, Comprehensive comparison of the interaction of the E2 master regulator with its cognate target DNA sites in 73 human papillomavirus types by sequence statistics, Nucleic Acids Res, vol.36, pp.756-69, 2008.

F. Stubenrauch and H. Pfister, Low-affinity E2-binding site mediates downmodulation of E2 transactivation of the human papillomavirus type 8 late promoter, J Virol, vol.68, pp.6959-66, 1994.

S. Y. Hou, S. Y. Wu, and C. M. Chiang, Transcriptional activity among high and low risk human papillomavirus E2 proteins correlates with E2 DNA binding, J Biol Chem, vol.277, pp.45619-45648, 2002.

J. A. Smith, E. A. White, and M. E. Sowa, Genome-wide siRNA screen identifies SMCX, EP400, and Brd4 as E2-dependent regulators of human papillomavirus oncogene expression, Proc Natl Acad Sci, vol.107, pp.3752-57, 2010.

F. Thierry, N. Dostatni, F. Arnos, and M. Yaniv, Cooperative activation of transcription by bovine papillomavirus type 1 E2 can occur over a large distance, Mol Cell Biol, vol.10, pp.4431-4438, 1990.

R. Kovelman, G. K. Bilter, E. Glezer, A. Y. Tsou, and M. S. Barbosa, Enhanced transcriptional activation by E2 proteins from the oncogenic human papillomaviruses, J Virol, vol.70, pp.7549-60, 1996.

M. Ptashne and A. Gann, Transcriptional activation by recruitment, Nature, vol.386, pp.569-77, 1997.

J. A. Goodrich and R. Tjian, TBP-TAF complexes: selectivity factors for eukaryotic transcription, Curr Opin Cell Biol, vol.6, pp.403-412, 1994.

S. Y. Wu and C. M. Chiang, The double bromodomain-containing chromatin adaptor Brd4 and transcriptional regulation, J Biol Chem, vol.282, pp.13141-13146, 2007.

E. A. Abbate, C. Voitenleitner, and M. R. Botchan, Structure of the papillomavirus DNA-tethering complex E2: Brd4 and a peptide that ablates HPV chromosomal association, Mol Cell, vol.24, pp.877-89, 2006.

D. Lee, S. G. Hwang, J. Kim, and J. Choe, Functional interaction between p/CAF and human papillomavirus E2 protein, J Biol Chem, vol.277, pp.6483-6492, 2002.

D. Lee, B. Lee, J. Kim, D. W. Kim, and J. Choe, cAMP response elementbinding protein-binding protein binds to human papillomavirus E2 protein and activates E2-dependent transcription, J Biol Chem, vol.275, pp.7045-51, 2000.

A. Muller, A. Ritzkowsky, and G. Steger, Cooperative activation of human papillomavirus type 8 gene expression by the E2 protein and the cellular coactivator p300, J Virol, vol.76, pp.11042-53, 2002.

S. Cha and T. Seo, hSNF5 is required for human papillomavirus E2-driven transcriptional activation and DNA replication, Intervirology, vol.54, pp.66-77, 2011.

M. Rehtanz, H. M. Schmidt, U. Warthorst, and G. Steger, Direct interaction between nucleosome assembly protein 1 and the papillomavirus E2 proteins involved in activation of transcription, Mol Cell Biol, vol.24, pp.2153-68, 2004.

K. T. Bieging and L. D. Attardi, Deconstructing p53 transcriptional networks in tumor suppression, Trends Cell Biol, vol.22, pp.97-106, 2012.

P. J. Hurlin and J. Huang, The MAX-interacting transcription factor network, Semin Cancer Biol, vol.16, pp.265-74, 2006.

Y. Zhao and D. Bruemmer, NR4A orphan nuclear receptors: transcriptional regulators of gene expression in metabolism and vascular biology, Arterioscler Thromb Vasc Biol, vol.30, pp.1535-1576, 2010.

M. Oldak, H. Smola, M. Aumailley, F. Rivero, H. Pfister et al., The human papillomavirus type 8 E2 protein suppresses beta4integrin expression in primary human keratinocytes, J Virol, vol.78, pp.10738-10784, 2004.

