N

N

GvKT? LQ/2 *2HHmMH ~ M/ oB H .vM KB+b B

>Qbib M/ AKT +1 7Q° >Ao *m 2 ai i2;B2

LB+QH b >mQi- ai2p2M 1 "QbBM:;2°-JB'FQ S B '/BMB-
JmMHH2 @h mirBM

hQ +Bi2 i?Bb p2 " bBQM,

LB+QH b>mQi-ai2p2M1"QbBM;2 -JB FQS B '/BMB-_E2Bi? _22p2b-.
LQ/2 *2HHmMH ~ M/ oB  H.vM KB+b BM L im™ H >Qbib M/ AKT +i 7Q" >/
BM AKKMMQHQ;v- kyR3- N- TTXd3yX RyXjj3Nf}KKmXkyR3Xyyd3y X T

> G A/, T bizZm @yRN8NjyR
21iTbh,ff?2 H@T bi2m X "+?Bp2b@Qmp2 i2bX7 fT bi2]
am#KBii2/ QM R3 .2+ kyR3

> G Bb KmHiB@/Bb+BTHBM v GOT24WB p2 Dmbp2 "i2 THm B/BbBIBTHBN
"+?Bp2 7Q i?72 /2TQbBi M/ /Bbb2KIBEBMBR MNQ@T™+B2® " H /BzmbBQM /2 /
2MiB}+ "2b2 "+?2 /Q+mK2Mib- r?2i?@+B2MMiB}2mM2b#/@ MBp2 m "2+?22 +?22- T
HBb?2/ Q° MQiX h?2 /IQ+mK2Mib MK VW+RK2Z2EF IQKHBbb2K2Mib /62Mb2B;M
i2 +?BM; M/ "2b2 "+? BMbiBimiBQWER BM?8 7M#M2I @b Qm (i~ M;2 b- /2b H
#Q /-Q 7 QK Tm#HB+ Q T ' Bp i2T2HRAB+B @2MT2BIpXib X

.Bbi'B#mi2/ mM/2  * 2 iBpR *EMOKIBRM% 9Xy AMi2 M iBQM H GB+2M


https://hal-pasteur.archives-ouvertes.fr/pasteur-01959301
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

',\' frontiers
in Immunology

REVIEW
published: 19 April 2018
doi: 10.3389/ mmu.2018.00780

OPEN ACCESS

Edited by:
Vijayakumar Velu,
Emory University, United States

Reviewed by:
Jonah B. Sacha,
Oregon Health & Science
University, United States
Philippe Benaroch,
Centre national de la recherche
scienti que (CNRS), France

*Correspondence:
Michaela Muller-Trutwin
mmuller@pasteur.fr

Specialty section:
This article was submitted
to Viral Immunology,
a section of the journal
Frontiers in Immunology

Received: 07 February 2018
Accepted: 28 March 2018
Published: 19 April 2018

Citation:
Huot N, Bosinger SE, Paiardini M,
Reeves RK and Miller-Trutwin M
(2018) Lymph Node Cellular and

Check for
Updates

Lymph Node Cellular and Viral
Dynamics in Natural Hosts and
Impact for HIV Cure Strategies

Nicolas Huot *?, Steven E. Bosinger 4, Mirko Paiardini 3, R. Keith Reeves®®
and Michaela Muller-Trutwin *2*

THIV In ammation and Persistence Unit, Institut Pasteur, Paris, FrancéVaccine Research Institute, Créteil, France,
3Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA, United Staté&rkes
Nonhuman Primate Genomics Core, Yerkes National Primate Research Center, Atlanta, GA, United StateSenter for
Virology and Vaccine Research, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA,
United States, ®Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States

Combined antiretroviral therapies (CARTS) ef ciently control HIV replication leading
to undetectable viremia and drastic increases in lifespan of people living with HIV.
However, cART does not cure HIV infection as virus persists in cellular and anatomical
reservoirs, from which the virus generally rebounds soon after cART cessation. One
major anatomical reservoir are lymph node (LN) follicles, where HIV persists through
replication in follicular helper T cells and is also trapped by follicular dendritic cells.
Natural hosts of SIV, such as African green monkeys and sooty mangabeys, generally
do not progress to disease although displaying persistently high viremia. Strikingly,
these hosts mount a strong control of viral replication in LN follicles shortly after peak
viremia that lasts throughout infection. Herein, we discuss the potential interplay
between viral control in LNs and the resolution of in ammation, which is character
istic for natural hosts. We furthermore detail the differences that exist between non-
pathogenic SIV infection in natural hosts and pathogenic HIV/SIV infection in humans
and macaques regarding virus target cells and replication dynamics in LNs. Several
mechanisms have been proposed to be implicated in the strong control of viral repli-
cation in natural host's LNs, such as NK cell-mediated control, that will be reviewed
here, together with lessons and limitations ofn vivo cell depletion studies that have
been performed in natural hosts. Finally, we discuss the impact that these insights on
viral dynamics and host responses in LNs of natural hosts have for the development
of strategies toward HIV cure.

