L. Almasy, R. C. Gur, K. Haack, S. A. Cole, M. E. Calkins et al., A genome screen for quantitative trait loci influencing schizophrenia and neurocognitive phenotypes, The American Journal of Psychiatry, vol.165, pp.1185-1192, 2008.

, Alzheimer's Association, 2013.

, Brain Imaging and Behavior

K. Amunts, A. Schleicher, U. Burgel, H. Mohlberg, H. B. Uylings et al., Broca's region revisited: cytoarchitecture and intersubject variability, The Journal of Comparative Neurology, vol.412, pp.319-341, 1999.

N. C. Andreasen, M. A. Wilcox, B. C. Ho, E. Epping, S. Ziebell et al., Statistical epistasis and progressive brain change in schizophrenia: an approach for examining the relationships between multiple genes, Molecular Psychiatry, vol.17, issue.11, pp.1093-1102, 2012.

J. Ashburner, J. L. Andersson, and K. J. Friston, Highdimensional image registration using symmetric priors, NeuroImage, vol.9, pp.619-628, 1999.

W. F. Baaré, H. E. Hulshoff-pol, D. I. Boomsma, D. Posthuma, E. J. De-geus et al., Quantitative genetic modeling of variation in human brain morphology, Cerebral Cortex, vol.11, pp.816-824, 2001.

L. S. Elias-sonnenschein, W. Viechtbauer, I. H. Ramakers, F. R. Verhey, and P. J. Visser, Predictive value of APOE-?4 allele for progression from MCI to AD-type dementia: a meta-analysis, Neurosurgery and Psychiatry, vol.82, issue.10, pp.1149-1156, 2011.

S. Erk, A. Meyer-lindenberg, C. Opitz-von-boberfeld, C. Esslinger, K. Schnell et al., Hippocampal function in healthy carriers of the CLU Alzheimer's disease risk variant, Journal of Neuroscience, vol.49, pp.18180-18184, 2011.

S. Erk, A. Meyer-lindenberg, P. Schmierer, O. Grimm, H. Tost et al., Functional impact of a recently identified quantitative trait locus for hippocampal volume with genome-wide support, Translational Psychiatry, 2013.

C. Esslinger, H. Walter, P. Kirsch, S. Erk, K. Schnell et al., Neural mechanisms of a genome-wide supported psychosis variant, Science, vol.324, issue.5927, p.605, 2009.

K. Estrada, U. Styrkarsdottir, E. Evangelou, Y. H. Hsu, E. L. Duncan et al., Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture, Nature Genetics, vol.44, pp.491-501, 2012.

A. C. Evans, The NIH MRI study of normal brain development, NeuroImage, vol.30, pp.184-202, 2006.

D. S. Falconer, Introduction to quantitative genetics, 1960.

B. Fischl, A. Van-der-kouwe, C. Destrieux, E. Halgren, F. Segonne et al., Automatically parcellating the human cerebral cortex, Cerebral Cortex, vol.14, pp.11-22, 2004.

J. Flint and M. R. Munafo, Candidate and non-candidate genes in behavior genetics, Current Opinion in Neurobiology, vol.23, pp.57-61, 2013.

J. Flint, R. J. Greenspan, and K. S. Kendler, How genes influence behavior, 2010.

M. Fornage, S. Debette, J. C. Bis, H. Schmidt, M. A. Ikram et al., Genome-wide association studies of cerebral white matter lesion burden: the CHARGE consortium, Annals of Neurology, vol.69, pp.928-939, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01154260

A. Fornito, A. Zalesky, D. S. Bassett, D. Meunier, I. Ellison-wright et al., Genetic influences on cost-efficient organization of human cortical functional networks, Journal of Neuroscience, vol.31, pp.3261-3270, 2011.

R. S. Frackowiak, Human brain function, 1997.

K. J. Friston, A. P. Holmes, J. B. Poline, P. J. Grasby, S. C. Williams et al., Analysis of fMRI time-series revisited, NeuroImage, vol.2, pp.45-53, 1995.

T. Frodl, E. M. Meisenzahl, P. Zill, T. Baghai, D. Rujescu et al., Reduced hippocampal volumes associated with the long variant of the serotonin transporter polymorphism in major depression, Archives of General Psychiatry, vol.61, issue.2, pp.177-183, 2004.

