N. J. Arhel, S. Nisole, L. Carthagena, F. Coutant, P. Souque et al., Lack of endogenous TRIM5alpha-mediated restriction in rhesus macaque dendritic cells, Blood, vol.112, pp.3772-3776, 2008.
URL : https://hal.archives-ouvertes.fr/pasteur-00457787

G. Arriagada, L. N. Muntean, and S. P. Goff, SUMO-interacting motifs of human TRIM5a are important for antiviral activity, PLoS Pathog, vol.7, p.1002019, 2011.

G. Berger, S. Durand, C. Goujon, X. N. Nguyen, S. Cordeil et al., A simple, versatile and efficient method to genetically modify human monocyte-derived dendritic cells with HIV-1-derived lentiviral vectors, Nat. Protoc, vol.6, pp.806-816, 2011.

C. Besnier, Y. Takeuchi, and G. Towers, Restriction of lentivirus in monkeys, Proc. Natl. Acad. Sci. USA, vol.99, pp.11920-11925, 2002.

, Cell Reports, vol.14, pp.355-369, 20162016-01-12.

P. D. Bieniasz, Intrinsic immunity: a front-line defense against viral attack, Nat. Immunol, vol.5, pp.1109-1115, 2004.

A. Brandariz-nuñ-ez, A. Roa, J. C. Valle-casuso, N. Biris, D. Ivanov et al., Contribution of SUMO-interacting motifs and SUMOylation to the antiretroviral properties of TRIM5a, Virology, vol.435, pp.463-471, 2013.

G. Brennan, Y. Kozyrev, and S. L. Hu, TRIMCyp expression in Old World primates Macaca nemestrina and Macaca fascicularis, Proc. Natl. Acad. Sci. USA, vol.105, pp.3569-3574, 2008.

L. Carthagena, M. C. Parise, M. Ringeard, M. K. Chelbi-alix, U. Hazan et al., Implication of TRIM alpha and TRIMCyp in interferoninduced anti-retroviral restriction activities, Retrovirology, vol.5, p.59, 2008.

S. Cerboni, M. Gentili, and N. Manel, Diversity of pathogen sensors in dendritic cells, Adv. Immunol, vol.120, pp.211-237, 2013.

M. K. Chelbi-alix, L. Pelicano, F. Quignon, M. H. Koken, L. Venturini et al., Induction of the PML protein by interferons in normal and APL cells, Leukemia, vol.9, pp.2027-2033, 1995.

M. Cioce and A. I. Lamond, Cajal bodies: a long history of discovery, Annu. Rev. Cell Dev. Biol, vol.21, pp.105-131, 2005.

S. Cowan, T. Hatziioannou, T. Cunningham, M. A. Muesing, H. G. Gottlinger et al., Cellular inhibitors with Fv1-like activity restrict human and simian immunodeficiency virus tropism, Proc. Natl. Acad. Sci. USA, vol.99, pp.11914-11919, 2002.

F. Diaz-griffero, D. E. Gallo, T. J. Hope, and J. Sodroski, Trafficking of some old world primate TRIM5a proteins through the nucleus, Retrovirology, vol.8, p.38, 2011.

J. Dutrieux, D. M. Portilho, N. J. Arhel, U. Hazan, N. et al., TRIM5a is a SUMO substrate, Retrovirology, vol.12, p.28, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02142311

R. D. Everett, C. Boutell, H. , and B. G. , Interplay between viruses and host sumoylation pathways, Nat. Rev. Microbiol, vol.11, pp.400-411, 2013.

I. Fukuda, A. Ito, G. Hirai, S. Nishimura, H. Kawasaki et al., Ginkgolic acid inhibits protein SUMOylation by blocking formation of the E1-SUMO intermediate, Chem. Biol, vol.16, pp.133-140, 2009.

D. Gao, J. Wu, Y. T. Wu, F. Du, C. Aroh et al., Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses, Science, vol.341, pp.903-906, 2013.

T. Hatziioannou, Z. Ambrose, N. P. Chung, M. Piatak, . Jr et al., A macaque model of HIV-1 infection, Proc. Natl. Acad. Sci. USA, vol.106, pp.4425-4429, 2009.

C. M. Hecker, M. Rabiller, K. Haglund, P. Bayer, and I. Dikic, Specification of SUMO1-and SUMO2-interacting motifs, J. Biol. Chem, vol.281, pp.16117-16127, 2006.