G. Steger, C. Schnabel, and H. M. Schmidt, The hinge region of the human papillomavirus type 8 E2 protein activates the human p21(WAF1/CIP1) promoter via interaction with Sp1, J Gen Virol, vol.83, pp.503-513, 2002.

S. Mole, S. G. Milligan, and S. V. Graham, Human papillomavirus type 16 E2 protein transcriptionally activates the promoter of a key cellular splicing factor, SF2/ASF, J Virol, vol.83, pp.357-67, 2009.

B. Akgul, R. Garcia-escudero, and C. Ekechi, The E2 protein of human papillomavirus type 8 increases the expression of matrix metalloproteinase-9 in human keratinocytes and organotypic skin cultures, Med Microbiol Immunol, vol.200, pp.127-162, 2011.

D. Lee, H. Z. Kim, and K. W. Jeong, Human papillomavirus E2 downregulates the human telomerase reverse transcriptase promoter, J Biol Chem, vol.277, pp.27748-56, 2002.

J. Zhang, M. Kalkum, B. T. Chait, and R. G. Roeder, The N-CoR-HDAC3 nuclear receptor corepressor complex inhibits the JNK pathway through the integral subunit GPS2, Mol Cell, vol.9, pp.611-634, 2002.

M. Zhu, S. John, M. Berg, and W. J. Leonard, Functional association of Nmi with Stat5 and Stat1 in IL-2-and IFNgamma-mediated signaling, Cell, vol.96, pp.121-151, 1999.

M. Sharma, M. Zarnegar, X. Li, B. Lim, and Z. Sun, Androgen receptor interacts with a novel MYST protein, HBO1, J Biol Chem, vol.275, pp.35200-35208, 2000.

M. Shamay, O. Barak, G. Doitsh, I. Ben-dor, and Y. Shaul, Hepatitis B virus pX interacts with HBXAP, a PHD finger protein to coactivate transcription, J Biol Chem, vol.277, pp.9982-9990, 2002.

K. Hanai, H. Furuhashi, T. Yamamoto, K. Akasaka, and S. Hirose, RSF governs silent chromatin formation via histone H2Av replacement, PLoS Genet, vol.4, p.1000011, 2008.

A. K. Ewing, M. Attner, and D. Chakravarti, Novel regulatory role for human Acf1 in transcriptional repression of vitamin D3 receptorregulated genes, Mol Endocrinol, vol.21, pp.1791-1797, 2007.

N. Collins, R. A. Poot, I. Kukimoto, C. Garcia-jimenez, G. Dellaire et al., An ACF1-ISWI chromatin-remodeling complex is required for DNA replication through heterochromatin, Nat Genet, vol.32, pp.627-659, 2002.

L. R. Racki, J. G. Yang, and N. Naber, The chromatin remodeller ACF acts as a dimeric motor to space nucleosomes, Nature, vol.462, pp.1016-1037, 2009.

D. V. Fyodorov, M. D. Blower, G. H. Karpen, and J. T. Kadonaga, Acf1 confers unique activities to ACF/CHRAC and promotes the formation rather than disruption of chromatin in vivo, Genes Dev, vol.18, pp.170-83, 2004.

C. Muchardt and M. Yaniv, ATP-dependent chromatin remodelling: SWI/SNF and Co. are on the job, J Mol Biol, vol.293, pp.187-98, 1999.

P. D. Varga-weisz, M. Wilm, E. Bonte, K. Dumas, M. Mann et al., Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II, Nature, vol.388, pp.598-602, 1997.

C. Desaintes and C. Demeret, Control of papillomavirus DNA replication and transcription, Semin Cancer Biol, vol.7, pp.339-386, 1996.

J. You, J. L. Croyle, A. Nishimura, K. Ozato, and P. M. Howley, Interaction of the bovine papillomavirus E2 protein with Brd4 tethers the viral DNA to host mitotic chromosomes, Cell, vol.117, pp.349-60, 2004.