T. Frodl, N. Koutsouleris, R. Bottlender, M. Jäger, C. Born et al., Reduced gray matter brain volumes are associated with variants of the serotonin transporter gene in major depression, Molecular Psychiatry, vol.13, issue.12, pp.1093-1101, 2008.

T. Ge, J. Feng, D. P. Hibar, P. M. Thompson, and T. E. Nichols, Increasing power for voxel-wise genome-wide association studies: the random field theory, least square kernel machines and fast permutation procedures, NeuroImage, vol.63, pp.858-873, 2012.

D. C. Glahn, P. M. Thompson, and J. Blangero, Neuroimaging endophenotypes: strategies for finding genes influencing brain structure and function, Human Brain Mapping, vol.28, pp.488-501, 2007.

D. C. Glahn, A. M. Winkler, P. Kochunov, L. Almasy, R. Duggirala et al., Genetic control over the resting brain, Proceedings of the, vol.107, pp.1223-1228, 2010.

D. C. Glahn, J. E. Curran, A. M. Winkler, M. A. Carless, J. W. Kent et al., High dimensional endophenotype ranking in the search for major depression risk genes, Biological Psychiatry, vol.71, pp.6-14, 2012.

G. H. Glover, B. A. Mueller, J. A. Turner, T. G. Van-erp, T. T. Liu et al., Function biomedical informatics research network recommendations for prospective multicenter functional MRI studies, Journal of Magnetic Resonance Imaging, vol.36, issue.1, pp.39-54, 2012.
DOI : 10.1002/jmri.23572

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/jmri.23572

D. Goldman, Our genes, our choices : how genotype and gene interactions affect behavior, 2012.

R. Gollub, J. M. Shoemaker, M. King, T. White, S. Ehrlich et al., The MCIC collection: a shared repository of multimodal, multi-site brain image data from a clinical investigation of schizophrenia, Journal of NeuroInformatics, p.23760817, 2013.

I. I. Gottesman and T. D. Gould, The endophenotype concept in psychiatry: etymology and strategic intentions, The American Journal of Psychiatry, vol.160, pp.636-645, 2003.
DOI : 10.1176/appi.ajp.160.4.636

J. Hall, H. C. Whalley, D. E. Job, B. J. Baig, A. M. Mcintosh et al., A neuregulin 1 variant associated with abnormal cortical function and psychotic symptoms, Nature Neuroscience, vol.9, issue.12, pp.1477-1478, 2006.
DOI : 10.1038/nn1795

A. R. Hariri and D. R. Weinberger, Imaging genomics, British Medical Bulletin, vol.65, pp.259-270, 2003.

D. Harold, R. Abraham, P. Hollingworth, R. Sims, A. Gerrish et al., Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease, Nature Genetics, vol.41, pp.1088-1093, 2009.
DOI : 10.1038/ng.440

URL : http://europepmc.org/articles/pmc2845877?pdf=render

D. P. Hibar, O. Kohannim, J. L. Stein, M. C. Chiang, and P. M. Thompson, Multilocus genetic analysis of brain images, Brain Imaging and Behavior, vol.2, p.73, 2011.
DOI : 10.3389/fgene.2011.00073

URL : https://www.frontiersin.org/articles/10.3389/fgene.2011.00073/pdf

D. P. Hibar, J. L. Stein, O. Kohannim, N. Jahanshad, A. J. Saykin et al., Voxelwise gene-wide association study (vGeneWAS): multivariate gene-based association testing in 731 elderly subjects, NeuroImage, vol.56, pp.1875-1891, 2011.
DOI : 10.1016/j.neuroimage.2011.03.077

URL : http://europepmc.org/articles/pmc3366726?pdf=render

D. P. Hibar, T. G. Van-erp, J. A. Turner, U. K. Haukvik, and I. Agartz, Meta-analysis of structural brain differences in bipolar disorder: the ENIGMA-Bipolar Disorder Project, 2013.

