P. Buscher, G. Cecchi, V. Jamonneau, and G. Priotto, Human African trypanosomiasis, Lancet, vol.390, p.28673422, 2017.

F. Bringaud, M. P. Barrett, and D. Zilberstein, Multiple roles of proline transport and metabolism in trypanosomatids, Frontiers in Bioscience, vol.17, pp.349-374, 2012.

B. S. Mantilla, L. Marchese, A. Casas-sanchez, N. A. Dyer, N. Ejeh et al., Proline metabolism is essential for Trypanosoma brucei brucei survival in the tsetse vector, PLoS Pathog, vol.13, p.28114403, 2017.

V. Coustou, M. Biran, M. Breton, F. Guegan, L. Riviere et al., Glucose-induced remodeling of intermediary and energy metabolism in procyclic Trypanosoma brucei, J Biol Chem, vol.283, p.18430732, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00318595

F. Bringaud, L. Riviere, and V. Coustou, Energy metabolism of trypanosomatids: adaptation to available carbon sources, Mol Biochem Parasitol, vol.149, p.16682088, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00215937

F. Bringaud, M. Biran, Y. Millerioux, M. Wargnies, S. Allmann et al., Combining reverse genetics and NMR-based metabolomics unravels trypanosome-specific metabolic pathways, Mol Microbiol, vol.96, p.25753950, 2015.

F. R. Opperdoes and P. Borst, Localization of nine glycolytic enzymes in a microbody-like organelle in Trypanosoma brucei: the glycosome, FEBS Lett, vol.80, p.142663, 1977.

M. Gualdron-lopez, A. Brennand, V. Hannaert, W. Quinones, A. J. Caceres et al., When, how and why glycolysis became compartmentalised in the Kinetoplastea. A new look at an ancient organelle, Int J Parasitol, vol.42, p.22142562, 2012.

S. Besteiro, M. Biran, N. Biteau, V. Coustou, T. Baltz et al., Succinate secreted by Trypanosoma brucei is produced by a novel and unique glycosomal enzyme, NADH-dependent fumarate reductase, J Biol Chem, vol.277, p.12138089, 2002.

V. Coustou, S. Besteiro, L. Riviere, M. Biran, N. Biteau et al., A mitochondrial NADH-dependent fumarate reductase involved in the production of succinate excreted by procyclic Trypanosoma brucei, J Biol Chem, vol.280, p.15718239, 2005.

F. Bringaud, D. Baltz, and T. Baltz, Functional and molecular characterization of a glycosomal PPi-dependent enzyme in trypanosomatids: pyruvate, phosphate dikinase, Proc Natl Acad Sci USA, vol.95, p.9653123, 1998.

K. Deramchia, P. Morand, M. Biran, Y. Millerioux, M. Mazet et al., Contribution of pyruvate phosphate dikinase in the maintenance of the glycosomal ATP/ADP balance in the Trypanosoma brucei procyclic form, J Biol Chem, vol.289, p.24794874, 2014.

J. J. Van-hellemond, F. R. Opperdoes, and A. G. Tielens, Trypanosomatidae produce acetate via a mitochondrial acetate:succinate CoA transferase, Proc Natl Acad Sci USA, vol.95, p.9501211, 1998.

L. Riviere, S. W. Van-weelden, P. Glass, P. Vegh, V. Coustou et al., Acetyl:succinate CoA-transferase in procyclic Trypanosoma brucei. Gene identification and role in carbohydrate metabolism, J Biol Chem, vol.279, p.15326192, 2004.

Y. Millerioux, P. Morand, M. Biran, M. Mazet, P. Moreau et al., ATP synthesis-coupled and-uncoupled acetate production from acetyl-CoA by the mitochondrial acetate:succinate CoA-transferase and acetyl-CoA thioesterase in Trypanosoma, J Biol Chem, vol.287, p.22474284, 2012.

S. W. Van-weelden, B. Fast, A. Vogt, P. Van-der-meer, J. Saas et al., Procyclic Trypanosoma brucei do not use Krebs cycle activity for energy generation, J Biol Chem, vol.278, p.12562769, 2003.

