M. E. Sowa, E. J. Bennett, S. P. Gygi, and J. W. Harper, Defining the human deubiquitinating enzyme interaction landscape, Cell, vol.138, pp.389-403, 2009.

W. Li, M. H. Bengtson, A. Ulbrich, A. Matsuda, V. A. Reddy et al., Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle's dynamics and signaling, PLoS ONE, vol.3, 1487.

J. K. Gustin, A. V. Moses, K. Fr?-uh, and J. L. Douglas, Viral takeover of the host ubiquitin system, Front Microbiol, vol.2, p.161, 2011.

H. Zur-hausen, Papillomaviruses and cancer: from basic studies to clinical application, Nat Rev Cancer, vol.2, pp.342-350, 2002.

D. S. Michaud, S. M. Langevin, M. Eliot, H. H. Nelson, M. Pawlita et al., Highrisk HPV types and head and neck cancer, Int J Cancer, vol.135, pp.1653-1661, 2014.

J. R. Daling, M. M. Madeleine, L. G. Johnson, S. M. Schwartz, K. A. Shera et al., Human papillomavirus, smoking, and sexual practices in the etiology of anal cancer, Cancer, vol.101, pp.270-280, 2004.

M. Tommasino, The biology of beta human papillomaviruses, Virus Res, vol.231, pp.128-138, 2017.

M. Scheffner, J. M. Huibregtse, R. D. Vierstra, and P. M. Howley, The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53, Cell, vol.75, pp.495-505, 1993.

K. Zanier, S. Charbonnier, A. Sidi, A. G. Mcewen, M. G. Ferrario et al., Structural basis for hijacking of cellular LxxLL motifs by papillomavirus E6 oncoproteins, Science, vol.339, pp.694-698, 2013.

D. Martinez-zapien, F. X. Ruiz, J. Poirson, A. Mitschler, J. Ramirez et al., Structure of the E6/E6AP/p53 complex required for HPV-mediated degradation of p53, Nature, vol.529, pp.541-545, 2016.

K. Huh, X. Zhou, H. Hayakawa, J. Cho, T. A. Libermann et al., Human papillomavirus type 16 E7 oncoprotein associates with the cullin 2 ubiquitin ligase complex, which contributes to degradation of the retinoblastoma tumor suppressor, J Virol, vol.81, pp.9737-9747, 2007.

E. A. White, M. E. Sowa, M. Tan, S. Jeudy, S. D. Hayes et al., Systematic identification of interactions between host cell proteins and E7 oncoproteins from diverse human papillomaviruses, Proc Natl Acad Sci, vol.109, pp.260-267, 2012.

E. Reinstein, M. Scheffner, M. Oren, A. Ciechanover, and A. Schwartz, Degradation of the E7 human papillomavirus oncoprotein by the ubiquitinproteasome system: targeting via ubiquitination of the N-terminal residue, Oncogene, vol.19, pp.5944-5950, 2000.

J. Wang, A. Sampath, P. Raychaudhuri, and S. Bagchi, Both Rb and E7 are regulated by the ubiquitin proteasome pathway in HPV-containing cervical tumor cells, Oncogene, vol.20, pp.4740-4749, 2001.

D. Stewart, S. Kazemi, S. Li, P. Massimi, L. Banks et al., Ubiquitination and proteasome degradation of the E6 proteins of human papillomavirus types 11 and 18, J Gen Virol, vol.85, pp.1419-1426, 2004.

R. M. Vos, J. Altreuter, E. A. White, and P. M. Howley, The ubiquitin-specific peptidase USP15 regulates human papillomavirus type 16 E6 protein stability, J Virol, vol.83, pp.8885-8892, 2009.

C. Lin, H. Chang, and W. Yu, USP11 stabilizes HPV-16E7 and further modulates the E7 biological activity, J Biol Chem, vol.283, pp.15681-15688, 2008.

