J. Alvar, I. D. Velez, C. Bern, M. Herrero, P. Desjeux et al., Leishmaniasis worldwide and global estimates of its incidence, PloS one, vol.7, issue.5, p.22693548, 2012.

S. Rijal, F. Chappuis, R. Singh, P. Bovier, P. Acharya et al., Treatment of visceral leishmaniasis in south-eastern Nepal: decreasing efficacy of sodium stibogluconate and need for a policy to limit further decline, Transactions of the Royal Society of Tropical Medicine and Hygiene, vol.97, issue.3, p.15228258, 2003.

J. Chakravarty and S. Sundar, Drug resistance in leishmaniasis, J Global Infect Dis, vol.2, issue.2, p.167, 2010.

T. P. Dorlo, M. Balasegaram, J. H. Beijnen, and P. J. De-vries, Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis, Journal of Antimicrobial Chemotherapy, vol.67, issue.11, p.22833634, 2012.

S. L. Croft, S. Sundar, and A. H. Fairlamb, Drug resistance in leishmaniasis, Clin Microbiol Rev, vol.19, issue.1, p.16418526, 2006.

N. Singh, M. Kumar, and R. K. Singh, Leishmaniasis: current status of available drugs and new potential drug targets, Asian Pac J Trop Med, vol.5, issue.6, p.22575984, 2012.

, World Health Organization W. Research priorities for Chagas disease, human African trypanosomiasis and leishmaniasis, W H O Tech Rep Ser, issue.975, 2012.

B. Chawla and R. Madhubala, Drug targets in Leishmania, J Parasit Dis, vol.34, issue.1, p.21526026, 2010.

M. Barhoumi, N. K. Tanner, J. Banroques, P. Linder, and I. Guizani, Leishmania infantum LeIF protein is an ATP-dependent RNA helicase and an eIF4A-like factor that inhibits translation in yeast, FEBS J, vol.273, issue.22, p.17087726, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00131023

J. Chu and J. Pelletier, Targeting the eIF4A RNA helicase as an anti-neoplastic approach, Biochim Biophys Acta, pp.781-791, 2014.

A. D. Kwong, B. G. Rao, and K. T. Jeang, Viral and cellular RNA helicases as antiviral targets, Nat Rev Drug Discovery, vol.4, issue.10, p.16184083, 2005.

L. Zender, W. Xue, J. Zuber, C. P. Semighini, A. Krasnitz et al., An oncogenomics-based in vivo RNAi screen identifies tumor suppressors in liver cancer, Cell, vol.135, issue.5, p.19012953, 2008.

F. Robert and J. Pelletier, Perturbations of RNA helicases in cancer, Wiley Interdiscip Rev: RNA, vol.4, issue.4, p.23658027, 2013.

F. Robert, W. Roman, A. Bramoullé, C. Fellmann, A. Roulston et al., Translation initiation factor eIF4F modifies the dexamethasone response in multiple myeloma, Proc Natl Acad Sci, vol.111, issue.37, p.25197055, 2014.

G. W. Rogers, A. A. Komar, and W. C. Merrick, eIF4A: the godfather of the DEAD box helicases, Prog Nucleic Acid Res Mol Biol, vol.72, pp.307-331, 2002.

P. Linder and F. V. Fuller-pace, Looking back on the birth of DEAD-box RNA helicases. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, vol.1829, pp.750-755, 2013.

J. Grifo, S. Tahara, J. Leis, M. Morgan, A. Shatkin et al., Characterization of eukaryotic initiation factor 4A, a protein involved in ATP-dependent binding of globin mRNA, J Biol Chem, vol.257, issue.9, p.7068683, 1982.

G. W. Rogers, N. J. Richter, and W. C. Merrick, Biochemical and kinetic characterization of the RNA helicase activity of eukaryotic initiation factor 4A, J Biol Chem, vol.274, issue.18, p.10212190, 1999.

R. Dhalia, C. R. Reis, E. R. Freire, P. O. Rocha, R. Katz et al., Translation initiation in Leishmania major: characterisation of multiple eIF4F subunit homologues, Mol Biochem Parasitol, vol.140, issue.1, p.15694484, 2005.

