R. Sorek, C. M. Lawrence, and B. Wiedenheft, CRISPR-mediated adaptive immune systems in bacteria and archaea, Annu. Rev. Biochem, vol.82, pp.237-266, 2013.
DOI : 10.1146/annurev-biochem-072911-172315

URL : https://www.annualreviews.org/doi/pdf/10.1146/annurev-biochem-072911-172315

L. A. Marraffini, CRISPR-Cas immunity in prokaryotes, Nature, vol.526, pp.55-61, 2015.
DOI : 10.1038/nature15386

P. D. Hsu, E. S. Lander, and F. Zhang, Development and applications of CRISPR-Cas9 for genome engineering, Cell, vol.157, pp.1262-1278, 2014.

E. Deltcheva, K. Chylinski, C. M. Sharma, K. Gonzales, Y. Chao et al., CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III, Nature, vol.471, pp.602-607, 2011.
DOI : 10.1038/nature09886

URL : http://europepmc.org/articles/pmc3070239?pdf=render

M. Jinek, K. Chylinski, I. Fonfara, M. Hauer, J. A. Doudna et al., A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity, Science, vol.337, pp.816-821, 2012.

S. H. Sternberg, S. Redding, M. Jinek, E. C. Greene, and J. A. Doudna, DNA interrogation by the CRISPR RNA-guided endonuclease Cas9, Nature, vol.507, pp.62-67, 2014.

M. Jinek, F. Jiang, D. W. Taylor, S. H. Sternberg, E. Kaya et al., Structures of Cas9 endonucleases reveal RNA-mediated conformational activation, Science, p.1247997, 2014.

C. Anders, O. Niewoehner, A. Duerst, and M. Jinek, Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease, Nature, vol.513, pp.569-573, 2014.

L. Cong, F. A. Ran, D. Cox, S. Lin, R. Barretto et al., Multiplex genome engineering using CRISPR/Cas systems, Science, vol.339, pp.819-823, 2013.

P. Mali, L. Yang, K. M. Esvelt, J. Aach, M. Guell et al., RNA-guided human genome engineering via Cas9, Science, vol.339, pp.823-826, 2013.

D. Bikard, A. Hatoum-aslan, D. Mucida, and L. A. Marraffini, CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection, Cell Host Microbe, vol.12, pp.177-186, 2012.

S. Shuman and M. S. Glickman, Bacterial DNA repair by non-homologous end joining, Nat. Rev. Microbiol, vol.5, pp.852-861, 2007.

R. Bowater and A. J. Doherty, Making ends meet: repairing breaks in bacterial DNA by non-homologous end-joining, PLoS Genet, vol.2, p.8, 2006.

Y. J. Tong, P. Charusanti, L. X. Zhang, T. Weber, and S. Y. Lee, CRISPR-Cas9 based engineering of actinomycetal genomes, ACS Synth. Biol, vol.4, pp.1020-1029, 2015.

T. Xu, Y. Li, Z. Shi, C. L. Hemme, Y. Li et al., Efficient genome editing in Clostridium cellulolyticum via CRISPR-Cas9 nickase, Appl. Environ. Microbiol, vol.81, pp.4423-4431, 2015.

D. Bikard, C. W. Euler, W. Jiang, P. M. Nussenzweig, G. W. Goldberg et al., Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials, Nat. Biotechnol, vol.32, pp.1146-1150, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01103559

R. J. Citorik, M. Mimee, and T. K. Lu, Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases, Nat. Biotechnol, vol.32, pp.1141-1145, 2014.

W. Jiang, D. Bikard, D. Cox, F. Zhang, and L. A. Marraffini, RNA-guided editing of bacterial genomes using CRISPR-Cas systems, Nat. Biotechnol, vol.31, pp.233-239, 2013.

M. E. Pyne, M. Moo-young, D. A. Chung, and C. P. Chou, Coupling the CRISPR/Cas9 system to lambda Red recombineering enables simplified chromosomal gene replacement in Escherichia coli, Appl. Environ. Microbio, vol.81, pp.5103-5114, 2015.

Y. Jiang, B. Chen, C. L. Duan, B. B. Sun, J. J. Yang et al., Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system, Appl. Environ. Microbiol, vol.81, pp.2506-2514, 2015.