D. P. Hibar, J. L. Stein, A. B. Ryles, O. Kohannim, N. Jahanshad et al., Genome-wide association identifies genetic variants associated with lentiform nucleus volume in N=1345 young and elderly subjects, Brain Imaging and Behavior, vol.7, pp.102-115, 2013.
DOI : 10.1007/s11682-012-9199-7

URL : http://europepmc.org/articles/pmc3779070?pdf=render

D. Hibar, J. L. Stein, N. Jahanshad, A. W. Toga, K. L. Mcmahon et al., Exhaustive search of the SNP-SNP interactome identifies replicated epistatic effects on brain volume, 2013.
DOI : 10.1007/978-3-642-40760-4_75

URL : http://europepmc.org/articles/pmc4109883?pdf=render

L. A. Hindorff, P. Sethupathy, H. A. Junkins, E. M. Ramos, J. P. Mehta et al., Potential etiologic and functional implications of genome-wide association loci for human diseases and traits, vol.106, pp.9362-9367, 2009.
DOI : 10.1073/pnas.0903103106

URL : http://www.pnas.org/content/106/23/9362.full.pdf

P. Hollingworth, D. Harold, R. Sims, A. Gerrish, J. C. Lambert et al., Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease, Nature Genetics, vol.43, issue.5, pp.429-435, 2011.
DOI : 10.1038/ng.803

URL : http://europepmc.org/articles/pmc3084173?pdf=render

A. J. Holmes, P. H. Lee, M. O. Hollinshead, L. Bakst, J. L. Roffman et al., Individual differences in amygdalamedial prefrontal anatomy link negative affect, impaired social function, and polygenic depression risk, Journal of Neuroscience, vol.32, issue.50, pp.18087-18100, 2012.
DOI : 10.1523/jneurosci.2531-12.2012

URL : http://www.jneurosci.org/content/32/50/18087.full.pdf

M. G. Hong, C. A. Reynolds, A. L. Feldman, M. Kallin, J. C. Lambert et al., Genome-wide and gene-based association implicates FRMD6 in Alzheimer disease, Human Mutation, vol.33, pp.521-529, 2012.
DOI : 10.1002/humu.22009

URL : http://europepmc.org/articles/pmc3326347?pdf=render

H. E. Hulshoff-pol, H. G. Schnack, R. C. Mandl, R. G. Brans, N. E. Van-haren et al., Gray and white matter density changes in monozygotic and same-sex dizygotic twins discordant for schizophrenia using voxel-based morphometry, Neuroimage, vol.31, issue.2, pp.482-488, 2006.

M. A. Ikram, M. Fornage, A. V. Smith, S. Seshadri, R. Schmidt et al., Common variants at 6q22 and 17q21 are associated with intracranial volume, Nature Genetics, vol.44, pp.539-544, 2012.
DOI : 10.1038/ng0612-732c

URL : https://www.nature.com/articles/ng0612-732c.pdf

J. P. Ioannidis, Why most published research findings are false, PLoS Medicine, vol.2, p.124, 2005.
DOI : 10.1080/09332480.2005.10722754

URL : http://europepmc.org/articles/pmc1182327?pdf=render

C. R. Jack and . Jr, Alzheimer disease: new concepts on its neurobiology and the clinical role imaging will play, Radiology, vol.263, pp.344-361, 2012.
DOI : 10.1148/radiol.12110433

URL : https://pubs.rsna.org/doi/pdf/10.1148/radiol.12110433

N. Jahanshad, L. Zhan, M. A. Bernstein, B. J. Borowski, C. R. Jack et al., Diffusion tensor imaging in seven minutes: determining trade-offs between spatial and directional resolution, 2010 IEEE International Symposium on Biomedical Imaging (ISBI), pp.1161-1164, 2010.

N. Jahanshad, O. Kohannim, D. P. Hibar, J. L. Stein, K. L. Mcmahon et al., Brain structure in healthy adults is related to serum transferrin and the H63D polymorphism in the HFE gene, Proceedings National Academy Science USA, vol.109, issue.14, pp.851-860, 2012.

N. Jahanshad, P. Kochunov, E. Sprooten, R. C. Mandl, T. E. Nichols et al., Multi-site genetic analysis of diffusion images and voxelwise heritability analysis: A pilot project of the ENIGMA-DTI working group, Neuroimage, vol.81, pp.455-469, 2013.

N. Jahanshad, P. Rajagopalan, X. Hua, D. P. Hibar, T. M. Nir et al., Genome-wide scan of healthy human connectome discovers SPON1 gene variant influencing dementia severity, vol.110, pp.4768-4773, 2013.

