S. Bhatt, The global distribution and burden of dengue, Nature, vol.496, pp.504-507, 2013.

V. Nene, Genome sequence of Aedes aegypti, a major arbovirus vector, Science, vol.316, pp.1718-1723, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00156214

V. A. Timoshevskiy, An integrated linkage, chromosome, and genome map for the yellow fever mosquito Aedes aegypti, PLoS Negl. Trop. Dis, vol.7, p.2052, 2013.

O. Dudchenko, De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds, Science, vol.356, pp.92-95, 2017.

C. S. Chin, Phased diploid genome assembly with single-molecule real-time sequencing, Nat. Methods, vol.13, pp.1050-1054, 2016.

R. M. Waterhouse, BUSCO applications from quality assessments to gene prediction and phylogenomics, Mol. Biol. Evol, vol.35, pp.543-548, 2017.

S. K. Denny, Nfib promotes metastasis through a widespread increase in chromatin accessibility, Cell, vol.166, pp.328-342, 2016.

V. A. Timoshevskiy, Genomic composition and evolution of Aedes aegypti chromosomes revealed by the analysis of physically mapped supercontigs, BMC Biol, vol.12, p.27, 2014.

P. George, M. V. Sharakhova, and I. V. Sharakhov, High-resolution cytogenetic map for the African malaria vector Anopheles gambiae, Insect Mol. Biol, vol.19, pp.675-682, 2010.

G. N. Artemov, The physical genome mapping of Anopheles albimanus corrected scaffold misassemblies and identified interarm rearrangements in genus Anopheles, G3 (Bethesda), vol.7, pp.155-164, 2017.

M. J. Gorman and S. M. Paskewitz, Serine proteases as mediators of mosquito immune responses, Insect Biochem. Mol. Biol, vol.31, pp.257-262, 2001.

E. Goulielmaki, I. Sidén-kiamos, and T. G. Loukeris, Functional characterization of Anopheles matrix metalloprotease 1 reveals its agonistic role during sporogonic development of malaria parasites, Infect. Immun, vol.82, pp.4865-4877, 2014.

B. J. Matthews, C. S. Mcbride, M. Degennaro, O. Despo, and L. B. Vosshall, The neurotranscriptome of the Aedes aegypti mosquito, BMC Genomics, vol.17, p.32, 2016.

B. M. Gilchrist and J. B. Haldane, Sex linkage and sex determination in a mosquito, Culex molestus, Hereditas, vol.33, pp.175-190, 1947.

G. A. Mcclelland, Sex-linkage in Aedes aegypti, Trans. R. Soc. Trop. Med. Hyg, vol.56, p.4, 1962.

M. E. Newton, R. J. Wood, and D. I. Southern, Cytological mapping of the M and D loci in the mosquito, Aedes aegypti (L.), Genetica, vol.48, pp.137-143, 1978.

A. B. Hall, A male-determining factor in the mosquito Aedes aegypti, Science, vol.348, pp.1268-1270, 2015.

A. B. Hall, Insights into the preservation of the homomorphic sexdetermining chromosome of Aedes aegypti from the discovery of a male-biased gene tightly linked to the M-locus, Genome Biol. Evol, vol.6, pp.179-191, 2014.

J. Turner, The sequence of a male-specific genome region containing the sex determination switch in Aedes aegypti, Parasit. Vectors, vol.11, p.549, 2018.

A. B. Hall, Six novel Y chromosome genes in Anopheles mosquitoes discovered by independently sequencing males and females, BMC Genomics, vol.14, p.273, 2013.

A. Fontaine, Extensive genetic differentiation between homomorphic sex chromosomes in the mosquito vector, Aedes aegypti, Genome Biol. Evol, vol.9, pp.2322-2335, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01974181

P. Juneja, Assembly of the genome of the disease vector Aedes aegypti onto a genetic linkage map allows mapping of genes affecting disease transmission, PLoS Negl. Trop. Dis, vol.8, p.2652, 2014.