J. L. Parish, A. M. Bean, R. B. Park, and E. J. Androphy, ChlR1 is required for loading papillomavirus E2 onto mitotic chromosomes and viral genome maintenance, Mol Cell, vol.24, pp.867-76, 2006.

T. Yu, Y. C. Peng, and E. J. Androphy, Mitotic kinesin-like protein 2 binds and colocalizes with papillomavirus E2 during mitosis, J Virol, vol.81, pp.1736-1781, 2007.

M. C. Lai, B. H. Teh, and W. Y. Tarn, A human papillomavirus E2 transcriptional activator. The interactions with cellular splicing factors and potential function in pre-mRNA processing, J Biol Chem, vol.274, pp.11832-11873, 1999.

H. Ge, Y. Si, and A. P. Wolffe, A novel transcriptional coactivator, p52, functionally interacts with the essential splicing factor ASF/SF2, Mol Cell, vol.2, pp.751-760, 1998.

M. C. Lai, R. I. Lin, S. Y. Huang, C. W. Tsai, and W. Y. Tarn, A human importinbeta family protein, transportin-SR2, interacts with the phosphorylated RS domain of SR proteins, J Biol Chem, vol.275, pp.7950-7957, 2000.

M. Mcfarlane and S. V. Graham, Human papillomavirus regulation of SR proteins, Biochem Soc Trans, vol.38, pp.1116-1137, 2010.

C. Johansson, M. Somberg, and X. Li, HPV-16 E2 contributes to induction of HPV-16 late gene expression by inhibiting early polyadenylation, EMBO J, vol.31, issue.14, pp.3212-3239, 2012.

U. Fischer, Q. Liu, and G. Dreyfuss, The SMN-SIP1 complex has an essential role in spliceosomal snRNP biogenesis, Cell, vol.90, pp.1023-1032, 1997.

J. Strasswimmer, C. L. Lorson, and D. E. Breiding, Identification of survival motor neuron as a transcriptional activator-binding protein, Hum Mol Genet, vol.8, pp.1219-1245, 1999.

E. Allemand, S. Dokudovskaya, R. Bordonne, and J. Tazi, A conserved Drosophila transportin-serine/arginine-rich (SR) protein permits nuclear import of Drosophila SR protein splicing factors and their antagonist repressor splicing factor 1, Mol Biol Cell, vol.13, pp.2436-2483, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02197515

F. Thierry and C. Demeret, Direct activation of caspase 8 by the proapoptotic E2 protein of HPV18 independent of adaptor proteins, Cell Death Differ, vol.15, pp.1356-63, 2008.
URL : https://hal.archives-ouvertes.fr/pasteur-01971518

K. Webster, J. Parish, M. Pandya, P. L. Stern, A. R. Clarke et al., The human papillomavirus (HPV) 16 E2 protein induces apoptosis in the absence of other HPV proteins and via a p53-dependent pathway, J Biol Chem, vol.275, pp.87-94, 2000.

W. Wang, Y. Fang, and N. Sima, Triggering of death receptor apoptotic signaling by human papillomavirus 16 E2 protein in cervical cancer cell lines is mediated by interaction with c-FLIP, Apoptosis, vol.16, pp.55-66, 2011.

A. Garcera, S. Mincheva, and M. Gou-fabregas, A new model to study spinal muscular atrophy: neurite degeneration and cell death is counteracted by BCL-X(L) Overexpression in motoneurons, Neurobiol Dis, vol.42, pp.415-441, 2011.

A. K. Olejnik-schmidt, M. T. Schmidt, G. , and A. , Orphan nuclear hormone receptor NR4A1 interacts with HPV16 E2 regulatory protein, Cell Mol Biol Lett, vol.11, pp.102-110, 2006.

J. D. Woronicz, B. Calnan, V. Ngo, and A. Winoto, Requirement for the orphan steroid receptor Nur77 in apoptosis of T-cell hybridomas, Nature, vol.367, pp.277-81, 1994.

H. Li, S. K. Kolluri, and J. Gu, Cytochrome c release and apoptosis induced by mitochondrial targeting of nuclear orphan receptor TR3, Science, vol.289, pp.1159-64, 2000.