N. Jahanshad, T. M. Nir, A. W. Toga, C. R. Jack, M. A. Bernstein et al., Seemingly Unrelated Regression empowers detection of network failure in dementia, Press (SI: Neuroimaging Biomarkers in Alzheimer's Disease), 2013.

M. Jenkinson, P. Bannister, M. Brady, and S. Smith, Improved optimization for the robust and accurate linear registration and motion correction of brain images, NeuroImage, vol.17, issue.2, pp.825-841, 2002.

M. Jenkinson, C. F. Beckmann, T. E. Behrens, M. W. Woolrich, and S. M. Smith, NeuroImage, vol.62, pp.782-790, 2012.

E. G. Jones and L. M. Mendell, Assessing the decade of the brain, Science, vol.284, p.739, 1999.

A. H. Joyner, J. , C. R. Bloss, C. S. Bakken, T. E. Rimol et al., A common MECP2 haplotype associates with reduced cortical surface area in humans in two independent populations, vol.106, pp.15483-15488, 2009.

T. Kam-thong, GLIDE: GPU-based linear regression for detection of epistasis, Human Heredity, vol.73, issue.4, pp.220-236, 2012.

K. S. Kendler and M. C. Neale, Endophenotype: a conceptual analysis, Molecular Psychiatry, vol.15, pp.789-797, 2010.

L. Klei, S. Sanders, M. Murtha, V. Hus, J. Lowe et al., Common genetic variants, acting additively, are a major source of risk for autism, Molecular Autism, issue.1, p.3, 2012.

P. Kochunov, D. C. Glahn, J. L. Lancaster, A. M. Winkler, S. Smith et al., Genetics of microstructure of cerebral white matter using diffusion tensor imaging, NeuroImage, vol.53, pp.1109-1116, 2010.

P. Kochunov, N. Jahanshad, E. Sprooten, P. Thompson, A. Mcintosh et al., Genome-wide association of full brain white matter integrity-from the ENIGMA DTI working group, Organization of Human Brain Mapping, 2012.

O. Kohannim, N. Jahanshad, M. N. Braskie, J. L. Stein, M. C. Chiang et al., Predicting white matter integrity from multiple common genetic variants, Neuropsychopharmacology, vol.37, pp.2012-2019, 2012.

O. Kohannim, X. Hua, P. Rajagopalan, D. P. Hibar, N. Jahanshad et al., Multilocus genetic profiling to empower drug trials and predict brain atrophy, Neuroimage-Clinical, 2013.

J. W. Koten, . Jr, G. Wood, P. Hagoort, R. Goebel et al., Genetic contribution to variation in cognitive function: an FMRI study in twins, Science, vol.323, pp.1737-1740, 2009.

W. S. Kremen, E. Prom-wormley, M. S. Panizzon, L. T. Eyler, B. Fischl et al., Genetic and environmental influences on the size of specific brain regions in midlife: the VETSA MRI study, NeuroImage, vol.49, issue.2, pp.1213-1223, 2009.

J. C. Lambert, S. Heath, G. Even, D. Campion, K. Sleegers et al., Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease, Nature Genetics, issue.10, pp.1094-1099, 2009.

H. Lango-allen, K. Estrada, G. Lettre, S. I. Berndt, M. N. Weedon et al., Hundreds of variants clustered in genomic loci and biological pathways affect human height, Nature, vol.467, pp.832-838, 2010.
URL : https://hal.archives-ouvertes.fr/cea-00904990

A. C. Naj, G. Jun, G. W. Beecham, L. S. Wang, B. N. Vardarajan et al., Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease, Nature Genetics, vol.43, pp.436-441, 2011.

J. Neel, Minority populations as genetic isolates: the interpretation of inbreeding results, Minority populations: Genetics demography and health, 1992.

N. M. Novak, J. L. Stein, S. E. Medland, D. P. Hibar, P. M. Thompson et al., EnigmaVis: online interactive visualization of genome-wide association studies of the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) consortium, Twin Research and Human Genetics, vol.15, pp.414-418, 2012.

A. C. Nugent, D. A. Luckenbaugh, S. E. Wood, W. Bogers, C. A. Zarate et al., Automated subcortical segmentation using FIRST: Test-retest reliability, interscanner reliability, and comparison to manual segmentation, Human Brain Mapping, 2012.