D. Charlesworth, B. Charlesworth, and G. Marais, Steps in the evolution of heteromorphic sex chromosomes, Heredity, vol.95, pp.118-128, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00427860

M. M. Riehle, The Anopheles gambiae 2La chromosome inversion is associated with susceptibility to Plasmodium falciparum in Africa, vol.6, p.25813, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01567815

E. B. Lewis, A gene complex controlling segmentation in Drosophila, Nature, vol.276, pp.565-570, 1978.

D. Duboule, The rise and fall of Hox gene clusters, Development, vol.134, pp.2549-2560, 2007.

B. Negre, J. M. Ranz, F. Casals, M. Cáceres, and A. Ruiz, A new split of the Hox gene complex in Drosophila: relocation and evolution of the gene labial, Mol. Biol. Evol, vol.20, pp.2042-2054, 2003.

A. A. Enayati, H. Ranson, and J. Hemingway, Insect glutathione transferases and insecticide resistance, Insect Mol. Biol, vol.14, pp.3-8, 2005.

C. Bass and L. M. Field, Gene amplification and insecticide resistance, Pest Manag. Sci, vol.67, pp.886-890, 2011.

F. Ortelli, L. C. Rossiter, J. Vontas, H. Ranson, and J. Hemingway, Heterologous expression of four glutathione transferase genes genetically linked to a major insecticide-resistance locus from the malaria vector Anopheles gambiae, Biochem. J, vol.373, pp.957-963, 2003.

N. Lumjuan, The role of the Aedes aegypti Epsilon glutathione transferases in conferring resistance to DDT and pyrethroid insecticides, Insect Biochem

, Mol. Biol, vol.41, pp.203-209, 2011.

, Anopheles gambiae 1000 Genomes Consortium. Genetic diversity of the African malaria vector Anopheles gambiae, Nature, vol.552, pp.96-100, 2017.

D. J. Begun and C. F. Aquadro, Levels of naturally occurring DNA polymorphism correlate with recombination rates in D. melanogaster, Nature, vol.356, pp.519-520, 1992.

B. R. Evans, A multipurpose, high-throughput single-nucleotide polymorphism chip for the dengue and yellow fever mosquito, Aedes aegypti. G3 (Bethesda), vol.5, pp.711-718, 2015.

T. Fansiri, Genetic mapping of specific interactions between Aedes aegypti mosquitoes and dengue viruses, PLoS Genet, vol.9, p.1003621, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-00854586

W. C. Black and . Iv, Flavivirus susceptibility in Aedes aegypti, Arch. Med. Res, vol.33, pp.379-388, 2002.

C. L. Moyes, Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans, PLoS Negl. Trop. Dis, vol.11, p.5625, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02013555

A. K. Jones and D. B. Sattelle, Diversity of insect nicotinic acetylcholine receptor subunits, Adv. Exp. Med. Biol, vol.683, pp.25-43, 2010.

L. Alphey, Genetic control of mosquitoes, Annu. Rev. Entomol, vol.59, pp.205-224, 2014.

Z. N. Adelman and Z. Tu, Control of mosquito-borne infectious disease: sex and gene drive, Trends Parasitol, vol.32, pp.219-229, 2016.

E. Frichot and O. François, LEA: an R package for landscape and ecological association studies, Methods Ecol. Evol, vol.6, pp.925-929, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02004815

. R-core-team, R: A Language and Environment for Statistical Computing http:// www.R-project.org/ (R Foundation for Statistical Computing, 2017.

E. E. Hare and J. S. Johnston, Genome size determination using flow cytometry of propidium iodide-stained nuclei, Methods Mol. Biol, vol.772, pp.3-12, 2012.

D. W. Galbraith, Rapid flow cytometric analysis of the cell cycle in intact plant tissues, Science, vol.220, pp.1049-1051, 1983.