R. Dhalia, N. Marinsek, C. R. Reis, R. Katz, J. R. Muniz et al., The two eIF4A helicases in Trypanosoma brucei are functionally distinct, Nucleic Acids Res, vol.34, issue.9, p.16687655, 2006.

Y. A. Skeiky, M. Kennedy, D. Kaufman, M. M. Borges, J. A. Guderian et al., LeIF: a recombinant Leishmania protein that induces an IL-12-mediated Th1 cytokine profile, The Journal of Immunology, vol.161, issue.11, p.9834103, 1998.
DOI : 10.1084/jem.181.4.1527

URL : http://europepmc.org/articles/pmc2191953?pdf=render

P. G. Nugent, S. A. Karsani, R. Wait, J. Tempero, and D. F. Smith, Proteomic analysis of Leishmania mexicana differentiation, Molecular and biochemical parasitology, vol.136, issue.1, p.15138067, 2004.
DOI : 10.1016/j.molbiopara.2004.02.009

F. Mcnicoll, J. Drummelsmith, M. Müller, E. Madore, N. Boilard et al., A combined proteomic and transcriptomic approach to the study of stage differentiation in Leishmania infantum, Proteomics, vol.6, issue.12, p.16705753, 2006.

G. Salay, M. Dorta, N. Santos, R. A. Mortara, C. Brodskyn et al., Testing of four Leishmania vaccine candidates in a mouse model of infection with Leishmania (Viannia) braziliensis, the main causative agent of cutaneous leishmaniasis in the New World. Clinical and Vaccine Immunology, vol.14, p.17626159, 2007.

M. A. Morales, P. Pescher, and G. F. Späth, Leishmania major MPK7 protein kinase activity inhibits intracellular growth of the pathogenic amastigote stage, Eukaryotic cell, vol.9, issue.1, pp.22-30, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-01433564

N. Santarém, G. Racine, R. Silvestre, C. Silva, A. Ouellette et al., Exoproteome dynamics in Leishmania infantum, Journal of proteomics, vol.84, p.23558030, 2013.

M. S. Braga, L. X. Neves, J. M. Campos, B. M. Roatt, S. Rddoa et al., Shotgun proteomics to unravel the complexity of the Leishmania infantum exoproteome and the relative abundance of its constituents, Molecular and biochemical parasitology, vol.195, issue.1, p.25017697, 2014.

J. M. Silverman, S. K. Chan, D. P. Robinson, D. M. Dwyer, D. Nandan et al., Proteomic analysis of the secretome of Leishmania donovani, Genome Biol, vol.9, issue.2, p.18282296, 2008.

Y. A. Skeiky, R. N. Coler, M. Brannon, E. Stromberg, K. Greeson et al., Protective efficacy of a tandemly linked, multi-subunit recombinant leishmanial vaccine (Leish-111f) formulated in MPL adjuvant, Vaccine, vol.20, issue.27, p.12213399, 2002.

R. N. Coler, Y. Goto, L. Bogatzki, V. Raman, and S. G. Reed, Leish-111f, a recombinant polyprotein vaccine that protects against visceral Leishmaniasis by elicitation of CD4+ T cells, Infect Immun, vol.75, issue.9, p.17606603, 2007.

P. Linder, Birth of the DEAD box, Nature, vol.337, p.2563148, 1989.

N. K. Tanner and P. Linder, DExD/H box RNA helicases: from generic motors to specific dissociation functions, Mol Cell, vol.8, issue.2, p.11545728, 2001.

O. Cordin, J. Banroques, N. K. Tanner, and P. Linder, The DEAD-box protein family of RNA helicases, Gene, vol.367, p.16337753, 2006.
DOI : 10.1016/j.gene.2005.10.019

URL : https://hal.archives-ouvertes.fr/hal-00132162

P. Schütz, T. Karlberg, S. Van-den-berg, R. Collins, L. Lehtiö et al., Comparative structural analysis of human DEAD-box RNA helicases, PloS One, vol.5, issue.9, p.20941364, 2010.

M. Hilbert, A. R. Karow, and D. Klostermeier, The mechanism of ATP-dependent RNA unwinding by DEAD box proteins, Biol Chem, vol.390, issue.12, p.19747077, 2009.