W. F. Holmes, D. R. Soprano, and K. J. Soprano, Comparison of the mechanism of induction of apoptosis in ovarian carcinoma cells by the conformationally restricted synthetic retinoids CD437 and 4HPR, J Cell Biochem, vol.89, pp.262-78, 2003.

J. M. Lee, K. H. Lee, M. Weidner, B. A. Osborne, and S. D. Hayward, EpsteinBarr virus EBNA2 blocks Nur77-mediated apoptosis, Proc Natl Acad Sci, vol.99, pp.11878-83, 2002.

B. Lin, S. K. Kolluri, and F. Lin, Conversion of Bcl-2 from protector to killer by interaction with nuclear orphan receptor Nur77/TR3, Cell, vol.116, pp.527-567, 2004.

J. J. Champoux, DNA topoisomerases: structure, function, and mechanism, Annu Rev Biochem, vol.70, pp.369-382, 2001.

O. Sordet, A. Goldman, and Y. Pommier, Topoisomerase II and tubulin inhibitors both induce the formation of apoptotic topoisomerase I cleavage complexes, Mol Cancer Ther, vol.5, pp.3139-3183, 2006.

R. V. Clower, Y. Hu, and T. Melendy, Papillomavirus E2 protein interacts with and stimulates human topoisomerase I, Virology, vol.348, pp.13-18, 2006.

P. Lee, D. J. Lee, C. Chan, S. W. Chen, I. Ch'en et al., Dynamic expression of epidermal caspase 8 simulates a wound healing response, Nature, vol.458, pp.519-542, 2009.

F. Bernassola, M. Karin, A. Ciechanover, and G. Melino, The HECT family of E3 ubiquitin ligases: multiple players in cancer development, Cancer Cell, vol.14, pp.10-21, 2008.

D. Rotin and S. Kumar, Physiological functions of the HECT family of ubiquitin ligases, Nat Rev Mol Cell Biol, vol.10, pp.398-409, 2009.

D. R. Bosu and E. T. Kipreos, Cullin-RING ubiquitin ligases: global regulation and activation cycles, Cell Div, vol.3, p.7, 2008.

W. Wei, N. G. Ayad, Y. Wan, G. J. Zhang, M. W. Kirschner et al., Degradation of the SCF component Skp2 in cell-cycle phase G1 by the anaphase-promoting complex, Nature, vol.428, pp.194-202, 2004.

G. Bornstein, J. Bloom, D. Sitry-shevah, K. Nakayama, M. Pagano et al., Role of the SCFSkp2 ubiquitin ligase in the degradation of p21Cip1 in S phase, J Biol Chem, vol.278, pp.25752-25759, 2003.

S. Bellanger, C. L. Tan, W. Nei, P. P. He, and F. Thierry, The human papillomavirus type 18 E2 protein is a cell cycle-dependent target of the SCFSkp2 ubiquitin ligase, J Virol, vol.84, pp.437-481, 2010.

S. Bellanger, C. Demeret, S. Goyat, and F. Thierry, Stability of the human papillomavirus type 18 E2 protein is regulated by a proteasome degradation pathway through its amino-terminal transactivation domain, J Virol, vol.75, pp.7244-51, 2001.

D. Gagnon, S. Joubert, H. Senechal, A. Fradet-turcotte, S. Torre et al., Proteasomal degradation of the papillomavirus E2 protein is inhibited by overexpression of bromodomain-containing protein 4, J Virol, vol.83, pp.4127-4166, 2009.

G. Zheng, M. R. Schweiger, and G. Martinez-noel, Brd4 regulation of papillomavirus protein E2 stability, J Virol, vol.83, pp.8683-92, 2009.

M. Furukawa, Y. J. He, C. Borchers, and Y. Xiong, Targeting of protein ubiquitination by BTB-Cullin 3-Roc1 ubiquitin ligases, Nat Cell Biol, vol.5, pp.1001-1008, 2003.

A. K. Olejnik-schmidt, M. T. Schmidt, W. Kedzia, G. , and A. , Search for cellular partners of human papillomavirus type 16 E2 protein, Arch Virol, vol.153, pp.983-90, 2008.