C. S. Chin, Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data, Nat. Methods, vol.10, pp.563-569, 2013.

M. J. Chaisson and G. Tesler, Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory, BMC Bioinformatics, vol.13, p.238, 2012.

S. S. Rao, A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping, Cell, vol.159, pp.1665-1680, 2014.

N. C. Durand, Juicer provides a one-click system for analyzing loopresolution Hi-C experiments, Cell Syst, vol.3, pp.95-98, 2016.
DOI : 10.1016/j.cels.2016.07.002

URL : https://doi.org/10.1016/j.cels.2016.07.002

O. Dudchenko, The Juicebox Assembly Tools module facilitates de novo assembly of mammalian genomes with chromosome-length scaffolds for under $1000, 2018.

A. C. English, Mind the gap: upgrading genomes with Pacific Biosciences RS long-read sequencing technology, PLoS ONE, vol.7, p.47768, 2012.
DOI : 10.1371/journal.pone.0047768

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0047768&type=printable

H. Li, Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM, 2013.

E. Garrison and G. Marth, Haplotype-based variant detection from short-read sequencing, p.3907, 2012.

A. F. Smit, R. Hubley, and P. Green, , 2013.

A. F. Smit and R. Hubley, RepeatModeler Open version 1, 2008.

G. Benson, Tandem repeats finder: a program to analyze DNA sequences, Nucleic Acids Res, vol.27, pp.573-580, 1999.
DOI : 10.1093/nar/27.2.573

URL : https://academic.oup.com/nar/article-pdf/27/2/573/6268426/27-2-573.pdf

F. Thibaud-nissen, A. Souvorov, T. Murphy, M. Dicuccio, and P. Kitts, The NCBI Handbook, 2013.

O. S. Akbari, The developmental transcriptome of the mosquito Aedes aegypti, an invasive species and major arbovirus vector, Bethesda), vol.3, pp.1493-1509, 2013.

A. Dobin, STAR: ultrafast universal RNA-seq aligner, Bioinformatics, vol.29, pp.15-21, 2013.
DOI : 10.1093/bioinformatics/bts635

URL : https://academic.oup.com/bioinformatics/article-pdf/29/1/15/17101697/bts635.pdf

Y. Liao, G. K. Smyth, and W. Shi, featureCounts: an efficient general purpose program for assigning sequence reads to genomic features, Bioinformatics, vol.30, pp.923-930, 2014.
DOI : 10.1093/bioinformatics/btt656

URL : https://academic.oup.com/bioinformatics/article-pdf/30/7/923/633148/btt656.pdf

R. Patro, G. Duggal, M. I. Love, R. A. Irizarry, and C. Kingsford, Salmon provides fast and bias-aware quantification of transcript expression, Nat. Methods, vol.14, pp.417-419, 2017.
DOI : 10.1038/nmeth.4197

URL : http://europepmc.org/articles/pmc5600148?pdf=render

J. D. Buenrostro, P. G. Giresi, L. C. Zaba, H. Y. Chang, and W. J. Greenleaf, Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position, Nat. Methods, vol.10, pp.1213-1218, 2013.

B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, Ultrafast and memoryefficient alignment of short DNA sequences to the human genome, Genome Biol, vol.10, p.25, 2009.

H. Li, The Sequence Alignment/Map format and SAMtools, Bioinformatics, vol.25, pp.2078-2079, 2009.

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, Basic local alignment search tool, J. Mol. Biol, vol.215, pp.403-410, 1990.
DOI : 10.1006/jmbi.1990.9999

T. D. Wu and C. K. Watanabe, GMAP: a genomic mapping and alignment program for mRNA and EST sequences, Bioinformatics, vol.21, pp.1859-1875, 2005.

F. Hahne and R. Ivanek, Visualizing genomic data using Gviz and Bioconductor, Methods Mol. Biol, vol.1418, pp.335-351, 2016.
DOI : 10.1007/978-1-4939-3578-9_16

S. Heinz, Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities, Mol. Cell, vol.38, pp.576-589, 2010.

S. M. Kie?basa, R. Wan, K. Sato, P. Horton, and M. C. Frith, Adaptive seeds tame genomic sequence comparison, Genome Res, vol.21, pp.487-493, 2011.

