V. Bronte, S. Brandau, and S. Chen, Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards, Nat Commun, vol.7, p.12150, 2016.
DOI : 10.1038/ncomms12150

URL : https://www.nature.com/articles/ncomms12150.pdf

A. M. Bruger, A. Dorhoi, and G. Esendagli, How to measure the immunosuppressive activity of MDSC: assays, problems and potential solutions, Cancer Immunol Immunother, 2018.

Y. Skabytska, F. Wölbing, and C. Günther, Cutaneous Innate Immune Sensing of Toll-like Receptor 2-6 Ligands Suppresses T Cell Immunity by Inducing Myeloid-Derived Suppressor Cells, Immunity, vol.41, pp.762-775, 2014.
DOI : 10.1016/j.immuni.2014.10.009

URL : https://doi.org/10.1016/j.immuni.2014.10.009

M. Arora, S. L. Poe, and T. B. Oriss, TLR4/MyD88-induced CD11b+Gr-1 int F4/80+ nonmigratory myeloid cells suppress Th2 effector function in the lung, Mucosal Immunol, vol.3, pp.578-93, 2010.

N. Rieber, A. Brand, and A. Hector, Flagellin Induces Myeloid-Derived Suppressor Cells: Implications for Pseudomonas aeruginosa Infection in Cystic Fibrosis Lung Disease, J Immunol, vol.190, pp.1276-1284, 2013.

J. P. Ren, J. Zhao, and J. Dai, Hepatitis C virus-induced myeloid-derived suppressor cells regulate T-cell differentiation and function via the signal transducer and activator of transcription 3 pathway, Immunology, vol.148, pp.377-86, 2016.

N. Zhai, H. Li, and H. Song, Hepatitis C Virus Induces MDSCs-Like Monocytes through TLR2/PI3K/AKT/STAT3 Signaling, PLoS One, vol.12, p.170516, 2017.

R. S. Tacke, H. Lee, and C. Goh, Myeloid suppressor cells induced by hepatitis C virus suppress T-cell responses through the production of reactive oxygen species, Hepatology, vol.55, pp.343-53, 2012.

C. C. Goh, K. M. Roggerson, and H. Lee, Hepatitis C Virus-Induced Myeloid-Derived Suppressor Cells Suppress NK Cell IFN-? Production by Altering Cellular Metabolism via Arginase-1, J Immunol, vol.196, pp.2283-92, 2016.

Z. Fang, J. Li, and X. Yu, Polarization of Monocytic Myeloid-Derived Suppressor Cells by, 2015.

. Hepatitis-b-surface, Antigen Is Mediated via ERK/IL-6/STAT3 Signaling Feedback and Restrains the Activation of T Cells in Chronic Hepatitis B Virus Infection, J Immunol, vol.195, pp.4873-83

A. Garg and S. A. Spector, HIV type 1 gp120-induced expansion of myeloid derived suppressor cells is dependent on interleukin 6 and suppresses immunity, J Infect Dis, vol.209, pp.441-51, 2014.

A. Dorhoi, D. Plessis, and N. , Monocytic Myeloid-Derived Suppressor Cells in Chronic Infections, Front Immunol, vol.8, p.1895, 2018.

D. Santo, C. Salio, M. Masri, and S. H. , Invariant NKT cells reduce the immunosuppressive activity of influenza A virus-induced myeloid-derived suppressor cells in mice and humans, J, vol.17, 2008.

, Clin Invest, vol.118, pp.4036-4048

V. Jeisy-scott, W. G. Davis, and J. R. Patel, Increased MDSC accumulation and Th2 biased response to influenza A virus infection in the absence of TLR7 in mice, PLoS One, vol.6, p.25242, 2011.

N. Rieber, A. Singh, and H. Öz, Pathogenic fungi regulate immunity by inducing neutrophilic myeloid-derived suppressor cells, Cell Host Microbe, vol.17, pp.507-521, 2015.

S. H. Albeituni, C. Ding, and M. Liu, Yeast-Derived Particulate ?-Glucan Treatment Subverts the Suppression of Myeloid-Derived Suppressor Cells (MDSC) by Inducing, 2016.

, Polymorphonuclear MDSC Apoptosis and Monocytic MDSC Differentiation to APC in Cancer, J Immunol, vol.196

L. Gomez-garcia, L. M. Lopez-marin, and R. Saavedra, Intact glycans from cestode antigens are involved in innate activation of myeloid suppressor cells, Parasite Immunol, vol.27, pp.395-405, 2005.