M. C. O'donovan, N. Craddock, N. Norton, H. Williams, T. Pierce et al., Identification of loci associated with schizophrenia by genome-wide association and follow-up, Nature Genetics, vol.40, issue.9, pp.1053-1055, 2008.

A. Pandey, N. A. Davis, B. C. White, N. M. Pajewski, J. Savitz et al., Epistasis network centrality analysis yields pathway replication across two GWAS cohorts for bipolar disorder, Translational Psychiatry, vol.2, 2012.

B. Pasaniuc, N. Rohland, P. J. Mclaren, K. Garimella, N. Zaitlen et al., Extremely low-coverage sequencing and imputation increases power for genome-wide association studies, Nature Genetics, vol.44, issue.6, pp.631-635, 2012.

B. Patenaude, S. M. Smith, D. N. Kennedy, and M. Jenkinson, A Bayesian model of shape and appearance for subcortical brain segmentation, NeuroImage, vol.56, issue.3, pp.907-922, 2011.

T. Paus, M. Bernard, M. M. Chakravarty, D. Smith, G. Gillis et al., KCTD8 gene and brain growth in adverse intrauterine environment: a genome-wide association study, Cerebral Cortex, vol.22, issue.11, pp.2634-2642, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01967146

G. Pengas, J. M. Pereira, G. B. Williams, and P. J. Nestor, Comparative reliability of total intracranial volume estimation methods and the influence of atrophy in a longitudinal semantic dementia cohort, Journal of Neuroimaging, vol.19, issue.1, pp.37-46, 2009.

L. Penke, S. Munoz-maniega, C. Murray, A. J. Gow, M. C. Valdes-hernandez et al., A general factor of brain white matter integrity predicts information processing speed in healthy older people, Journal of Neuroscience, vol.30, issue.7559, p.7674, 2010.

L. Penke, S. M. Maniega, M. E. Bastin, M. C. Hernandez, C. Murray et al., Brain white matter integrity as a neural foundation for general intelligence, Molecular Psychiatry, vol.17, pp.1026-1030, 2012.

J. S. Peper, R. M. Brouwer, D. I. Boomsma, R. S. Kahn, and H. E. Pol, Genetic influences on human brain structure: a review of brain imaging studies in twins, Human Brain Mapping, vol.28, issue.6, pp.464-473, 2007.

R. Pierson, H. Johnson, G. Harris, H. Keefe, J. S. Paulsen et al., Fully automated analysis using BRAINS: AutoWorkup, NeuroImage, vol.54, issue.1, pp.328-336, 2011.

, Brain Imaging and Behavior

J. B. Poline, J. L. Breeze, S. Ghosh, K. Gorgolewski, Y. O. Halchenko et al., Data sharing in neuroimaging research, Frontiers in Neuroinformatics, vol.6, p.9, 2012.

S. G. Potkin and J. M. Ford, Widespread cortical dysfunction in schizophrenia: the FBIRN imaging consortium, Schizophrenia Bulletin, vol.35, pp.15-18, 2009.

S. G. Potkin, G. Guffanti, A. Lakatos, J. A. Turner, F. Kruggel et al., Hippocampal atrophy as a quantitative trait in a genome-wide association study identifying novel susceptibility genes for Alzheimer's disease, PLoS One, vol.4, p.6501, 2009.

S. G. Potkin, J. A. Turner, G. Guffanti, A. Lakatos, F. Torri et al., Genome-wide strategies for discovering genetic influences on cognition and cognitive disorders: methodological considerations, Cognitive Neuropsychiatry, vol.14, pp.391-418, 2009.

S. M. Purcell, N. R. Wray, J. L. Stone, P. M. Visscher, M. C. O'donovan et al., Common polygenic variation contributes to risk of schizophrenia and bipolar disorder, Nature, vol.460, pp.748-752, 2009.

S. M. Smith, M. Jenkinson, H. Johansen-berg, D. Rueckert, T. E. Nichols et al., Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data, NeuroImage, vol.31, issue.4, pp.1487-1505, 2006.

E. K. Speliotes, C. J. Willer, S. I. Berndt, K. L. Monda, G. Thorleifsson et al., Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index, Nature Genetics, vol.42, pp.937-948, 2010.