X. Wang, S. R. Naidu, F. Sverdrup, and E. J. Androphy, Tax1BP1 interacts with papillomavirus E2 and regulates E2-dependent transcription and stability, J Virol, vol.83, pp.2274-84, 2009.

A. Y. Lee and C. M. Chiang, Chromatin adaptor Brd4 modulates E2 transcription activity and protein stability, J Biol Chem, vol.284, pp.2778-86, 2009.

S. Beaudenon and J. M. Huibregtse, HPV E6, E6AP and cervical cancer, BMC Biochem, vol.9, issue.1, p.4, 2008.

M. L. Styers, A. P. Kowalczyk, and V. Faundez, Intermediate filaments and vesicular membrane traffic: the odd couple's first dance?, Traffic, vol.6, pp.359-65, 2005.

A. Echard, F. Jollivet, and O. Martinez, Interaction of a Golgiassociated kinesin-like protein with Rab6, Science, vol.279, pp.580-585, 1998.

J. Yamane, A. Kubo, K. Nakayama, A. Yuba-kubo, T. Katsuno et al., Functional involvement of TMF/ARA160 in Rab6-dependent retrograde membrane traffic, Exp Cell Res, vol.313, pp.3472-85, 2007.

J. L. Smith, S. K. Campos, A. Wandinger-ness, and M. A. Ozbun, Caveolin-1dependent infectious entry of human papillomavirus type 31 in human keratinocytes proceeds to the endosomal pathway for pHdependent uncoating, J Virol, vol.82, pp.9505-9517, 2008.

L. Zhou, E. Sokolskaja, C. Jolly, W. James, S. A. Cowley et al., Transportin 3 promotes a nuclear maturation step required for efficient HIV-1 integration, PLoS Pathog, vol.7, p.1002194, 2011.

P. Heino, J. Zhou, and P. F. Lambert, Interaction of the papillomavirus transcription/replication factor, E2, and the viral capsid protein, Virology, vol.276, pp.304-318, 2000.

R. Pereira, I. I. Hitzeroth, and E. P. Rybicki, Insights into the role and function of L2, the minor capsid protein of papillomaviruses, Arch Virol, vol.154, pp.187-97, 2009.

C. B. Buck, D. V. Pastrana, D. R. Lowy, and J. T. Schiller, Efficient intracellular assembly of papillomaviral vectors, J Virol, vol.78, pp.751-758, 2004.

K. N. Zhao, K. Hengst, and W. J. Liu, BPV1 E2 protein enhances packaging of full-length plasmid DNA in BPV1 pseudovirions, Virology, vol.272, pp.382-93, 2000.
DOI : 10.1006/viro.2000.0348

URL : https://doi.org/10.1006/viro.2000.0348

D. Hadaschik, K. Hinterkeuser, M. Oldak, H. J. Pfister, and S. Smola-hess, The Papillomavirus E2 protein binds to and synergizes with C/EBP factors involved in keratinocyte differentiation, J Virol, vol.77, pp.5253-65, 2003.
DOI : 10.1128/jvi.77.9.5253-5265.2003

URL : https://jvi.asm.org/content/77/9/5253.full.pdf

E. Ramirez-salazar, F. Centeno, K. Nieto, A. Valencia-hernandez, M. Salcedo et al., HPV16 E2 could act as down-regulator in cellular genes implicated in apoptosis, proliferation and cell differentiation, Virol J, vol.8, p.247, 2011.

J. E. Burns, H. F. Walker, C. Schmitz, and N. J. Maitland, Phenotypic effects of HPV-16 E2 protein expression in human keratinocytes, Virology, vol.401, pp.314-335, 2010.

J. R. Basile, V. Zacny, and K. Munger, The cytokines tumor necrosis factoralpha (TNF-alpha ) and TNF-related apoptosis-inducing ligand differentially modulate proliferation and apoptotic pathways in human keratinocytes expressing the human papillomavirus-16 E7 oncoprotein, J Biol Chem, vol.276, pp.22522-22530, 2001.