J. Banroques, O. Cordin, M. Doère, P. Linder, and N. K. Tanner, Analyses of the Functional Regions of DEADBox RNA "Helicases" with Deletion and Chimera Constructs Tested In Vivo and In Vitro, J Mol Biol, vol.413, issue.2, p.21884706, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00698927

C. B. Andersen, L. Ballut, J. S. Johansen, H. Chamieh, K. H. Nielsen et al., Structure of the exon junction core complex with a trapped DEAD-box ATPase bound to RNA, Science, vol.313, issue.5795, p.16931718, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00168014

F. Bono, J. Ebert, E. Lorentzen, and E. Conti, The crystal structure of the exon junction complex reveals how it maintains a stable grip on mRNA, Cell, vol.126, issue.4, p.16923391, 2006.

T. Sengoku, O. Nureki, A. Nakamura, S. Kobayashi, and S. Yokoyama, Structural Basis for RNA Unwinding by the DEAD-Box Protein Drosophila Vasa, Cell, vol.125, issue.2, p.16630817, 2006.
DOI : 10.2210/pdb2db3/pdb

R. Collins, T. Karlberg, L. Lehtiö, P. Schütz, S. Van-den-berg et al., The DEXD/H-box RNA helicase DDX19 is regulated by an ?-helical switch, J Biol Chem, vol.284, issue.16, p.19244245, 2009.
DOI : 10.1074/jbc.c900018200

URL : http://www.jbc.org/content/284/16/10296.full.pdf

V. Moeller, H. Basquin, C. Conti, and E. , The mRNA export protein DBP5 binds RNA and the cytoplasmic nucleoporin NUP214 in a mutually exclusive manner, Nat Struct Mol Biol, vol.16, issue.3, p.19219046, 2009.

J. M. Caruthers, E. R. Johnson, and D. B. Mckay, Crystal structure of yeast initiation factor 4A, a DEADbox RNA helicase, Proc Natl Acad Sci, vol.97, issue.24, p.11087862, 2000.

R. M. Story, H. Li, and J. N. Abelson, Crystal structure of a DEAD box protein from the hyperthermophile Methanococcus jannaschii, Proc Natl Acad Sci, vol.98, issue.4, p.11171974, 2001.

Z. Cheng, J. Coller, R. Parker, and H. Song, Crystal structure and functional analysis of DEAD-box protein Dhh1p, RNA, vol.11, issue.8, p.15987810, 2005.

B. Theissen, A. R. Karow, J. Köhler, A. Gubaev, and D. Klostermeier, Cooperative binding of ATP and RNA induces a closed conformation in a DEAD box RNA helicase, Proc Natl Acad Sci, vol.105, issue.2, p.18184816, 2008.

A. R. Karow and D. Klostermeier, A conformational change in the helicase core is necessary but not sufficient for RNA unwinding by the DEAD box helicase YxiN, Nucleic Acids Res, p.19474341, 2009.

A. Prat, S. R. Schmid, P. Buser, S. Blum, H. Trachsel et al., Expression of translation initiation factor 4A from yeast and mouse in Saccharomyces cerevisiae, Biochimica et Biophysica Acta

, Gene Structure and Expression, vol.1050, issue.1-3, p.90155, 1990.

A. Cherkasov, D. Nandan, and N. E. Reiner, Selective targeting of indel-inferred differences in spatial structures of highly homologous proteins, Proteins: Structure, Function, and Bioinformatics, vol.58, issue.4, pp.950-954, 2005.

R. Cencic and J. Pelletier, Throwing a monkey wrench in the motor: targeting DExH/D box proteins with small molecule inhibitors, Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, vol.1829, issue.8, pp.894-903, 2013.

H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat et al., The Protein Data Bank, Nucleic Acids Res, vol.28, issue.1, p.10592235, 2000.

, The Protein Data Bank, 2000.

R. Grünberg, M. Nilges, and J. Leckner, Biskit-a software platform for structural bioinformatics, Bioinformatics, vol.23, issue.6, p.17237072, 2007.

. Biskit, , 2007.

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, Basic local alignment search tool, J Mol Biol, vol.215, issue.3, p.2231712, 1990.
DOI : 10.1016/s0022-2836(05)80360-2

C. Notredame, D. G. Higgins, J. Heringa, and . T-coffee, A novel method for fast and accurate multiple sequence alignment, J Mol Biol, vol.302, issue.1, p.10964570, 2000.