L. I. Terrazas, K. L. Walsh, and D. Piskorska, The schistosome oligosaccharide lacto-Nneotetraose expands Gr1(+) cells that secrete anti-inflammatory cytokines and inhibit proliferation of naive CD4(+) cells: a potential mechanism for immune polarization in helminth infections, J Immunol, vol.167, pp.5294-303, 2001.

O. Atochina, T. Daly-engel, and D. Piskorska, A schistosome-expressed immunomodulatory glycoconjugate expands peritoneal Gr1(+) macrophages that suppress naive CD4(+) T cell proliferation via an IFN-gamma and nitric oxide-dependent mechanism, J Immunol, vol.167, pp.4293-302, 2001.

A. Wagner, I. Schabussova, and M. Drinic, Oocyst-Derived Extract of Toxoplasma Gondii Serves as Potent Immunomodulator in a Mouse Model of Birch Pollen Allergy, PLoS One, vol.11, 2016.

M. Ost, A. Singh, and A. Peschel, Myeloid-Derived Suppressor Cells in Bacterial Infections, Front Cell Infect Microbiol, vol.6, p.37, 2016.

D. I. Gabrilovich and S. Nagaraj, Myeloid-derived suppressor cells as regulators of the immune system, Nat Rev Immunol, vol.9, pp.162-74, 2009.

F. Veglia, M. Perego, and D. Gabrilovich, Myeloid-derived suppressor cells coming of age, Nat Immunol, vol.19, pp.108-119, 2018.

A. R. Arocena, L. I. Onofrio, and A. Pellegrini, Myeloid-derived suppressor cells are key players in the resolution of inflammation during a model of acute infection, Eur J Immunol, vol.44, pp.184-94, 2014.

L. E. Sander, S. D. Sackett, and U. Dierssen, Hepatic acute-phase proteins control innate immune responses during infection by promoting myeloid-derived suppressor cell function, J Exp Med, vol.207, pp.1453-64, 2010.

E. Ribechini, J. A. Hutchinson, and S. Hergovits, Novel GM-CSF signals via IFN-?R/IRF-1 and AKT/mTOR license monocytes for suppressor function, Blood Adv, vol.1, pp.947-960, 2017.

M. J. Delano, P. O. Scumpia, and J. S. Weinstein, MyD88-dependent expansion of an immature GR-1(+)CD11b(+) population induces T cell suppression and Th2 polarization in sepsis, J Exp Med, vol.204, pp.1463-74, 2007.

S. L. Poe, M. Arora, and T. B. Oriss, STAT1-regulated lung MDSC-like cells produce IL-10 and efferocytose apoptotic neutrophils with relevance in resolution of bacterial pneumonia, 2013.

, Mucosal Immunol, vol.6, pp.189-199

H. Cuervo, N. A. Guerrero, and S. Carbajosa, Myeloid-derived suppressor cells infiltrate the heart in acute Trypanosoma cruzi infection, J Immunol, vol.187, pp.2656-65, 2011.

L. M. Sanmarco, L. M. Visconti, and N. Eberhardt, IL-6 Improves the Nitric Oxide-Induced Cytotoxic CD8+ T Cell Dysfunction in Human Chagas Disease, Front Immunol, vol.7, p.626, 2016.

C. Nathan and A. Ding, Nonresolving Inflammation, Cell, vol.140, pp.871-882, 2010.

M. K. White, J. S. Pagano, and K. Khalili, Viruses and human cancers: a long road of discovery of molecular paradigms, Clin Microbiol Rev, vol.27, pp.463-81, 2014.

A. H. Chang and J. Parsonnet, Role of bacteria in oncogenesis, Clin Microbiol Rev, vol.23, pp.837-57, 2010.

H. Van-tong, P. J. Brindley, C. G. Meyer, and T. P. Velavan, Carcinogenesis and Human Malignancy. EBioMedicine, vol.15, pp.12-23, 2017.

B. Yang, X. Wang, and J. Jiang, Identification of CD244-expressing myeloid-derived suppressor cells in patients with active tuberculosis, Immunol Lett, vol.158, pp.66-72, 2014.