D. E. Neafsey, Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes, Science, vol.347, p.1258522, 2015.

V. A. Timoshevskiy, A. Sharma, I. V. Sharakhov, and M. V. Sharakhova, Fluorescent in situ hybridization on mitotic chromosomes of mosquitoes, J. Vis. Exp, vol.67, p.4215, 2012.

M. V. Sharakhova, Imaginal discs-a new source of chromosomes for genome mapping of the yellow fever mosquito Aedes aegypti, PLoS Negl. Trop. Dis, vol.5, p.1335, 2011.

L. V. Jiménez, B. K. Kang, B. Debruyn, D. D. Lovin, and D. W. Severson, Characterization of an Aedes aegypti bacterial artificial chromosome (BAC) library and chromosomal assignment of BAC clones for physical mapping quantitative trait loci that influence Plasmodium susceptibility, Insect Mol. Biol, vol.13, pp.37-44, 2004.

B. Langmead and S. L. Salzberg, Fast gapped-read alignment with Bowtie 2, Nat. Methods, vol.9, pp.357-359, 2012.

Y. Liao, G. K. Smyth, and W. Shi, The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote, Nucleic Acids Res, vol.41, p.108, 2013.

H. Li, Minimap2: pairwise alignment for nucleotide sequences, Bioinformatics, vol.34, pp.3094-3100, 2018.

B. L. Apostol, W. C. Black, . Iv, P. Reiter, and B. R. Miller, Use of randomly amplified polymorphic DNA amplified by polymerase chain reaction markers to estimate the number of Aedes aegypti families at oviposition sites in, Am. J. Trop. Med. Hyg, vol.51, pp.89-97, 1994.

G. Ra?i?, The queenslandensis and the type form of the dengue fever mosquito (Aedes aegypti L.) are genomically indistinguishable, PLoS Negl. Trop. Dis, vol.10, p.5096, 2016.

S. J. Thomas, Dengue plaque reduction neutralization test (PRNT) in primary and secondary dengue virus infections: how alterations in assay conditions impact performance, Am. J. Trop. Med. Hyg, vol.81, pp.825-833, 2009.

B. K. Peterson, J. N. Weber, E. H. Kay, H. S. Fisher, and H. E. Hoekstra, Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species, PLoS ONE, vol.7, p.37135, 2012.

G. Ra?i?, I. Filipovi?, A. R. Weeks, and A. A. Hoffmann, Genome-wide SNPs lead to strong signals of geographic structure and relatedness patterns in the major arbovirus vector, Aedes aegypti, BMC Genomics, vol.15, p.275, 2014.

J. M. Catchen, A. Amores, P. Hohenlohe, W. Cresko, and J. H. Postlethwait, Stacks: building and genotyping loci de novo from short-read sequences, G3 (Bethesda), vol.1, pp.171-182, 2011.

J. Catchen, P. A. Hohenlohe, S. Bassham, A. Amores, and W. A. Cresko, Stacks: an analysis tool set for population genomics, Mol. Ecol, vol.22, pp.3124-3140, 2013.

G. R. Margarido, A. P. Souza, and A. A. Garcia, OneMap: software for genetic mapping in outcrossing species, Hereditas, vol.144, pp.78-79, 2007.

D. Kosambi, The Estimation of Map Distances from Recombination Values Ch. 15, pp.125-131, 2016.

K. W. Broman, H. Wu, S. Sen, and G. A. Churchill, R/qtl: QTL mapping in experimental crosses, Bioinformatics, vol.19, pp.889-890, 2003.

