F. E. Cox, Concomitant infections, parasites and immune responses, Parasitology, vol.122, pp.23-38, 2001.

S. Telfer, X. Lambin, R. Birtles, P. Beldomenico, S. Burthe et al., Species interactions in a parasite community drive infection risk in a wildlife population, Science, vol.330, pp.243-246, 2010.

E. C. Rynkiewicz, A. B. Pedersen, and A. Fenton, An ecosystem approach to understanding and managing within-host parasite community dynamics, Trends Parasitol, vol.31, pp.212-221, 2015.
DOI : 10.1016/j.pt.2015.02.005

URL : https://doi.org/10.1016/j.pt.2015.02.005

A. L. Graham, Ecological rules governing helminth-microparasite coinfection, Proc. Natl. Acad. Sci, vol.105, pp.566-570, 2008.
DOI : 10.1073/pnas.0707221105

URL : http://www.pnas.org/content/105/2/566.full.pdf

A. B. Pedersen and A. Fenton, Emphasizing the ecology in parasite community ecology, Trends Ecol. Evol, vol.22, pp.133-139, 2007.
DOI : 10.1016/j.tree.2006.11.005

A. J. Crean, K. Monro, and D. J. Marshall, Fitness consequences of larval traits persist across the metamorphic boundary, Evolution, vol.65, pp.3079-3089, 2011.

B. W. Alto and C. C. Lord, Transstadial effects of Bti on traits of Aedes aegypti and infection with dengue virus, PLoS Negl. Trop. Dis, vol.10, 2016.

L. B. Dickson, D. Jiolle, G. Minard, I. Moltini-conclois, S. Volant et al., Carryover effects of larval exposure to different environmental bacteria drive adult trait variation in a mosquito vector
URL : https://hal.archives-ouvertes.fr/hal-01580399

O. Roux, A. Vantaux, B. Roche, K. B. Yameogo, K. R. Dabire et al., Evidence for carry-over effects of predator exposure on pathogen transmission potential, Proc. Biol. Sci, vol.282, 2015.

L. A. Lacey, Bacillus thuringiensis serovariety israelensis and Bacillus sphaericus for mosquito control, J. Am. Mosq. Control. Assoc, vol.23, pp.133-163, 2007.

V. Vachon, R. Laprade, and J. L. Schwartz, Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: A critical review, J. Invertebr. Pathol, vol.111, pp.1-12, 2012.

M. Paris, S. Marcombe, E. Coissac, V. Corbel, J. P. David et al., Investigating the genetics of Bti resistance using mRNA tag sequencing: Application on laboratory strains and natural populations of the dengue vector Aedes aegypti, Evol. Appl, vol.6, pp.1012-1027, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01996754

G. Tetreau, R. Stalinski, J. P. David, and L. Despres, Monitoring resistance to Bacillus thuringiensis subsp. israelensis in the field by performing bioassays with each Cry toxin separately, Mem. Inst. Oswaldo Cruz, vol.108, pp.894-900, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01988270

M. Paris, G. Tetreau, F. Laurent, M. Lelu, L. Despres et al., Persistence of Bacillus thuringiensis israelensis (Bti) in the environment induces resistance to multiple Bti toxins in mosquitoes, Pest Manag. Sci, vol.67, pp.122-128, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01988231

R. Stalinski, F. Laporte, L. Despres, and G. Tetreau, Alkaline phosphatases are involved in the response of Aedes aegypti larvae to intoxication with Bacillus thuringiensis subsp. israelensis Cry toxins, Environ. Microbiol, vol.18, pp.1022-1036, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01988301

L. Despres, R. Stalinski, F. Faucon, V. Navratil, A. Viari et al., Chemical and biological insecticides select distinct gene expression patterns in Aedes aegypti mosquito, Biol. Lett, vol.10, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01988289

L. Despres, R. Stalinski, G. Tetreau, M. Paris, A. Bonin et al., Gene expression patterns and sequence polymorphisms associated with mosquito resistance to Bacillus thuringiensis israelensis toxins, BMC Genomics, vol.15, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01996612

M. Paris, J. P. David, and L. Despres, Fitness costs of resistance to Bti toxins in the dengue vector Aedes aegypti, Ecotoxicology, vol.20, pp.1184-1194, 2011.

R. Stalinski, G. Tetreau, T. Gaude, and L. Després, Pre-selecting resistance against individual Bti Cry toxins facilitates the development of resistance to the Bti toxins cocktail, J. Invertebr. Pathol, vol.119, pp.50-53, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01988279

A. Fontaine, D. Jiolle, I. Moltini-conclois, S. Lequime, and L. Lambrechts, Excretion of dengue virus RNA by Aedes aegypti allows non-destructive monitoring of viral dissemination in individual mosquitoes, Sci. Rep, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01316118

T. Fansiri, A. Fontaine, L. Diancourt, V. Caro, B. Thaisomboonsuk et al., Genetic mapping of specific interactions between Aedes aegypti mosquitoes and dengue viruses, PLoS Genet, vol.9, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-00854586

I. Schuffenecker, I. Iteman, A. Michault, S. Murri, L. Frangeul et al., Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak, PLoS Med, vol.3, 2006.
URL : https://hal.archives-ouvertes.fr/pasteur-01659363

C. Ruckert, J. Weger-lucarelli, S. M. Garcia-luna, M. C. Young, A. D. Byas et al., Impact of simultaneous exposure to arboviruses on infection and transmission by Aedes aegypti mosquitoes, Nat. Commun, 2017.

C. Duchet, G. Tetreau, A. Marie, D. Rey, G. Besnard et al., Persistence and recycling of bioinsecticidal Bacillus thuringiensis subsp. israelensis spores in contrasting environments: Evidence from field monitoring and laboratory experiments, Microb. Ecol, vol.67, pp.576-586, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01996644

L. Lambrechts, Dissecting the genetic architecture of host-pathogen specificity, PLoS Pathog, vol.6, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-02011025

R. Stalinski, F. Laporte, G. Tetreau, and L. Despres, Receptors are affected by selection with each Bacillus thuringiensis israelensis Cry toxin but not with the full Bti mixture in Aedes aegypti, Infect. Genet. Evol, vol.44, pp.218-227, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01988449

G. Tetreau, S. Grizard, C. D. Patil, F. H. Tran, V. Van et al., Valiente Moro, C. Bacterial microbiota of Aedes aegypti mosquito larvae is altered by intoxication with Bacillus thuringiensis israelensis, Parasit. Vectors, vol.11, p.121, 2018.