M. J. Stokes, M. L. Guther, D. C. Turnock, A. R. Prescott, K. L. Martin et al., The synthesis of UDPN-acetylglucosamine is essential for bloodstream form Trypanosoma brucei in vitro and in vivo and UDP-N-acetylglucosamine starvation reveals a hierarchy in parasite protein glycosylation, J Biol Chem, vol.283, p.18381290, 2008.

J. Kovarova and M. P. Barrett, The Pentose Phosphate Pathway in Parasitic Trypanosomatids, Trends Parasitol, vol.32, p.27174163, 2016.

T. Naderer, M. A. Ellis, M. F. Sernee, D. Souza, D. P. Curtis et al., Virulence of Leishmania major in macrophages and mice requires the gluconeogenic enzyme fructose-1, p.6

, Proc Natl Acad Sci USA, vol.103, p.16569701, 2006.

D. Rodriguez-contreras and N. Hamilton, Gluconeogenesis in Leishmania mexicana: contribution of glycerol kinase, phosphoenolpyruvate carboxykinase, and pyruvate phosphate dikinase, J Biol Chem, vol.289, p.25288791, 2014.

S. Allmann, P. Morand, C. Ebikeme, L. Gales, M. Biran et al., Cytosolic NADPH homeostasis in glucose-starved procyclic Trypanosoma brucei relies on malic enzyme and the pentose phosphate pathway fed by gluconeogenic flux, J Biol Chem, vol.288, p.23665470, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01268097

C. Ebikeme, J. Hubert, M. Biran, G. Gouspillou, P. Morand et al., Ablation of succinate production from glucose metabolism in the procyclic trypanosomes induces metabolic switches to the glycerol 3-phosphate/dihydroxyacetone phosphate shuttle and to proline metabolism, J Biol Chem, vol.285, p.20702405, 2010.

Y. Millerioux, C. Ebikeme, M. Biran, P. Morand, G. Bouyssou et al., The threonine degradation pathway of the Trypanosoma brucei procyclic form: the main carbon source for lipid biosynthesis is under metabolic control, Mol Microbiol, vol.90, p.23899193, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01101378

M. L. Guther, M. D. Urbaniak, A. Tavendale, A. Prescott, and M. A. Ferguson, High-confidence glycosome proteome for procyclic form Trypanosoma brucei by epitope-tag organelle enrichment and SILAC proteomics, J Proteome Res, vol.13, p.24792668, 2014.

M. Gualdron-lopez, C. N. Van-der-smissen, P. Courtoy, P. J. Rigden, D. J. Michels et al., Ubiquitination of the glycosomal matrix protein receptor PEX5 in Trypanosoma brucei by PEX4 displays novel features, Biochim Biophys Acta, vol.1833, p.23994617, 2013.

L. Ray, D. Barry, J. D. Easton, C. , and K. V. , First tsetse fly transmission of the "AnTat" serodeme of Trypanosoma brucei, Ann Soc Belg Med Trop, vol.57, p.610616, 1977.

Y. Millerioux, M. Mazet, G. Bouyssou, S. Allmann, T. Kiema et al., De novo biosynthesis of sterols and fatty acids in the Trypanosoma brucei procyclic form: carbon source preferences and metabolic flux redistributions, PLoS Pathog, vol.14, p.29813135, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-01849809

B. Rotureau, I. Subota, and P. Bastin, Molecular bases of cytoskeleton plasticity during the Trypanosoma brucei parasite cycle, Cell Microbiol, vol.13, p.21159115, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-01371324

L. C. Pradel, M. Bonhivers, N. Landrein, and D. R. Robinson, NIMA-related kinase TbNRKC is involved in basal body separation in Trypanosoma brucei, J Cell Sci, vol.119, p.16608878, 2006.
DOI : 10.1242/jcs.02900

URL : https://hal.archives-ouvertes.fr/hal-00215921

N. G. Kolev, K. Ramey-butler, G. A. Cross, E. Ullu, and C. Tschudi, Developmental progression to infectivity in Trypanosoma brucei triggered by an RNA-binding protein, Science, vol.338, p.23224556, 2012.