N. Eswar, B. Webb, M. A. Marti-renom, M. Madhusudhan, D. Eramian et al., Comparative protein structure modeling using Modeller, Curr Protoc Bioinformatics, pp.5-6, 2006.

S. C. Lovell, I. W. Davis, W. B. Arendall, P. I. De-bakker, J. M. Word et al., Structure validation by C? geometry: ?, ? and C? deviation, Proteins, vol.50, issue.3, p.12557186, 2003.
DOI : 10.1002/prot.10286

. Rampage, , 2002.

D. A. Pearlman, D. A. Case, J. W. Caldwell, W. S. Ross, T. E. Cheatham et al., AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules, Comput Phys Commun, vol.91, issue.1, pp.1-41, 1995.

B. Lee and F. M. Richards, The interpretation of protein structures: estimation of static accessibility, J Mol Biol, vol.55, issue.3, p.5551392, 1971.

N. Desdouits, M. Nilges, and A. Blondel, Principal Component Analysis Reveals Correlation of Cavities Evolutionand Functio nal Motions in Proteins, J Mol Graphics Modell, vol.55, pp.13-24, 2015.

T. Kohonen, Self-organized formation of topologically correct feature maps, Biol Cyb, vol.43, issue.1, pp.59-69, 1982.

G. Bouvier, N. Duclert-savatier, N. Desdouits, D. Meziane-cherif, A. Blondel et al., Functional motions modulating VanA ligand binding unraveled by self-organizing maps, J Chem Inf Model, vol.54, issue.1, p.24397493, 2014.

A. Ultsch and F. Mörchen, ESOM-Maps: tools for clustering, visualization, and classification with Emergent SOM, 2005.

, Chimiotheque Nationale du CNRS, 2013.

M. F. Hibert and . French, European academic compound library initiative, Drug Disc Today, vol.14, issue.15, pp.723-725, 2009.

J. Sadowski, J. Gasteiger, and G. Klebe, Comparison of automatic three-dimensional model builders using 639 X-ray structures, J Chem Inf Model, vol.34, issue.4, pp.1000-1008, 1994.

C. , , 1994.

E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt et al., UCSF Chimeraa visualization system for exploratory research and analysis, J Comput Chem, vol.25, issue.13, p.15264254, 2004.

I. D. Kuntz, J. M. Blaney, S. J. Oatley, R. Langridge, and T. E. Ferrin, A geometric approach to macromoleculeligand interactions, J Mol Biol, vol.161, issue.2, p.7154081, 1982.

T. J. Ewing, S. Makino, A. G. Skillman, and I. D. Kuntz, DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases, J Comput Aided Mol Des, vol.15, issue.5, p.11394736, 2001.

O. Trott and A. J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J Comput Chem, vol.31, issue.2, p.19499576, 2010.

. Obabel, , 2006.

C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv Drug Delivery Rev, vol.23, issue.1, pp.423-424, 1997.

. Molsoft, , 1994.

G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew et al., AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility, Journal of computational chemistry, vol.30, issue.16, p.19399780, 2009.

J. J. Irwin, T. Sterling, M. M. Mysinger, E. S. Bolstad, and R. G. Coleman, ZINC: a free tool to discover chemistry for biology, Journal of chemical information and modeling, vol.52, issue.7, p.22587354, 2012.

D. Rogers and M. Hahn, Extended-connectivity fingerprints, J Chem Inf Model, vol.50, issue.5, p.20426451, 2010.

A. Bender, J. L. Jenkins, J. Scheiber, S. Sukuru, M. Glick et al., How similar are similarity searching methods? A principal component analysis of molecular descriptor space, Journal of chemical information and modeling, vol.49, issue.1, p.19123924, 2009.