P. Cassonnet, C. Rolloy, G. Neveu, P. Vidalain, T. Chantier et al., Benchmarking a luciferase complementation assay for detecting protein complexes, Nat Methods, vol.8, pp.990-992, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-01971619

T. Gao, Z. Liu, Y. Wang, H. Cheng, Q. Yang et al., UUCD: a family-based database of ubiquitin and ubiquitin-like conjugation, Nucleic Acids Res, vol.41, pp.445-451, 2012.

A. Kumar, Y. Zhao, G. Meng, M. Zeng, S. Srinivasan et al., Human papillomavirus oncoprotein E6 inactivates the transcriptional coactivator human ADA3, Mol Cell Biol, vol.22, pp.5801-5812, 2002.

B. A. Glaunsinger, S. S. Lee, M. Thomas, L. Banks, and R. Javier, Interactions of the PDZ-protein MAGI-1 with adenovirus E4-ORF1 and high-risk papillomavirus E6 oncoproteins, Oncogene, vol.19, pp.5270-5280, 2000.

S. Nakagawa and J. M. Huibregtse, Human scribble (Vartul) is targeted for ubiquitin-mediated degradation by the high-risk papillomavirus E6 proteins and the E6AP ubiquitin-protein ligase, Mol Cell Biol, vol.20, pp.8244-8253, 2000.

R. Vincentelli, K. Luck, J. Poirson, J. Polanowska, J. Abdat et al., Quantifying domain-ligand affinities and specificities by high-throughput holdup assay, Nat Methods, vol.12, pp.787-793, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01439029

D. Gardiol, C. K?-uhne, B. Glaunsinger, S. S. Lee, R. Javier et al., Oncogenic human papillomavirus E6 proteins target the discs large tumour suppressor for proteasome-mediated degradation, Oncogene, vol.18, pp.5487-5496, 1999.

L. V. Ronco, A. Y. Karpova, M. Vidal, and P. M. Howley, Human papillomavirus 16 E6 oncoprotein binds to interferon regulatory factor-3 and inhibits its transcriptional activity, Genes Dev, vol.12, pp.2061-2072, 1998.

N. Dyson, P. M. Howley, K. Munger, and E. Harlow, The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product, Science, vol.243, pp.934-937, 1989.

M. C. Mcintyre, M. N. Ruesch, and L. A. Laimins, Human papillomavirus E7 oncoproteins bind a single form of cyclin E in a complex with cdk2 and p107, Virology, vol.215, pp.73-82, 1996.

G. Neveu, P. Cassonnet, P. Vidalain, C. Rolloy, J. Mendoza et al., Comparative analysis of virushost interactomes with a mammalian high-throughput protein complementation assay based on Gaussia princeps luciferase, Methods, vol.58, pp.349-359, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01971543

E. A. White, K. Munger, and P. M. Howley, High-risk human papillomavirus E7 proteins target PTPN14 for degradation, MBio, vol.7, pp.1530-1546, 2016.

M. Thomas and L. Banks, PDZRN3/LNX3 is a novel target of human papillomavirus type 16 (HPV-16) and HPV-18 E6, J Virol, vol.89, pp.1439-1444, 2015.

J. O. Lee, A. A. Russo, and N. P. Pavletich, Structure of the retinoblastoma tumour-suppressor pocket domain bound to a peptide from HPV E7, Nature, vol.391, pp.859-865, 1998.

O. Ohlenschl?-ager, T. Seiboth, H. Zengerling, L. Briese, A. Marchanka et al., Solution structure of the partially folded high-risk human papilloma virus 45 oncoprotein E7, Oncogene, vol.25, pp.5953-5959, 2006.

C. Lee, D. Kim, S. Lee, J. Su, and K. Han, Structural investigation on the intrinsically disordered N-terminal region of HPV16 E7 protein, BMB Rep, vol.49, pp.431-436, 2016.

M. Muller, Y. Jacob, L. Jones, A. Weiss, L. Brino et al., Large scale genotype comparison of human papillomavirus E2-host interaction networks provides new insights for e2 molecular functions, PLoS Pathog, vol.8, p.1002761, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00965872

P. Braun, M. Tasan, M. Dreze, M. Barrios-rodiles, I. Lemmens et al., An experimentally derived confidence score for binary protein-protein interactions, Nat Methods, vol.6, pp.91-97, 2009.