Keywords: H IV, SIV, natural hosts, lymph nodes, viral control, T cells, NK cells, in ammation

INTRODUCTION

Combined antiretroviral therapy (CART) has transformed HIV infection from a lethal disease into
a manageable chronic infectioh).(Indeed, cART e ciently controls HIV replication leading to
undetectable virus in blood and drastic increases in lifespan of people living with) Hid\{ever,

CART does not cure HIV infection as virus persists in cellular and anatomical reservoirs, from

which the virus most o en rapidly rebounds a er cART interruptid;4). HIV probably rebounds

Viral Dynamics in Natural Hosts and
Impact for HIV Cure Strategies.
Front. Immunol. 9:780.
doi: 10.3389/ mmu.2018.00780

from multiple sourcesS). Virus-producing cells can be detected in SIVmac-infected macaques
under suppressive cART in nearly every tissue, and in particular in the mucosal tissues and sec-
ondary lymphoid organst( 7). A major anatomical viral reservoir corresponds to lymph node
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(LN) B cell follicles, where HIV-1/SIVmac replication persiststertiary and secondary lymphoid organs throughout the infec-
in follicular helper T cells @) even in Elite controllers and tion. Indeed, natural hosts avoid the widespread damage to the
cART-virologically suppressed individuals €. Surprisingly, mucosal immune architecture that is observed in pathogenic
Ten cells expand during HIV-1 and SIVmac infections (10). us, infections (Table L While acute SIV infection leads to a rapid,
lymphoid follicles have come to be considered as major sanctuarear-complete loss of CD4T cells in the intestine in both
ies for HIV/SIV (9. In parallel, HIV-1 and SIVmac might also natural hosts and macaques, mucosal CD4cells partially
persist in some CD4T cells within the T zone of LN during recover in natural hosts, even if not to baseline level2{)8—
CART (11). In this review, we will focus on the viral and hosEurthermore, cART administration to SI\6M induces a rapid
dynamics in LNs of natural hosts and discuss similarities and keynd substantial recovery of mucosal CD4cells that is not
di erences with regard to HIV and SIVmac infections. typically observed in HIV infection (22). Moreover, despite
high viremia and high-level replication in the gut (23), natural
hosts, in stark contrast to non-natural hosts, preserve intestinal
NON-PATHOGENIC SIV INFECTION 17 c_:ells (24, 25), retain the st_ru_ctural integrity of the mucosal
barrier (26), and do not exhibit leakage of mucosal lumenal
microbiota (i.e., microbial translocation) into systemic circula-

IN NATURAL HOSTS
Natural hosts of SIV, such as African green monkeys (AGM%%Oh (27-29). With regard to LN during SIV infection in natural

. ts, there is generally no sign of lymphadenopathia nor
(Chlorocebus aethigpssooty mangabeys (SMs) (Cercocebu osts . . i
atys), and mandrills (Papio sphjmgenerally do not progress rosis and LN display a normal follicular dend_rlt!c cell (FDC)
to disease despite displaying persistently high viremia (12—1 etwork (12,30,31) (Table }. Another characteristic of natural

e vast majority of the studies carried out on SIV infections osts is the relatively low infection of central memory T cells

in natural hosts have been performed using two species, sﬁfe below) (32). thural hosts th.us seem to have d.eveloped
and AGMs (17). e comparison of the clinical, virological, and ways to protect the sites of education and memory of immune

immunological parameters of infection in these species with thafSPONses.

of HIV/SIVmac infections allowed advances in knowledge on

the mechanisms linked to protection against AIDS. In particulat/IRAL DYNAMICS IN LNs DURING SIV

natural hosts rapidly resolve in ammation induced by SIV infecNFECTION IN NATURAL HOSTS

tion, and unlike pathogenic lentivirus infections do not develop

chronic immune activation (see chapter below). Studies in SIVmac infection have shown that the viral seeding
An important aspect of SIV infection in natural hosts isof LN occurs rapidly and progressively. One to three days aer

also their ability to preserve the function and structure of theimfection, some replicative viruses could already be detected in

PRIMARY CHARACTERISTICS OF

TABLE 1 | Major similarities and differences between HIV/SIVmac infections and SIV infections in natural hosts at the level of lymph nodes (LNs).