G. Landrum, RDKit: Open-source cheminformatics, 2006.

M. Barhoumi, A. Meddeb-garnaoui, N. Tanner, J. Banroques, B. Kaabi et al., DEAD-box proteins, like Leishmania eIF4A, modulate interleukin (IL)-12, IL-10 and tumour necrosis factor-alpha production by human monocytes, Parasite immunol, vol.35, issue.5-6, p.23363368, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-00860036

J. H. Zhang, T. D. Chung, and K. R. Oldenburg, A simple statistical parameter for use in evaluation and validation of high throughput screening assays, Journal of biomolecular screening, vol.4, issue.2, p.10838414, 1999.

M. Lucas-hourani, H. Munier-lehmann, O. Helynck, A. Komarova, P. Desprès et al., Highthroughput screening for broad-spectrum chemical inhibitors of RNA viruses, Journal of visualized experiments: JoVE, vol.87, p.24838008, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01113538

J. Auwerx, The human leukemia cell line, THP-1: a multifacetted model for the study of monocyte-macrophage differentiation, Experientia, vol.47, issue.1, pp.22-31, 1991.

M. Daigneault, J. A. Preston, H. M. Marriott, M. K. Whyte, and D. H. Dockrell, The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages, PloS one, vol.5, issue.1, p.8668, 2010.

T. Mosmann, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays, Journal of immunological methods, vol.65, issue.1-2, p.6606682, 1983.

M. A. Marti-renom, A. C. Stuart, A. Fiser, R. Sánchez, F. Melo et al., Comparative protein structure modeling of genes and genomes, Annu Rev Biophys Biomol Struct, vol.29, p.10940251, 2000.

B. Rost, Twilight zone of protein sequence alignments, Protein Eng, vol.12, issue.2, p.10195279, 1999.

M. Saqi, D. L. Wild, and M. Hartshorn, Protein analyst-a distributed object environment for protein sequence and structure analysis, Bioinformatics, vol.15, issue.6, p.10383476, 1999.

J. Benz, H. Trachsel, and U. Baumann, Crystal structure of the ATPase domain of translation initiation factor 4A from Saccharomyces cerevisiae-the prototype of the DEAD box protein family, Structure, vol.7, issue.6, p.10404596, 1999.

S. Hem, P. F. Gherardini, J. Osorio-y-fortéa, V. Hourdel, M. A. Morales et al., Identification of Leishmania-specific protein phosphorylation sites by LC-ESI-MS/MS and comparative genomics analyses, Proteomics, vol.10, issue.21, p.20960452, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-01433567

C. S. Weirich, J. P. Erzberger, J. S. Flick, J. M. Berger, J. Thorner et al., Activation of the DExD/Hbox protein Dbp5 by the nuclear-pore protein Gle1 and its coactivator InsP6 is required for mRNA export, Nat Cell Biol, vol.8, issue.7, p.16783364, 2006.

D. Nandan, M. Lopez, F. Ban, M. Huang, Y. Li et al., Indel-based targeting of essential proteins in human pathogens that have close host orthologue (s): Discovery of selective inhibitors for Leishmania donovani elongation factor-1?, Proteins, vol.67, issue.1, p.17243179, 2007.

P. Beuchet, M. Dherbomez, G. Charles, and Y. Letourneux, Synthesis of 6 (?, ?)-aminocholestanols as ergosterol biosynthesis inhibitors, Bioorg Med Chem, vol.8, issue.24, pp.661-662, 1998.

S. K. Jain, R. Sahu, L. A. Walker, and B. L. Tekwani, A parasite rescue and transformation assay for antileishmanial screening against intracellular Leishmania donovani amastigotes in THP1 human acute monocytic leukemia cell line, JoVE (Journal of Visualized Experiments), issue.70, pp.4054-4054, 2012.

P. Wyatt, I. Gilbert, K. Read, and A. Fairlamb, Target validation: linking target and chemical properties to desired product profile. Current topics in medicinal chemistry, vol.11, pp.1275-1283, 2011.

M. C. Field, D. Horn, A. H. Fairlamb, M. A. Ferguson, D. W. Gray et al., Anti-trypanosomatid drug discovery: an ongoing challenge and a continuing need, Nature Reviews Microbiology, vol.15, issue.4, p.28239154, 2017.

J. R. Lorsch and D. Herschlag, The DEAD box protein eIF4A. 1. A minimal kinetic and thermodynamic framework reveals coupled binding of RNA and nucleotide, Biochemistry, vol.37, issue.8, p.9485364, 1998.