J. H. Oh and J. P. Van-pijkeren, CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri, Nucleic Acids Res, vol.42, p.131, 2014.

Y. Wang, Z. T. Zhang, S. O. Seo, K. J. Choi, T. Lu et al., Markerless chromosomal gene deletion in Clostridium beijerinckii using CRISPR/Cas9 system, J. Biotechnol, vol.200, pp.1-5, 2015.

H. Huang, G. S. Zheng, W. H. Jiang, H. F. Hu, and Y. H. Lu, One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces, Acta Bioch Bioph Sin, vol.47, pp.231-243, 2015.

R. E. Cobb, Y. Wang, and H. Zhao, High-efficiency multiplex genome editing of streptomyces species using an engineered CRISPR/Cas system, ACS Synth. Biol, vol.4, pp.723-728, 2014.

H. Kim and J. S. Kim, A guide to genome engineering with programmable nucleases, Nat. Rev. Genet, vol.15, pp.321-334, 2014.

S. M. Rosenberg, C. Shee, R. L. Frisch, and P. J. Hastings, Stress-induced mutation via DNA breaks in Escherichia coli: a molecular mechanism with implications for evolution and medicine, Bioessays, vol.34, pp.885-892, 2012.

G. Posfai, V. Kolisnychenko, Z. Bereczki, and F. R. Blattner, Markerless gene replacement in Escherichia coli stimulated by a double-strand break in the chromosome, Nucleic Acids Res, vol.27, pp.4409-4415, 1999.

J. M. Pennington and S. M. Rosenberg, Spontaneous DNA breakage in single living Escherichia coli cells, Nat. Genet, vol.39, pp.797-802, 2007.

T. R. Meddows, A. P. Savory, and R. G. Lloyd, RecG helicase promotes DNA double-strand break repair, Mol. Microbiol, vol.52, pp.119-132, 2004.

R. Gupta, D. Barkan, G. Redelman-sidi, S. Shuman, and M. S. Glickman, Mycobacteria exploit three genetically distinct DNA double-strand break repair pathways, Mol. Microbiol, vol.79, pp.316-330, 2011.

R. Gupta, M. Ryzhikov, O. Koroleva, M. Unciuleac, S. Shuman et al., A dual role for mycobacterial RecO in RecA-dependent homologous recombination and RecA-independent single-strand annealing, Nucleic Acids Res, vol.41, pp.2284-2295, 2013.

T. R. Meddows, A. P. Savory, J. I. Grove, T. Moore, and R. G. Lloyd, RecN protein and transcription factor DksA combine to promote faithful recombinational repair of DNA double-strand breaks, Mol. Microbiol, vol.57, pp.97-110, 2005.

H. Bierne, M. Seigneur, S. D. Ehrlich, and B. Michel, uvrD mutations enhance tandem repeat deletion in the Escherichia coli chromosome via SOS induction of the RecF recombination pathway, Mol. Microbiol, vol.26, pp.557-567, 1997.

D. G. Gibson, L. Young, R. Y. Chuang, J. C. Venter, C. A. Hutchison et al., Enzymatic assembly of DNA molecules up to several hundred kilobases, Nat. Methods, vol.6, pp.343-345, 2009.

R. Lutz and H. Bujard, Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O, Nucleic Acids Research, vol.44, issue.9, p.4251, 1997.

, and AraC/I1-I2 regulatory elements, Nucleic Acids Res, vol.25, pp.1203-1210

B. P. Cormack, R. H. Valdivia, and S. Falkow, FACS-optimized mutants of the green fluorescent protein (GFP), Gene, vol.173, pp.33-38, 1996.

L. Ferrieres, G. Hemery, T. Nham, A. M. Guerout, D. Mazel et al., Silent mischief: bacteriophage Mu insertions contaminate products of Escherichia coli random mutagenesis performed using suicidal transposon delivery plasmids mobilized by broad-host-range RP4 conjugative machinery, J. Bacteriol, vol.192, pp.6418-6427, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-01372302

G. S. Pall and A. J. Hamilton, Improved northern blot method for enhanced detection of small RNA, Nat. Protoc, vol.3, pp.1077-1084, 2008.

S. T. Cole, Characterisation of the promoter for the LexA regulated sulA gene of Escherichia coli, Mol. Gen. Genet, vol.189, pp.400-404, 1983.