E. Sprooten, K. M. Fleming, P. A. Thomson, M. E. Bastin, H. C. Whalley et al., White matter integrity as an intermediate phenotype: exploratory genome-wide association analysis in individuals at high risk of bipolar disorder, Psychiatry Research, vol.206, pp.223-231, 2013.

H. Stefansson, R. A. Ophoff, S. Steinberg, O. A. Andreassen, S. Cichon et al., Nature, vol.460, pp.744-747, 2009.

J. L. Stein, X. Hua, S. Lee, A. J. Ho, A. D. Leow et al., Voxelwise genome-wide association study (vGWAS), 2010.

, NeuroImage, vol.53, pp.1160-1174

J. L. Stein, D. P. Hibar, S. K. Madsen, M. Khamis, K. L. Mcmahon et al., Discovery and replication of dopamine-related gene effects on caudate volume in young and elderly populations (N = 1198) using genome-wide search, Molecular Psychiatry, vol.16, p.881, 2011.

J. L. Stein, S. E. Medland, A. A. Vasquez, D. P. Hibar, R. E. Senstad et al., Identification of common variants associated with human hippocampal and intracranial volumes, Nature Genetics, vol.44, pp.552-561, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01967151

B. E. Stranger, A. C. Nica, M. S. Forrest, A. Dimas, C. P. Bird et al., Population genomics of human gene expression, Nature Genetics, vol.39, pp.1217-1224, 2007.

B. Imaging, J. Behavior-talairach, P. Tournoux, and O. Missir, Referentially oriented cerebral MRI anatomy: an atlas of stereotaxic anatomical correlations for gray and white matter, 1993.

P. M. Thompson and N. Jahanshad, Ironing out neurodegeneration: is iron intake important during the teenage years?, Expert Review of Neurotherapeutics, vol.12, pp.629-631, 2012.

P. M. Thompson, T. D. Cannon, K. L. Narr, T. Van-erp, V. P. Poutanen et al., Genetic influences on brain structure, Nature Neuroscience, vol.4, pp.1253-1258, 2001.
URL : https://hal.archives-ouvertes.fr/inria-00616170

P. M. Thompson, T. Ge, D. C. Glahn, N. Jahanshad, and T. E. Nichols, Genetics of the connectome. Neuroimage, 2013.

T. E. Thorgeirsson, F. Geller, P. Sulem, T. Rafnar, A. Wiste et al., variant associated with nicotine dependence, lung cancer and peripheral arterial disease, Nature, vol.452, issue.7187, pp.638-642, 2008.

J. A. Turner, P. Smyth, F. Macciardi, J. H. Fallon, J. L. Kennedy et al., Imaging phenotypes and genotypes in schizophrenia, Neuroinformatics, vol.4, issue.1, pp.21-49, 2006.

J. A. Turner, D. P. Hibar, J. Rasmussen, O. Andreassen, U. K. Haukvik et al., A prospective meta-analysis of subcortical bain volumes in schizophrenia via the ENIGMA consortium, Genetic influences on human brain morphology. IEEE International Symposium on Biomedical Imaging, vol.23, pp.583-586, 2004.

T. G. Van-erp, D. P. Hibar, J. Rasmussen, S. Potkin, R. Ophoff et al., A large-scale meta-analysis of subcortical brain volume abnormalities in schizophrenia via the ENIGMA consortium, Society for Biological Psychiatry, 2013.

I. L. Soelen, R. M. Brouwer, J. S. Peper, M. Van-leeuwen, M. M. Koenis et al., Brain SCALE: brain structure and cognition: an adolescent longitudinal twin study into the genetic etiology of individual differences, Twin Research and Human Genetics, vol.15, issue.3, pp.453-467, 2012.

M. Vounou, T. E. Nichols, and G. Montana, Discovering genetic associations with high-dimensional neuroimaging phenotypes: a sparse reduced-rank regression approach, NeuroImage, vol.53, pp.1147-1159, 2010.

M. Vounou, E. Janousova, R. Wolz, J. L. Stein, P. M. Thompson et al., Sparse reduced-rank regression detects genetic associations with voxel-wise longitudinal phenotypes in Alzheimer's disease, NeuroImage, vol.60, issue.1, pp.700-716, 2012.

M. W. Weiner, D. P. Veitch, P. S. Aisen, L. A. Beckett, N. J. Cairns et al., The Alzheimer's disease neuroimaging initiative: a review of papers published since its inception, 2012.