A. Bolotin, B. Quinquis, A. Sorokin, and S. Ehrlich, Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin, Microbiology, vol.151, pp.2551-2561, 2005.

C. Pourcel, G. Salvignol, and G. Vergnaud, CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies, Microbiology, vol.151, pp.653-663, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01158317

F. J. Mojica, C. Díez-villaseñor, J. García-martínez, and E. Soria, Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements, J. Mol. Evol, vol.60, pp.174-182, 2005.

R. Barrangou, CRISPR provides acquired resistance against viruses in prokaryotes, Science, vol.315, pp.1709-1712, 2007.

K. S. Makarova, An updated evolutionary classification of CRISPR Cas systems, Nat. Rev. Microbiol, vol.13, pp.722-736, 2015.

S. S. Abby, B. Néron, H. Ménager, M. Touchon, and E. P. Rocha, MacSyFinder: a program to mine genomes for molecular systems with an application to CRISPR-Cas systems, PLoS ONE, vol.9, p.110726, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01080418

S. Shmakov, Diversity and evolution of class 2 CRISPR Cas systems, Nat. Rev. Microbiol, vol.15, pp.169-182, 2017.

K. Chylinski, K. S. Makarova, E. Charpentier, and E. V. Koonin, Classification and evolution of type II CRISPR-Cas systems, Nucleic Acids Res, vol.42, pp.6091-6105, 2014.

E. Deltcheva, CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III, Nature, vol.471, pp.602-607, 2011.

R. Heler, Cas9 specifies functional viral targets during CRISPR Cas adaptation, Nature, vol.519, pp.199-202, 2015.

Y. Wei, R. M. Terns, and M. P. Terns, Cas9 function and host genome sampling in Type II-A CRISPR-Cas adaptation, Genes Dev, vol.29, pp.356-361, 2015.

M. Jinek, A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity, Science, vol.337, pp.816-837, 2012.

R. Sapranauskas, The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli, Nucleic Acids Res, vol.39, pp.9275-9282, 2011.

G. Gasiunas, R. Barrangou, P. Horvath, and V. Siksnys, Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria, Proc. Natl. Acad. Sci. USA, vol.109, pp.2579-2586, 2012.

H. Deveau, Phage response to CRISPR-encoded resistance in Streptococcus thermophilus, J. Bacteriol, vol.190, pp.1390-1400, 2008.

F. J. Mojica, C. Díez-villaseñor, J. García-martínez, and C. Almendros, Short motif sequences determine the targets of the prokaryotic CRISPR defence system, Microbiology, vol.155, pp.733-740, 2009.

L. Cui and D. Bikard, Consequences of Cas9 cleavage in the chromosome of Escherichia coli, Nucleic Acids Res, vol.44, pp.4243-4251, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01967442

S. Shuman and M. S. Glickman, Bacterial DNA repair by non-homologous end joining, Nat. Rev. Microbiol, vol.5, pp.852-861, 2007.

F. A. Ran, Genome engineering using the CRISPR-Cas9 system, Nat. Protoc, vol.8, pp.2281-2308, 2013.

M. Della, Mycobacterial Ku and ligase proteins constitute a twocomponent NHEJ repair machine, Science, vol.306, pp.683-685, 2004.

J. Aniukwu, M. S. Glickman, and S. Shuman, The pathways and outcomes of mycobacterial NHEJ depend on the structure of the broken DNA ends, Genes Dev, vol.22, pp.512-527, 2008.

R. Bowater and A. J. Doherty, Making ends meet: repairing breaks in bacterial DNA by non-homologous end-joining, PLoS Genet, vol.2, p.8, 2006.

C. Gong, Mechanism of nonhomologous end-joining in mycobacteria: a low-fidelity repair system driven by Ku, ligase D and ligase C, Nat. Struct. Mol. Biol, vol.12, pp.304-312, 2005.

R. S. Pitcher, NHEJ protects mycobacteria in stationary phase against the harmful effects of desiccation, DNA Repair, vol.6, pp.1271-1276, 2007.

R. Moeller, Role of DNA repair by nonhomologous-end joining in Bacillus subtilis spore resistance to extreme dryness, mono-and polychromatic UV, and ionizing radiation, J. Bacteriol, vol.189, pp.3306-3311, 2007.

Ü. Paris, NHEJ enzymes LigD and Ku participate in stationary-phase mutagenesis in Pseudomonas putida, DNA Repair, vol.31, pp.11-18, 2015.

A. Levy, CRISPR adaptation biases explain preference for acquisition of foreign DNA, Nature, vol.520, pp.505-510, 2015.

Z. Arslan, Double-strand DNA end-binding and sliding of the toroidal CRISPR-associated protein Csn2, Nucleic Acids Res, vol.41, pp.6347-6359, 2013.