F. St-pierre, L. Cui, D. G. Priest, D. Endy, I. B. Dodd et al., One-step cloning and chromosomal integration of DNA, ACS Synth. Biol, vol.2, pp.537-541, 2013.

L. S. Qi, M. H. Larson, L. A. Gilbert, J. A. Doudna, J. S. Weissman et al., Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression, Cell, vol.152, pp.1173-1183, 2013.

R. Edgar and U. Qimron, The Escherichia coli CRISPR system protects from lambda lysogenization, lysogens, and prophage induction, J. Bacteriol, vol.192, pp.6291-6294, 2010.

A. Stern, L. Keren, O. Wurtzel, G. Amitai, and R. Sorek, Self-targeting by CRISPR: gene regulation or autoimmunity?, Trends Genet, vol.26, pp.335-340, 2010.

A. A. Gomaa, H. E. Klumpe, M. L. Luo, K. Selle, R. Barrangou et al., Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems, Mbio, vol.5, 2014.

D. Bikard, W. Jiang, P. Samai, A. Hochschild, F. Zhang et al., Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system, Nucleic Acids Res, vol.41, pp.7429-7437, 2013.

M. D. Sutton, B. T. Smith, V. G. Godoy, and G. C. Walker, The SOS response: recent insights into umuDC-dependent mutagenesis and DNA damage tolerance, Annu. Rev. Genet, vol.34, pp.479-497, 2000.

A. Mukherjee, C. Cao, and J. Lutkenhaus, Inhibition of FtsZ polymerization by SulA, an inhibitor of septation in Escherichia coli, Proc. Natl. Acad. Sci. U.S.A, vol.95, pp.2885-2890, 1998.

P. Nurse, K. H. Zavitz, and K. J. Marians, Inactivation of the Escherichia coli priA DNA replication protein induces the SOS response, J. Bacteriol, vol.173, pp.6686-6693, 1991.

J. Akroyd and N. Symonds, Localization of the gam gene of bacteriophage-Mu and characterization of the gene-product, Gene, vol.49, pp.273-282, 1986.

C. Shee, B. D. Cox, F. Gu, E. M. Luengas, M. C. Joshi et al., Engineered proteins detect spontaneous DNA breakage in human and bacterial cells, Elife, vol.2, p.1222, 2013.

B. Ton-hoang, P. Siguier, Y. Quentin, S. Onillon, B. Marty et al., Structuring the bacterial genome: Y1-transposases associated with REP-BIME sequences, Nucleic Acids Res, vol.40, pp.3596-3609, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00789669

E. Kofoid, U. Bergthorsson, E. S. Slechta, and J. R. Roth, Formation of an F' plasmid by recombination between imperfectly repeated chromosomal Rep sequences: a closer look at an old friend (F'(128) pro lac), J. Bacteriol, vol.185, pp.660-663, 2003.

S. Malyarchuk, D. Wright, R. Castore, E. Klepper, B. Weiss et al., Expression of Mycobacterium tuberculosis Ku and Ligase D in Escherichia coli results in RecA and RecB-independent DNA end-joining at regions of microhomology, DNA Repair, vol.6, pp.1413-1424, 2007.

R. Chayot, B. Montagne, D. Mazel, and M. Ricchetti, An end-joining repair mechanism in Escherichia coli, Proc. Natl. Acad. Sci. U.S.A, vol.107, pp.2141-2146, 2010.

T. Wang, J. J. Wei, D. M. Sabatini, and E. S. Lander, Genetic screens in human cells using the CRISPR-Cas9 system, Science, vol.343, pp.80-84, 2014.

O. Shalem, N. E. Sanjana, E. Hartenian, X. Shi, D. A. Scott et al., Genome-scale CRISPR-Cas9 knockout screening in human cells, Science, vol.343, pp.84-87, 2014.

J. G. Doench, E. Hartenian, D. B. Graham, Z. Tothova, M. Hegde et al., Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation, Nat. Biotechnol, vol.32, pp.1262-1267, 2014.

J. G. Doench, N. Fusi, M. Sullender, M. Hegde, E. W. Vaimberg et al., Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9, Nat. Biotechnol, vol.34, pp.184-191, 2016.