S. Nwaka, B. Ramirez, R. Brun, L. Maes, F. Douglas et al., Advancing drug innovation for neglected diseases-criteria for lead progression, PLoS neglected tropical diseases, vol.3, issue.8, p.19707561, 2009.

A. Z. Andreou, U. Harms, and D. Klostermeier, eIF4B stimulates eIF4A ATPase and unwinding activities by direct interaction through its 7-repeats region, RNA biology, vol.14, issue.1, p.27858515, 2017.

A. Z. Andreou and D. Klostermeier, eIF4B and eIF4G jointly stimulate eIF4A ATPase and unwinding activities by modulation of the eIF4A conformational cycle, Journal of molecular biology, vol.426, issue.1, p.24080224, 2014.

P. Yourik, C. E. Aitken, F. Zhou, N. Gupta, A. G. Hinnebusch et al., eIF4A is stimulated by the preinitiation complex and enhances recruitment of mRNAs regardless of structural complexity, p.147959, 2017.

S. R. Akabayov, B. Akabayov, C. C. Richardson, and G. Wagner, Molecular crowding enhanced ATPase activity of the RNA helicase eIF4A correlates with compaction of its quaternary structure and association with eIF4G, Journal of the American Chemical Society, vol.135, issue.27, p.23767688, 2013.

J. M. Brunel, C. Loncle, N. Vidal, M. Dherbomez, and Y. Letourneux, Synthesis and antifungal activity of oxygenated cholesterol derivatives, Steroids, vol.70, issue.13, p.16139854, 2005.

M. A. Bazin, P. M. Loiseau, C. Bories, Y. Letourneux, S. Rault et al., Synthesis of oxysterols and nitrogenous sterols with antileishmanial and trypanocidal activities, Eur J Med Chem, vol.41, issue.10, p.16949702, 2006.

L. Lindqvist, M. Oberer, M. Reibarkh, R. Cencic, M. E. Bordeleau et al., Selective pharmacological targeting of a DEAD box RNA helicase, PLoS One, vol.3, issue.2, p.18270573, 2008.

W. Li, Y. Dang, J. O. Liu, and B. Yu, Structural and stereochemical requirements of the spiroketal group of hippuristanol for antiproliferative activity, Bioorg Med Chem Lett, vol.20, issue.10, p.20409710, 2010.

R. Cencic, M. Carrier, G. Galicia-vázquez, M. E. Bordeleau, R. Sukarieh et al., Antitumor activity and mechanism of action of the cyclopenta[b]benzofuran, silvestrol, PLoS One, vol.4, issue.4, p.19401772, 2009.

Y. Sun, E. Atas, L. M. Lindqvist, N. Sonenberg, J. Pelletier et al., Single-molecule kinetics of the eukaryotic initiation factor 4AI upon RNA unwinding, Structure, vol.22, issue.7, p.24909782, 2014.

A. Pause, N. Méthot, Y. Svitkin, W. C. Merrick, and N. Sonenberg, Dominant negative mutants of mammalian translation initiation factor eIF-4A define a critical role for eIF-4F in cap-dependent and capindependent initiation of translation, The EMBO journal, vol.13, issue.5, 1994.

A. C. Ivens, C. S. Peacock, E. A. Worthey, L. Murphy, G. Aggarwal et al., The genome of the kinetoplastid parasite, Leishmania major, Science, vol.309, issue.5733, p.16020728, 2005.

W. W. Zhang and G. Matlashewski, CRISPR-Cas9-mediated genome editing in Leishmania donovani, MBio, vol.6, issue.4, p.26199327, 2015.

W. W. Zhang, P. Lypaczewski, and G. Matlashewski, Optimized CRISPR-Cas9 Genome Editing for Leishmania and Its Use To Target a Multigene Family, Induce Chromosomal Translocation, and Study DNA Break Repair Mechanisms. mSphere, vol.2, p.28124028, 2017.

J. Chu, G. Galicia-vázquez, R. Cencic, J. R. Mills, A. Katigbak et al., CRISPR-mediated drugtarget validation reveals selective pharmacological inhibition of the RNA Helicase, eIF4A, Cell reports, vol.15, issue.11, p.27239032, 2016.