N. Laguette, B. Sobhian, N. Casartelli, M. Ringeard, C. Chable-bessia et al., SAMHD1 is the dendritic-and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx, Nature, vol.474, pp.654-657, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00616451

X. Lahaye, T. Satoh, M. Gentili, S. Cerboni, C. Conrad et al., The capsids of HIV1 and HIV-2 determine immune detection of the viral cDNA by the innate sensor cGAS in dendritic cells, Immunity, vol.39, pp.1132-1142, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00959028

K. Lee and V. N. Kewalramani, In defense of the cell: TRIM5alpha interception of mammalian retroviruses, Proc. Natl. Acad. Sci. USA, vol.101, pp.10496-10497, 2004.

X. Li, D. F. Yeung, A. M. Fiegen, and J. Sodroski, Determinants of the higher order association of the restriction factor TRIM5alpha and other tripartite motif (TRIM) proteins, J. Biol. Chem, vol.286, pp.27959-27970, 2011.

C. H. Liao, Y. Q. Kuang, H. L. Liu, Y. T. Zheng, and B. Su, A novel fusion gene, TRIM5-Cyclophilin A in the pig-tailed macaque determines its susceptibility to HIV-1 infection, AIDS, vol.21, issue.8, pp.19-26, 2007.

J. Luban, Innate immune sensing of HIV-1 by dendritic cells, Cell Host Microbe, vol.12, pp.408-418, 2012.

Z. Lukic, S. P. Goff, E. M. Campbell, A. , and G. , Role of SUMO-1 and SUMO interacting motifs in rhesus TRIM5a-mediated restriction, Retrovirology, vol.10, p.10, 2013.

M. Machyna, P. Heyn, and K. M. Neugebauer, Cajal bodies: where form meets function, Wiley Interdiscip. Rev. RNA, vol.4, pp.17-34, 2013.

J. Melchjorsen, Learning from the messengers: innate sensing of viruses and cytokine regulation of immunity-clues for treatments and vaccines, Viruses, vol.5, pp.470-527, 2013.

A. Minty, X. Dumont, M. Kaghad, C. , and D. , Covalent modification of p73alpha by SUMO-1. Two-hybrid screening with p73 identifies novel SUMO-1-interacting proteins and a SUMO-1 interaction motif, J. Biol. Chem, vol.275, pp.36316-36323, 2000.

G. E. Morris, The Cajal body, Biochim. Biophys. Acta, vol.1783, pp.2108-2115, 2008.

S. M?-uller, M. J. Matunis, and A. Dejean, Conjugation with the ubiquitinrelated modifier SUMO-1 regulates the partitioning of PML within the nucleus, EMBO J, vol.17, pp.61-70, 1998.

C. M?-unk, S. M. Brandt, G. Lucero, and N. R. Landau, A dominant block to HIV-1 replication at reverse transcription in simian cells, Proc. Natl. Acad. Sci. USA, vol.99, pp.13843-13848, 2002.

M. E. Nepveu-traversy and L. Berthoux, The conserved sumoylation consensus site in TRIM5a modulates its immune activation functions, Virus Res, vol.184, pp.30-38, 2014.

M. E. Nepveu-traversy, J. Bé-rubé, and L. Berthoux, TRIM5alpha and TRIMCyp form apparent hexamers and their multimeric state is not affected by exposure to restriction-sensitive viruses or by treatment with pharmacological inhibitors, Retrovirology, vol.6, p.100, 2009.

R. M. Newman, L. Hall, A. Kirmaier, L. A. Pozzi, E. Pery et al., Evolution of a TRIM5-CypA splice isoform in old world monkeys, PLoS Pathog, vol.4, p.1000003, 2008.

A. Papkalla, J. M?-unch, C. Otto, and F. Kirchhoff, Nef enhances human immunodeficiency virus type 1 infectivity and replication independently of viral coreceptor tropism, J. Virol, vol.76, pp.8455-8459, 2002.

T. Pertel, S. Hausmann, D. Morger, S. Z?-uger, J. Guerra et al., TRIM5 is an innate immune sensor for the retrovirus capsid lattice, Nature, vol.472, pp.361-365, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-01402086

J. Rasaiyaah, C. P. Tan, A. J. Fletcher, A. J. Price, C. Blondeau et al., HIV-1 evades innate immune recognition through specific cofactor recruitment, Nature, vol.503, pp.402-405, 2013.