N. Du-plessis, L. Loebenberg, and M. Kriel, Increased Frequency of Myeloid-derived Suppressor Cells during Active Tuberculosis and after Recent Mycobacterium tuberculosis Infection Suppresses T-Cell Function, Am J Respir Crit Care Med, vol.188, pp.724-732, 2013.

S. El-daker, A. Sacchi, and M. Tempestilli, Granulocytic Myeloid Derived Suppressor Cells Expansion during Active Pulmonary Tuberculosis Is Associated with High Nitric Oxide Plasma Level, PLoS One, vol.10, 2015.

J. K. Knaul, S. Jörg, and D. Oberbeck-mueller, Lung-Residing Myeloid-derived Suppressors Display Dual Functionality in Murine Pulmonary Tuberculosis, Am J Respir Crit Care Med, vol.190, pp.1053-1066, 2014.

E. N. Tsiganov, E. M. Verbina, and T. Radaeva, Gr-1dimCD11b+ immature myeloidderived suppressor cells but not neutrophils are markers of lethal tuberculosis infection in mice, J Immunol, vol.192, pp.4718-4745, 2014.

S. Gupta, L. Cheung, and S. Pokkali, Suppressor Cell-Depleting Immunotherapy With Denileukin Diftitox is an Effective Host-Directed Therapy for Tuberculosis, J Infect Dis, vol.215, pp.1883-1887, 2017.

C. E. Heim, D. Vidlak, and T. D. Scherr, Myeloid-Derived Suppressor Cells Contribute to Staphylococcus aureus Orthopedic Biofilm Infection, J Immunol, vol.192, pp.3778-3792, 2014.

L. Ding, M. M. Hayes, and A. Photenhauer, Schlafen 4-expressing myeloid-derived suppressor cells are induced during murine gastric metaplasia, J Clin Invest, vol.126, pp.2867-2880, 2016.

T. Orberg, E. Fan, H. Tam, and A. J. , The myeloid immune signature of enterotoxigenic Bacteroides fragilis-induced murine colon tumorigenesis, Mucosal Immunol, vol.10, pp.421-433, 2017.

B. A. Norris, L. S. Uebelhoer, and H. I. Nakaya, Chronic but Not Acute Virus Infection Induces Sustained Expansion of Myeloid Suppressor Cell Numbers that Inhibit Viral-Specific T Cell Immunity, Immunity, vol.38, pp.309-321, 2013.

K. A. Green, W. J. Cook, and W. R. Green, Myeloid-derived suppressor cells in murine retrovirusinduced AIDS inhibit T-and B-cell responses in vitro that are used to define the immunodeficiency, J Virol, vol.87, pp.2058-71, 2013.

L. Alaoui, G. Palomino, and S. Zurawski, Early SIV and HIV infection promotes the LILRB2/MHC-I inhibitory axis in cDCs, Cell Mol Life Sci 1-17, 2017.

N. Huot, P. Rascle, and T. Garcia-tellez, Innate immune cell responses in non pathogenic versus pathogenic SIV infections, Curr Opin Virol, vol.19, pp.37-44, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01419560

Z. Zhang, Y. N. Zhang, and T. , Myeloid-Derived Suppressor Cells Associated With Disease Progression in Primary HIV Infection, JAIDS J Acquir Immune Defic Syndr, vol.76, pp.200-208, 2017.

T. Vollbrecht, R. Stirner, and A. Tufman, Chronic progressive HIV-1 infection is associated with elevated levels of myeloid-derived suppressor cells, AIDS, vol.26, pp.31-37, 2012.

N. Tumino, F. Turchi, and S. Meschi, HIV-positive patients, myeloid-derived suppressor cells induce T-cell anergy by suppressing CD3? expression through ELF-1 inhibition, AIDS, vol.29, pp.2397-2407, 2015.

A. Qin, W. Cai, and T. Pan, Expansion of Monocytic Myeloid-Derived Suppressor Cells Dampens T Cell Function in HIV-1-Seropositive Individuals, J Virol, vol.87, pp.1477-1490, 2013.

L. Gama, E. N. Shirk, and J. N. Russell, Expansion of a subset of, 2012.

, CD14highCD16negCCR2low/neg monocytes functionally similar to myeloid-derived suppressor cells during SIV and HIV infection, J Leukoc Biol, vol.91, pp.803-816

S. E. Dross, P. Munson, and S. E. Kim, Kinetics of Myeloid-Derived Suppressor Cell Frequency and Function during Simian Immunodeficiency Virus Infection, Combination Antiretroviral Therapy, and Treatment Interruption, J Immunol, vol.198, pp.757-766, 2017.