J. Zhang, T. Kasciukovic, and M. F. White, The CRISPR Associated Protein Cas4 Is a 5' to 3' DNA exonuclease with an iron-sulfur cluster, PLoS ONE, vol.7, p.47232, 2012.

E. P. Rocha, E. Cornet, and B. Michel, Comparative and evolutionary analysis of the bacterial homologous recombination systems, PLoS Genet, vol.1, p.15, 2005.

P. Ellinger, The crystal structure of the CRISPR-associated protein Csn2 from Streptococcus agalactiae, J. Struct. Biol, vol.178, pp.350-362, 2012.

K. H. Lee, Identification, structural, and biochemical characterization of a group of large Csn2 proteins involved in CRISPR-mediated bacterial immunity, Proteins Struct. Funct. Bioinform, vol.80, pp.2573-2582, 2012.

K. H. Nam, I. Kurinov, and A. Ke, Crystal structure of clustered regularly interspaced short palindromic repeats (CRISPR)-associated Csn2 protein revealed Ca 2+-dependent double-stranded DNA binding activity, J. Biol. Chem, vol.286, pp.30759-30768, 2011.

Y. Koo, D. K. Jung, and E. Bae, Crystal structure of streptococcus pyogenes Csn2 reveals calcium-dependent conformational changes in its tertiary and quaternary structure, PLoS ONE, vol.7, p.33401, 2012.

P. H. Oliveira, M. Touchon, and E. P. Rocha, The interplay of restrictionmodification systems with mobile genetic elements and their prokaryotic hosts, Nucleic Acids Res, vol.42, pp.10618-10632, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01374960

F. J. Silva, A. Latorre, and A. Moya, Why are the genomes of endosymbiotic bacteria so stable?, Trends Genet, vol.19, pp.172-176, 2003.

M. Pagel and A. Meade, Bayesian analysis of correlated evolution of discrete characters by reversible jump markov Chain Monte Carlo, Am. Nat, vol.167, pp.808-825, 2013.

B. J. Rauch, Inhibition of CRISPR-Cas9 with bacteriophage proteins, Cell, vol.168, pp.150-158, 2016.

A. Pawluk, Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species, Nat. Microbiol, vol.1, p.16085, 2016.

A. P. Hynes, An anti-CRISPR from a virulent streptococcal phage inhibits Streptococcus pyogenes Cas9, Nat. Microbiol, vol.2, pp.1374-1380, 2017.

G. R. Weller, Identification of a DNA nonhomologous end-joining complex in bacteria, Science, vol.297, pp.1686-1689, 2002.

T. Su, A CRISPR-Cas9 assisted non-homologous end-joining strategy for one-step engineering of bacterial genome, Sci. Rep, vol.6, p.37895, 2016.

D. Burstein, Major bacterial lineages are essentially devoid of CRISPR-Cas viral defense systems, Nat. Commun, vol.7, p.10613, 2016.

J. S. Godde and A. Bickerton, The repetitive DNA elements called CRISPRs and their associated genes: evidence of horizontal transfer among prokaryotes, J. Mol. Evol, vol.62, pp.718-747, 2006.

J. Bondy-denomy and A. R. Davidson, To acquire or resist: the complex biological effects of CRISPR-Cas systems, Trends Microbiol, vol.22, pp.218-243, 2014.

W. Jiang, Dealing with the evolutionary downside of CRISPR immunity: bacteria and beneficial plasmids, PLoS Genet, vol.9, p.1003844, 2013.

D. Bikard, A. Hatoum-aslan, D. Mucida, and . Marraffini, La CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection, Cell Host Microbe, vol.12, pp.177-186, 2012.

E. R. Westra, Parasite exposure drives selective evolution of constitutive versus inducible defense, Curr. Biol, vol.25, pp.1043-1049, 2015.

J. E. Garneau, The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA, Nature, vol.468, pp.67-71, 2010.

E. Nimwegen, Scaling laws in the functional content of genomes, Trends Genet, vol.19, pp.476-479, 2003.

J. W. Drake, B. Charlesworth, D. Charlesworth, and J. F. Crow, Rates of spontaneous mutation, Genetics, vol.148, pp.1667-1686, 1998.

L. T. Nguyen, H. A. Schmidt, A. Von-haeseler, and B. Q. Minh, IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies, Mol. Biol. Evol, vol.32, pp.268-274, 2015.

W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, Introducing Markov Chain Monte Carlo. Markov Chain Monte Carlo Pract, vol.512, pp.1-19, 1996.

D. G. Gibson, Enzymatic assembly of DNA molecules up to several hundred kilobases, Nat. Methods, vol.6, pp.343-345, 2009.

C. Engler, R. Kandzia, and S. Marillonnet, A one pot, one step, precision cloning method with high throughput capability, PLoS ONE, vol.3, p.3647, 2008.