B. Rotureau and J. Van-den-abbeele, Through the dark continent: African trypanosome development in the tsetse fly, Front Cell Infect Microbiol, vol.3, p.24066283, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01371315

E. Vassella, A. Acosta-serrano, E. Studer, S. H. Lee, P. T. Englund et al., Multiple procyclin isoforms are expressed differentially during the development of insect forms of Trypanosoma brucei, J Mol Biol, vol.312, p.11575917, 2001.

B. T. Emmer, M. D. Daniels, J. M. Taylor, C. L. Epting, and D. M. Engman, Calflagin inhibition prolongs host survival and suppresses parasitemia in Trypanosoma brucei infection, Eukaryot Cell, vol.9, p.20418379, 2010.
DOI : 10.1128/ec.00086-10

URL : https://ec.asm.org/content/9/6/934.full.pdf

J. P. Richardson, J. L. Beecroft, R. P. Pearson, and T. W. , Procyclic tsetse fly midgut forms and culture forms of African trypanosomes share stage-and species-specific surface antigens identified by monoclonal antibodies, J Immunol, vol.136, p.3512712, 1986.

B. Rotureau, I. Subota, J. Buisson, and P. Bastin, A new asymmetric division contributes to the continuous production of infective trypanosomes in the tsetse fly, Development, vol.139, p.22491946, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01371317

R. Christiano, N. G. Kolev, H. Shi, E. Ullu, T. C. Walther et al., The proteome and transcriptome of the infectious metacyclic form of Trypanosoma brucei define quiescent cells primed for mammalian invasion, Mol Microbiol, vol.106, p.28742275, 2017.

N. Lamour, L. Riviere, V. Coustou, G. H. Coombs, M. P. Barrett et al., Proline metabolism in procyclic Trypanosoma brucei is down-regulated in the presence of glucose, J Biol Chem, vol.280, p.15665328, 2005.

P. J. Eastmond, H. M. Astley, K. Parsley, A. S. Williams, B. P. Menard et al., Arabidopsis uses two gluconeogenic gateways for organic acids to fuel seedling establishment, Nat Commun, vol.6, p.25858700, 2015.

D. Spitznagel, C. Ebikeme, M. Biran, N. N. Bringaud, F. Henehan et al., Alanine aminotransferase of Trypanosoma brucei-a key role in proline metabolism in procyclic life forms, FEBS J, vol.276, pp.7187-7199, 2009.

H. B. Ong, W. S. Lee, S. Patterson, S. Wyllie, and A. H. Fairlamb, Homoserine and quorum-sensing acyl homoserine lactones as alternative sources of threonine: a potential role for homoserine kinase in insect-stage Trypanosoma brucei, Mol Microbiol, vol.95, p.25367138, 2014.

J. R. Haanstra, A. Van-tuijl, P. Kessler, W. Reijnders, P. A. Michels et al., Compartmentation prevents a lethal turbo-explosion of glycolysis in trypanosomes, Proc Natl Acad Sci USA, vol.105, p.19008351, 2008.

E. Kuznetsova, L. Xu, A. Singer, G. Brown, A. Dong et al., Structure and activity of the metal-independent fructose-1,6-bisphosphatase YK23 from Saccharomyces cerevisiae, J Biol Chem, vol.285, p.20427268, 2010.

U. Ganapathy, J. Marrero, S. Calhoun, H. Eoh, L. P. De-carvalho et al., Two enzymes with redundant fructose bisphosphatase activity sustain gluconeogenesis and virulence in Mycobacterium tuberculosis, Nat Commun, vol.6, p.7912, 2015.

L. Feng, Y. Sun, H. Deng, D. Li, J. Wan et al., Structural and biochemical characterization of fructose-1,6/sedoheptulose-1,7-bisphosphatase from the Cyanobacterium synechocystis strain 6803, FEBS J, vol.281, p.24286336, 2014.