I. Tiala, S. Suomela, and J. Huuhtanen, The CCHCR1 (HCR) gene is relevant for skin steroidogenesis and downregulated in cultured psoriatic keratinocytes, J Mol Med (Berl), vol.85, pp.589-601, 2007.

S. Suomela, O. Elomaa, and T. Skoog, CCHCR1 is up-regulated in skin cancer and associated with EGFR expression, PLoS One, vol.4, p.6030, 2009.
DOI : 10.1371/journal.pone.0006030

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0006030&type=printable

X. X. Cao, J. D. Xu, and J. W. Xu, RACK1 promotes breast carcinoma migration/metastasis via activation of the RhoA/Rho kinase pathway, Breast Cancer Res Treat, vol.126, pp.555-63, 2011.

H. Ogita, Y. Rikitake, J. Miyoshi, and Y. Takai, Cell adhesion molecules nectins and associating proteins: Implications for physiology and pathology, Proc Jpn Acad Ser B Phys Biol Sci, vol.86, pp.621-630, 2010.

S. Y. Park, H. Avraham, and A. S. , Characterization of the tyrosine kinases RAFTK/Pyk2 and FAK in nerve growth factor-induced neuronal differentiation, J Biol Chem, vol.275, pp.19768-77, 2000.

J. A. Mcdonald, Extracellular matrix assembly, Annu Rev Cell Biol, vol.4, pp.183-207, 1988.

N. E. Davey, G. Trave, and T. J. Gibson, How viruses hijack cell regulation, Trends Biochem Sci, vol.36, pp.159-69, 2011.
DOI : 10.1016/j.tibs.2010.10.002

M. Vidal, M. E. Cusick, and A. L. Barabasi, Interactome networks and human disease, Cell, vol.144, pp.986-98, 2011.
DOI : 10.1016/j.cell.2011.02.016

URL : https://doi.org/10.1016/j.cell.2011.02.016

P. Cassonnet, C. Rolloy, and G. Neveu, Benchmarking a luciferase complementation assay for detecting protein complexes, Nat Methods, vol.8, pp.990-992, 2011.
DOI : 10.1038/nmeth.1773

K. Venkatesan, J. F. Rual, and A. Vazquez, An empirical framework for binary interactome mapping, Nat Methods, vol.6, pp.83-90, 2009.
DOI : 10.1038/nmeth.1280

URL : https://dipot.ulb.ac.be/dspace/bitstream/2013/98245/1/Venkatesan_Nature_Methods_2009.pdf

M. A. Calderwood, K. Venkatesan, and L. Xing, Epstein-Barr virus and virus human protein interaction maps, Proc Natl Acad Sci, vol.104, pp.7606-7617, 2007.

B. De-chassey, V. Navratil, and L. Tafforeau, Hepatitis C virus infection protein network, Mol Syst Biol, vol.4, p.30, 2008.
URL : https://hal.archives-ouvertes.fr/pasteur-00456466

P. Uetz, Y. A. Dong, and C. Zeretzke, Herpesviral protein networks and their interaction with the human proteome, Science, vol.311, pp.239-281, 2006.
DOI : 10.1126/science.1116804

D. Abramo, C. M. Archambault, and J. , Small molecule inhibitors of human papillomavirus protein-protein interactions, Open Virol J, vol.5, pp.80-95, 2011.

J. A. Wells and C. L. Mcclendon, Reaching for high-hanging fruit in drug discovery at protein-protein interfaces, Nature, vol.450, pp.1001-1010
DOI : 10.1038/nature06526

M. E. Smoot, K. Ono, J. Ruscheinski, P. L. Wang, and T. Ideker, Cytoscape 2.8: new features for data integration and network visualization, Bioinformatics, vol.27, pp.431-433, 2011.

W. Boner and I. M. Morgan, Novel cellular interacting partners of the human papillomavirus 16 transcription/replication factor E2, Virus Res, vol.90, pp.113-121, 2002.
DOI : 10.1016/s0168-1702(02)00145-4

J. Kim, D. Lee, G. Hwang, S. Hwang, E. S. Choe et al., BRCA1 associates with human papillomavirus type 18 E2 and stimulates E2dependent transcription, Biochem Biophys Res Commun, vol.305, pp.1008-1024, 2003.
DOI : 10.1016/s0006-291x(03)00880-5

M. G. Mcphillips, J. G. Oliveira, J. E. Spindler, R. Mitra, and A. A. Mcbride, Brd4 is required for e2-mediated transcriptional activation but not genome partitioning of all papillomaviruses, J Virol, vol.80, pp.9530-9573, 2006.