W. Cai, A. Qin, and P. Guo, Clinical significance and functional studies of myeloid-derived suppressor cells in chronic hepatitis C patients, J Clin Immunol, vol.33, pp.798-808, 2013.

Q. Zeng, Y. B. Sun, and H. , Myeloid-derived suppressor cells are associated with viral persistence and downregulation of TCR ? chain expression on CD8(+) T cells in chronic hepatitis C patients, Mol Cells, vol.37, pp.66-73, 2014.

J. Nonnenmann, R. Stirner, and J. Roider, Lack of significant elevation of myeloid-derived suppressor cells in peripheral blood of chronically hepatitis C virus-infected individuals, J Virol, vol.88, pp.7678-82, 2014.

A. Huang, B. Zhang, and W. Yan, Myeloid-derived suppressor cells regulate immune response in patients with chronic hepatitis B virus infection through PD-1-induced IL-10, J Immunol, vol.193, pp.5461-5470, 2014.

S. Chen, S. Akbar, and M. Abe, Immunosuppressive functions of hepatic myeloidderived suppressor cells of normal mice and in a murine model of chronic hepatitis B virus, Clin Exp Immunol, vol.166, pp.134-176, 2011.

X. Kong, R. Sun, and Y. Chen, ??T cells drive myeloid-derived suppressor cell-mediated CD8+ T cell exhaustion in hepatitis B virus-induced immunotolerance, J Immunol, vol.193, pp.1645-53, 2014.

L. J. Pallett, U. S. Gill, and A. Quaglia, Metabolic regulation of hepatitis B immunopathology by myeloid-derived suppressor cells, Nat Med, vol.21, pp.591-600, 2015.

E. Cesarman, Gammaherpesviruses and Lymphoproliferative Disorders, Annu Rev Pathol Mech Dis, vol.9, pp.349-72, 2014.

A. Romano, N. L. Parrinello, and C. Vetro, Circulating myeloid-derived suppressor cells correlate with clinical outcome in Hodgkin Lymphoma patients treated up-front with a riskadapted strategy, Br J Haematol, vol.168, pp.689-700, 2015.

H. Zhang, Z. Li, and S. Ye, Myeloid-derived suppressor cells inhibit T cell proliferation in human extranodal NK/T cell lymphoma: a novel prognostic indicator, Cancer Immunol Immunother, vol.64, pp.1587-1599, 2015.

T. Cai, S. Ye, and Y. Liu, LMP1-mediated glycolysis induces myeloid-derived suppressor cell expansion in nasopharyngeal carcinoma, PLOS Pathog, vol.13, p.1006503, 2017.

R. M. Maizels and H. J. Mcsorley, Regulation of the host immune system by helminth parasites, J Allergy Clin Immunol, vol.138, pp.666-675, 2016.

Q. Yang, H. Qiu, and H. Xie, A Schistosoma japonicum Infection Promotes the Expansion of Myeloid-Derived Suppressor Cells by Activating the JAK/STAT3 Pathway, J Immunol, vol.198, pp.4716-4727, 2017.

R. M. Valanparambil, M. Tam, and A. Jardim, Primary Heligmosomoides polygyrus bakeri infection induces myeloid-derived suppressor cells that suppress CD4+ Th2 responses and promote chronic infection, Mucosal Immunol, vol.10, pp.238-249, 2017.

J. A. Van-ginderachter, A. Beschin, D. Baetselier, P. Raes, and G. , Myeloid-derived suppressor cells in parasitic infections, Eur J Immunol, vol.40, pp.2976-85, 2010.

L. Brys, A. Beschin, and G. Raes, Reactive oxygen species and 12/15-lipoxygenase contribute to the antiproliferative capacity of alternatively activated myeloid cells elicited during helminth infection, J Immunol, vol.174, pp.6095-104, 2005.

W. F. Pereira, F. L. Ribeiro-gomes, and L. Guillermo, Myeloid-derived suppressor cells help protective immunity to Leishmania major infection despite suppressed T cell responses, J Leukoc Biol, vol.90, pp.1191-1198, 2011.