P. A. Jansson, U. Smith, and P. Lonnroth, Interstitial glycerol concentration measured by microdialysis in two subcutaneous regions in humans, Am J Physiol, vol.258, p.2193533, 1990.

J. S. Samra, C. L. Ravell, S. L. Giles, P. Arner, and K. N. Frayn, Interstitial glycerol concentration in human skeletal muscle and adipose tissue is close to the concentration in blood, Clin Sci (Lond), vol.90, p.8697714, 1996.

M. L. Belaunzaran, E. M. Lammel, and E. L. De-isola, Phospholipases a in trypanosomatids, Enzyme Res, p.21603263, 2011.

R. Brun and M. Schonenberger, Cultivation and in vitro cloning or procyclic culture forms of Trypanosoma brucei in a semi-defined medium, Acta Trop, vol.36, p.43092, 1979.

V. Coustou, S. Besteiro, M. Biran, P. Diolez, V. Bouchaud et al., ATP generation in the Trypanosoma brucei procyclic form: Cytosolic substrate level phosphorylation is essential, but not oxidative phosphorylation, J Biol Chem, vol.278, p.14506274, 2003.

F. Bringaud, D. R. Robinson, S. Barradeau, N. Biteau, D. Baltz et al., Characterization and disruption of a new Trypanosoma brucei repetitive flagellum protein, using double-stranded RNA inhibition, Mol Biochem Parasitol, vol.111, p.11163437, 2000.

E. Wirtz, S. Leal, C. Ochatt, and G. A. Cross, A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma brucei, Mol Biochem Parasitol, vol.99, p.10215027, 1999.

H. Ngo, C. Tschudi, K. Gull, and E. Ullu, Double-stranded RNA induces mRNA degradation in Trypanosoma brucei, Proc Natl Acad Sci USA, vol.95, p.9843950, 1998.

F. R. Opperdoes, P. Borst, and H. Spits, Particle-bound enzymes in the bloodstream form of Trypanosoma brucei, Eur J Biochem, vol.76, p.195809, 1977.

I. Kralova, D. J. Rigden, F. R. Opperdoes, and P. A. Michels, Glycerol kinase of Trypanosoma brucei. Cloning, molecular characterization and mutagenesis, Eur J Biochem, vol.267, p.10759857, 2000.

E. Harlow and D. Lane, Antibodies: a laboratory manual, 1988.

J. Sambrook, E. F. Fritsch, and T. Maniatis, Molecular cloning: a laboratory manual, 1989.

H. Denise, C. Giroud, M. P. Barrett, and T. Baltz, Affinity chromatography using trypanocidal arsenical drugs identifies a specific interaction between glycerol-3-phosphate dehydrogenase from Trypanosoma brucei and Cymelarsan, Eur J Biochem, vol.259, p.9914512, 1999.

F. Bringaud, S. Peyruchaud, D. Baltz, C. Giroud, L. Simpson et al., Molecular characterization of the mitochondrial heat shock protein 60 gene from Trypanosoma brucei, Mol Biochem Parasitol, vol.74, p.8719252, 1995.

K. M. Tyler, A. Fridberg, K. M. Toriello, C. L. Olson, J. A. Cieslak et al., Flagellar membrane localization via association with lipid rafts, J Cell Sci, vol.122, p.19240119, 2009.

I. Cunningham, New culture medium for maintenance of tsetse tissues and growth of trypanosomatids, J Protozool, vol.24, p.881656, 1977.

C. J. Bolten, P. Kiefer, F. Letisse, J. C. Portais, and C. Wittmann, Towards appropriate sampling for metabolome analysis of microorganisms, Anal chem, vol.79, p.17411014, 2007.

P. Kiefer, C. Nicolas, F. Letisse, and J. C. Portais, Determination of carbon labeling distribution of intracellular metabolites from single fragment ions by ion chromatography tandem mass spectrometry, Anal Biochem, vol.360, p.17134674, 2007.

P. Millard, F. Letisse, S. Sokol, and J. C. Portais, IsoCor: correcting MS data in isotope labeling experiments, Bioinformatics, vol.28, p.22419781, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01268343