W. C. Black and N. Duteau, The Molecular Biology of Insect Disease Vectors, pp.361-373, 1997.

P. Juneja, Exome and transcriptome sequencing of Aedes aegypti identifies a locus that confers resistance to Brugia malayi and alters the immune response, PLoS Pathog, vol.11, p.1004765, 2015.

Y. Benjamini and Y. Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, J. R. Stat. Soc. B, vol.57, pp.289-300, 1995.

H. M. Robertson, The insect chemoreceptor superfamily is ancient in animals, Chem. Senses, vol.40, pp.609-614, 2015.

S. Guindon, New algorithms and methods to estimate maximumlikelihood phylogenies: assessing the performance of PhyML 3.0, Syst. Biol, vol.59, pp.307-321, 2010.
URL : https://hal.archives-ouvertes.fr/lirmm-00511784

S. Merabet and R. S. Mann, To be specific or not: the critical relationship between HOX and TALE proteins, Trends Genet, vol.32, pp.334-347, 2016.

F. Cabanettes and C. Klopp, This statement should provide the following information, where applicable:-Accession codes, unique identifiers, or web links for publicly available datasets-A list of figures that have associated raw data-A description of any restrictions on data availability Data availability statement. All raw data have been deposited at NCBI under the following BioProject Accession numbers: PRJNA318737 (Primary Pacific Biosciences data, Hi-C sequencing primary data and processed contact maps, whole-genome sequencing data from a single male (Fig. 4d), and pools of male and females (Fig. 3d), Bionano optical mapping data (Fig. 3c and Fig. 4c), and 10X linked-read sequences, Peer J, vol.6, p.4958, 2018.

, RNA-seq reads and de novo transcriptome assembly, Extended Data Fig. 2c, d and Supplementary Data, vol.4, p.236239

, RNA-seq reads for developmental time points, Fig. 1h and Supplementary Data 4-6, vol.9, p.209388

, PRJNA419241 (RNA-Seq reads from adult reproductive tissues and developmental time points, Verily Life Sciences Fig. 1h and Supplementary Data, vol.4

, PRJNA393466 (full-length Pacific Biosciences Iso-Seq transcript sequencing)

, ATAC-Seq data from adult female brains at three points in the gonotrophic cycle, Extended Data Fig. 2c, d and data not shown), p.418406

, PRJNA419379 (whole-genome sequencing data from colonies Fig. 4d and Extended Data Fig. 9a, b)

, merge) and have been uploaded to GEO (GEO Record: GSE113256). The Hi-C maps are available via http://aidenlab.org/juicebox. The complete mitochondrial genome is available as Genbank accession MF194022.1, RefSeq accession NC_035159.1. The final genome assembly and annotation are available from the NCBI Assembly Resource under accession GCF_002204515.2. Field-specific reporting Please select the best fit for your research. If you are not sure, read the appropriate sections before making your selection, PRJNA393171 (exome sequencing data Fig. 5e-g). Intermediate results related to the AaegL5 assembly are also available via GitHub

, For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat

. Evans, Sample sizes for genome size determination (Fig. 1d) were determined according to the standards of the field (see Hare and Johnston, 2011 PMID 22065429). Samples sizes for FISH were determined according to the standards of the field (see Timoshevskiy et al., 2012 PMID 23007640). Sample sizes for dengue virus competence (Fig. 5b-d and Extended Data Fig. 10a), pyrethroid resistance (Fig. 5e-g) and larval motility Ext. Data Figure 10c) were determined by the limited availability of animals, Sample sizes for genome variability analysis via SNP-chip (Fig. 1c) were determined according to previously published work, 2015.

, Data exclusions None Replication Replication does not apply to the primary results of this paper-it was not feasible to independently resequence/reassemble the genome twice within the scope of the funding available to us

, Randomization Randomization was not performed in this study. Samples were divided into experimental groups based on species, strain or biological phenotype according to the criteria listed in the methods

, Blinding Blinding was not performed for this study. The diversity of sourcing of samples and data precluded centralized collection and blinding of biological material or sequencing data