K. W. Huh, J. Demasi, H. Ogawa, Y. Nakatani, P. M. Howley et al., Association of the human papillomavirus type 16 E7 oncoprotein with the 600kDa retinoblastoma protein-associated factor, p600, Proc Natl Acad Sci, vol.102, pp.11492-11497, 2005.

Y. Chen, Z. Yang, M. Meng, Y. Zhao, N. Dong et al., Cullin mediates degradation of RhoA through evolutionarily conserved BTB adaptors to control actin cytoskeleton structure and cell movement, Mol Cell, vol.35, pp.841-855, 2009.

W. K. Songock, S. Kim, and J. M. Bodily, The human papillomavirus E7 oncoprotein as a regulator of transcription, Virus Res, vol.231, pp.56-75, 2017.

H. Oshiumi, M. Matsumoto, S. Hatakeyama, and T. Seya, Riplet/RNF135, a RING finger protein, ubiquitinates RIG-I to promote interferon-beta induction during the early phase of viral infection, J Biol Chem, vol.284, pp.807-817, 2009.

M. Sasai, M. Tatematsu, H. Oshiumi, K. Funami, M. Matsumoto et al., Direct binding of TRAF2 and TRAF6 to TICAM-1/TRIF adaptor participates in activation of the Toll-like receptor 3/4 pathway, Mol Immunol, vol.47, pp.1283-1291, 2010.

E. Tang and C. Wang, TRAF5 is a downstream target of MAVS in antiviral innate immune signaling, PLoS ONE, vol.5, p.9172, 2010.

J. Zhang, M. Hu, Y. Wang, and H. Shu, TRIM32 protein modulates type I interferon induction and cellular antiviral response by targeting MITA/ STING protein for K63-linked ubiquitination, J Biol Chem, vol.287, pp.28646-28655, 2012.

E. Koutelou, S. Sato, C. Tomomori-sato, L. Florens, S. K. Swanson et al., Neuralized-like 1 (Neurl1) targeted to the plasma membrane by N-myristoylation regulates the Notch ligand Jagged1, J Biol Chem, vol.283, pp.3846-3853, 2008.

J. Lee and P. Zhou, DCAFs, the missing link of the CUL4-DDB1 ubiquitin ligase, Mol Cell, vol.26, pp.775-780, 2007.

E. Pauli, Y. K. Chan, M. E. Davis, S. Gableske, M. K. Wang et al., The ubiquitinspecific protease USP15 promotes RIG-I-mediated antiviral signaling by deubiquitylating TRIM25, Sci Signal, vol.7, pp.1-11, 2014.

Q. Zou, J. J. Hu, H. Li, H. S. Romano, S. Xiao et al., USP15 stabilizes MDM2 to mediate cancer-cell survival and inhibit antitumor T cell responses, Nat Immunol, vol.15, pp.562-570, 2014.

J. Liu, H. Chung, M. Vogt, Y. Jin, D. Malide et al., JTV1 co-activates FBP to induce USP29 transcription and stabilize p53 in response to oxidative stress, EMBO J, vol.30, pp.846-858, 2011.

Y. Mart-in, E. Cabrera, H. Amoedo, S. Hern-andez-p-erez, D. Inguez-kelly et al., USP29 controls the stability of checkpoint adaptor Claspin by deubiquitination, Oncogene, vol.34, pp.1058-1063, 2015.

N. Spardy, K. Covella, E. Cha, E. E. Hoskins, S. I. Wells et al., Human papillomavirus 16 E7 oncoprotein attenuates DNA damage checkpoint control by increasing the proteolytic turnover of claspin, Cancer Res, vol.69, pp.7022-7029, 2009.

J. Li, D. 'angiolella, V. Seeley, E. S. Kim, S. Kobayashi et al., USP33 regulates centrosome biogenesis via, 2013.