R. Sakuma, A. A. Mael, and Y. Ikeda, Alpha interferon enhances TRIM5alpha-mediated antiviral activities in human and rhesus monkey cells, J. Virol, vol.81, pp.10201-10206, 2007.

D. A. Sampson, M. Wang, and M. J. Matunis, The small ubiquitin-like modifier-1 (SUMO-1) consensus sequence mediates Ubc9 binding and is essential for SUMO-1 modification, J. Biol. Chem, vol.276, pp.21664-21669, 2001.

J. Sastri and E. M. Campbell, Recent insights into the mechanism and consequences of TRIM5a retroviral restriction, AIDS Res. Hum. Retroviruses, vol.27, pp.231-238, 2011.

S. Schulz, G. Chachami, L. Kozaczkiewicz, U. Winter, N. Stankovic-valentin et al., , 2012.

, Ubiquitin-specific protease-like 1 (USPL1) is a SUMO isopeptidase with essential, non-catalytic functions, EMBO Rep, vol.13, pp.930-938

A. Silvin and N. Manel, Innate immune sensing of HIV infection, Curr. Opin. Immunol, vol.32, pp.54-60, 2015.

S. J. Soll, S. J. Wilson, S. B. Kutluay, T. Hatziioannou, and P. D. Bieniasz, Assisted evolution enables HIV-1 to overcome a high TRIM5a-imposed genetic barrier to rhesus macaque tropism, PLoS Pathog, vol.9, p.1003667, 2013.

B. Song, H. Javanbakht, M. Perron, D. H. Park, M. Stremlau et al., Retrovirus restriction by TRIM5alpha variants from Old World and New World primates, J. Virol, vol.79, pp.3930-3937, 2005.

M. Stremlau, C. M. Owens, M. J. Perron, M. Kiessling, P. Autissier et al., The cytoplasmic body component TRIM5alpha restricts HIV1 infection in Old World monkeys, Nature, vol.427, pp.848-853, 2004.

M. Stremlau, M. Perron, M. Lee, Y. Li, B. Song et al., Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5alpha restriction factor, Proc. Natl. Acad. Sci. USA, vol.103, pp.5514-5519, 2006.

P. D. Uchil, A. Hinz, S. Siegel, A. Coenen-stass, T. Pertel et al., TRIM protein-mediated regulation of inflammatory and innate immune signaling and its association with antiretroviral activity, J. Virol, vol.87, pp.257-272, 2013.

G. Uzé, S. Di-marco, E. Mouchel-vielh, D. Monneron, M. T. Bandu et al., Domains of interaction between alpha interferon and its receptor components, J. Mol. Biol, vol.243, pp.245-257, 1994.

N. Van-montfoort, D. Olagnier, and J. Hiscott, Unmasking immune sensing of retroviruses: interplay between innate sensors and host effectors, Cytokine Growth Factor Rev, vol.25, pp.657-668, 2014.

C. A. Virgen, Z. Kratovac, P. D. Bieniasz, and T. Hatziioannou, Independent genesis of chimeric TRIM5-cyclophilin proteins in two primate species, Proc. Natl. Acad. Sci. USA 105, pp.3563-3568, 2008.

M. W. Yap, S. Nisole, C. Lynch, and J. P. Stoye, Trim5alpha protein restricts both HIV-1 and murine leukemia virus, Proc. Natl. Acad. Sci. USA, vol.101, pp.10786-10791, 2004.

S. M. Yoh, M. Schneider, J. Seifried, S. Soonthornvacharin, R. E. Akleh et al., , 2015.

, PQBP1 Is a Proximal Sensor of the cGAS-Dependent Innate Response to HIV-1, Cell, vol.161, pp.1293-1305

A. Yueh, J. Leung, S. Bhattacharyya, L. A. Perrone, K. De-los-santos et al., Interaction of moloney murine leukemia virus capsid with Ubc9 and PIASy mediates SUMO-1 addition required early in infection, J. Virol, vol.80, pp.342-352, 2006.

F. Zhang, D. Perez-caballero, T. Hatziioannou, and P. D. Bieniasz, No effect of endogenous TRIM5alpha on HIV-1 production, Nat. Med, vol.14, pp.236-238, 2008.