S. Y. Wu, A. Y. Lee, and S. Y. Hou, Brd4 links chromatin targeting to HPV transcriptional silencing, Genes Dev, vol.20, pp.2383-96, 2006.
DOI : 10.1101/gad.1448206

URL : http://genesdev.cshlp.org/content/20/17/2383.full.pdf

D. E. Breiding, F. Sverdrup, M. J. Grossel, N. Moscufo, W. Boonchai et al., Functional interaction of a novel cellular protein with the papillomavirus E2 transactivation domain, Mol Cell Biol, vol.17, pp.7208-7227, 1997.

J. D. Benson, R. Lawande, and P. M. Howley, Conserved interaction of the papillomavirus E2 transcriptional activator proteins with human and yeast TFIIB proteins, J Virol, vol.71, pp.8041-8048, 1997.

N. Gammoh, D. Gardiol, P. Massimi, and L. Banks, The Mdm2 ubiquitin ligase enhances transcriptional activity of human papillomavirus E2, J Virol, vol.83, pp.1538-1581, 2009.
DOI : 10.1128/jvi.01551-08

URL : https://jvi.asm.org/content/83/3/1538.full.pdf

D. Lee, J. W. Kim, and K. Kim, Functional interaction between human papillomavirus type 18 E2 and poly(ADP-ribose) polymerase 1, Oncogene, vol.21, pp.5877-85, 2002.
DOI : 10.1038/sj.onc.1205723

URL : https://www.nature.com/articles/1205723.pdf

W. S. Wang, M. S. Lee, and C. E. Tseng, Interaction between human papillomavirus type 5 E2 and polo-like kinase 1, J Med Virol, vol.81, pp.536-580, 2009.
DOI : 10.1002/jmv.21404

R. Li, J. D. Knight, S. P. Jackson, R. Tjian, and M. R. Botchan, Direct interaction between Sp1 and the BPV enhancer E2 protein mediates synergistic activation of transcription, Cell, vol.65, pp.493-498, 1991.

F. Centeno, E. Ramirez-salazar, E. Garcia-villa, P. Gariglio, and E. Garrido, TAF1 interacts with and modulates human papillomavirus 16 E2dependent transcriptional regulation, Intervirology, vol.51, pp.137-180, 2008.

E. Carrillo, E. Garrido, and P. Gariglio, Specific in vitro interaction between papillomavirus E2 proteins and TBP-associated factors, Intervirology, vol.47, pp.342-351, 2004.
DOI : 10.1159/000080878

C. Enzenauer, G. Mengus, A. Lavigne, I. Davidson, H. Pfister et al., Interaction of human papillomavirus 8 regulatory proteins E2, E6 and E7 with components of the TFIID complex, Intervirology, vol.41, pp.80-90, 1998.

W. Boner, E. R. Taylor, E. Tsirimonaki, K. Yamane, M. S. Campo et al., A Functional interaction between the human papillomavirus 16 transcription/replication factor E2 and the DNA damage response protein TopBP1, J Biol Chem, vol.277, pp.22297-303, 2002.
DOI : 10.1074/jbc.m202163200

URL : http://www.jbc.org/content/277/25/22297.full.pdf

P. Massimi, D. Pim, C. Bertoli, V. Bouvard, and L. Banks, Interaction between the HPV-16 E2 transcriptional activator and p53, Oncogene, vol.18, pp.7748-54, 1999.
DOI : 10.1038/sj.onc.1203208

URL : https://www.nature.com/articles/1203208.pdf

G. Neveu, P. Cassonnet, and P. O. Vidalain, Comparative analysis of virus-host interactomes with a mammalian high-throughput protein complementation assay based on Gaussia princeps luciferase, Methods, 2012.