M. Schmid, N. Zimara, A. K. Wege, and U. Ritter, Myeloid-derived suppressor cell functionality and interaction with Leishmania major parasites differ in C57BL/6 and BALB/c mice, Eur J Immunol, vol.44, pp.3295-306, 2014.

A. Singh, F. Lelis, and S. Braig, Differential Regulation of Myeloid-Derived Suppressor Cells by Candida Species, Front Microbiol, vol.7, p.1624, 2016.

C. Zhang, G. Lei, and S. Shao, Accumulation of myeloid-derived suppressor cells in the lungs during Pneumocystis pneumonia, Infect Immun, vol.80, pp.3634-3675, 2012.

G. Lei, C. Zhang, and S. Shao, All-trans retinoic acid in combination with primaquine clears pneumocystis infection, PLoS One, vol.8, p.53479, 2013.

G. Lei, C. Zhang, and C. Lee, Myeloid-derived suppressor cells impair alveolar macrophages through PD-1 receptor ligation during Pneumocystis pneumonia, Infect Immun, vol.83, pp.572-82, 2015.

Y. Sui, B. Frey, and Y. Wang, Paradoxical myeloid-derived suppressor cell reduction in the bone marrow of SIV chronically infected macaques, PLoS Pathog, vol.13, p.1006395, 2017.

C. Keller, R. Hoffmann, and R. Lang, Genetically determined susceptibility to tuberculosis in mice causally involves accelerated and enhanced recruitment of granulocytes, Infect Immun, vol.74, pp.4295-309, 2006.

E. B. Eruslanov, I. Lyadova, and T. K. Kondratieva, Neutrophil responses to Mycobacterium tuberculosis infection in genetically susceptible and resistant mice, Infect Immun, vol.73, pp.1744-53, 2005.

C. Tebartz, S. A. Horst, and T. Sparwasser, A major role for myeloid-derived suppressor cells and a minor role for regulatory T cells in immunosuppression during Staphylococcus aureus infection, J Immunol, vol.194, pp.1100-1111, 2015.

B. C. Mourik, P. Leenen, and G. J. De-knegt, Immunotherapy Added to Antibiotic Treatment Reduces Relapse of Disease in a Mouse Model of Tuberculosis, Am J Respir Cell Mol Biol, vol.56, pp.233-241, 2017.

D. Chandra, W. Quispe-tintaya, and A. Jahangir, STING ligand c-di-GMP improves cancer vaccination against metastatic breast cancer, Cancer Immunol Res, vol.2, pp.901-911, 2014.

F. Liu, X. Li, and C. Lu, Ceramide activates lysosomal cathepsin B and cathepsin D to attenuate autophagy and induces ER stress to suppress myeloid-derived suppressor cells, Oncotarget, vol.7, pp.83907-83925, 2016.

M. F. Tavazoie, I. Pollack, and R. Tanqueco, LXR/ApoE Activation Restricts Innate Immune Suppression in Cancer, Cell, vol.172, 2018.

B. A. Ahidjo and W. R. Bishai, Phosphodiesterase inhibitors as adjunctive therapies for tuberculosis, vol.4, pp.7-8, 2016.

A. Obregón-henao, M. Henao-tamayo, I. M. Orme, and D. J. Ordway, Gr1(int)CD11b+ myeloidderived suppressor cells in Mycobacterium tuberculosis infection, PLoS One, vol.8, p.80669, 2013.

C. Vilaplana, E. Marzo, and G. Tapia, Ibuprofen therapy resulted in significantly decreased tissue bacillary loads and increased survival in a new murine experimental model of active tuberculosis, J Infect Dis, vol.208, pp.199-202, 2013.

S. Zhang, K. Wu, and Y. Liu, Finasteride Enhances the Generation of Human MyeloidDerived Suppressor Cells by Up-Regulating the COX2/PGE2 Pathway, PLoS One, vol.11, 2016.

N. Rieber, C. Gille, and N. Köstlin, Neutrophilic myeloid-derived suppressor cells in cord blood modulate innate and adaptive immune responses, Clin Exp Immunol, vol.174, pp.45-52, 2013.

R. R. Flores, C. L. Clauson, and J. Cho, Expansion of myeloid-derived suppressor cells with aging in the bone marrow of mice through a NF-?B-dependent mechanism, Aging Cell, vol.16, pp.480-487, 2017.