LNs Natural host (African green Non-natural host Reference
monkeys, sooty mangabeys) (human/macaque)
Viral replication in LN Acute phase High High (17, 33,
(17, 12, 34) Chronic phase Low 34)
In ammation Acute phase Rapid (35-39)
Chronic phase No
IFN-a High in acute infection High in acute infection
Interferon-stimulated gene High in acute infection
TGF- and collagen deposition No
LN architecture Lymphadenopathia No (12, 30,
Follicular dendritic cell network Preserved 40)
Fibrosis No
Location of SIV-infected cells T cell zone Yes Yes (11, 12,
B cell follicles Rare/absent 41, 42)
Virus trapping Rare/absent
SIV-infected cells CD4* Tem Low (43-47)
Tew PD-1FCTLA4 nd Yes
Ten Rare/absent
Plasmacytoid dendritic cell Yes Yes
macrophage Yes Yes
Antiviral immune responses HIV/SIV-speci ¢ T cell responses Weak Variable ( ) (17, 48-50)
Follicular CD8 T cells nd Yes (rare)
Follicular NK cells Yes Yes (rare)
bNAb nd Yes (rare)

The green and red colors highlight, respectively, major differences between SIV infection in natural hosts and HIV/SIV infections in non-natural hosts.
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the draining LN and even in systemic LN (51). Of note, durind?EGUl—ATlO’\I OF INFLAMMATION IN

the eclipse phase until peak viremia, productively infected cellsNs AND IMP ACT ON SIV INFECTION
are found essentially in the extra-follicular zone of LN (41)]JN NATURAL HOSTS
Only in later phases of primary infection, and in particulardur
ing chronic infection, viral RNA is found inside B cell follicles, e deleterious impact of unabated in ammation in HIV infec-
where it replicates within £f cells (45). In addition, virus is tion has been well documented (35). is immune activation
trapped within the follicles by FDCs where it remains infectiouss positively correlated with HIV-1/SIVmac replication in both
for 9 months or more (3(2,53). e mechanism driving this ~ ART-naive and ART-treated settings (60). Among the myriad
shi from the T cell zone to the B cell follicles is incompletelyof detrimental manifestations due to the persisting in amma-
understood. tion that have been reported, a handful could be particularly

During chronic HIV/SIVmac infections, virus replication in in uential in maintaining viral burden, namely: (i) recruitment
LN exceeds the levels in blood by several orders of magnitudé target cells, (ii) impairment/exhaustion of adaptive immunity,
In ART-naive SIVmac infection, LN are estimated to supportind (iii) the disruption of lymphoid structures. In this section,
~50% of viral burden, and be reduced to ~1% in the contexte will review existing data on in ammatory pathways di ering
of suppressive ART, with the remainder supported by mucosalgni cantly between natural hosts versus pathogenic SIV infec-
tissue 0). In one SIVmac-infected macaque, the frequency dfion. ese data will be reviewed in the context of the natural
infected cells in LN was evaluated and appeared to be as highst's low-to-absent SIV burden in LN follicles. Hypotheses
or slightly higher than in the gut (mean frequency ~8.XF  concerning the e ect of non-natural in ammation in supporting
VRNA* cells/g in LN and ~56 10 vRNA' cells/ginthe gut) (6 LN SIV replication will be presented.
ART administered for 20 weeks decreased the mean frequency A longstanding observation in natural hosts is that they are
of VRNA in LN by approximately 2 lagn SIVmaesrinfected  devoid of the pan-lymphocyte activation and chronic in amma-
rhesus macaques)(6 tion seen in pathogenic HIV/SIV disease (&2~ e molecular

e reason of the preservation of the normal architecture of and immunological distinctions of these species have been
LN in natural hosts might be associated with the signi cantlyextensively characterized [reviewed in Ref43%55)]. Although
lower levels of viral replication in this tissue. Strikingly indeednatural hosts exhibit levels of immune activation similar to base-
AGM and SM mount a strong viral control in LN shortly a er line during chronic infection, detailed longitudinal studies have
peak viremia, which lasts throughout infection (23, 43, demonstrated that rapid, early immune activation is evident,
54-56). us, while during the rst 2 weeks post-infection including elevated levels of IFN-a, CB&7* T cells and PD1
(p.i.), the number of productively infected cells as well as thexpressionin LN (686,67). e most striking con rmation is the
copy numbers of cell-associated viral DNA and RNA are similanassive upregulation of interferon-stimulated gene (ISG) expres-
between SIV infection in natural hosts and macaques, maja@ions during acute infection in natural hosts &3),in blood, LN,
di erences are observed a er the viremia peak between naturaind gut. ese ISGs include many antiviral restriction factors, such
and non-natural hosts (129,56). us in natural hosts, viral as MX2 and Tetherin. Of note, the upregulation of ISGs occurs
replication levels decrease drastically in LNs a er peak viremiagery early, starting from days 1 or 2 p.i. in AGM, concomitantly
whereas in pathogenic infections, a er a moderate decreasewith a very early transient increase in IFNE8,70). By contrast,
relatively strong viral replication generally persists throughoutluring SIVmac infection in macaques, it was reported that the
the infection in absence of cART, leading to a di erence of 2—-8xpression of those ISGs encoding antiviral restriction factors was
log in the cell-associated viral RNA in LN during chronic infec-delayed and not upregulated before peak viral replication on day
tion between macaques and natural hosts. Viral RNA-producingO (71). us, natural hosts seem to develop a more rapid antiviral
cells as well as cell-associated viral RNA sometimes becomeate response to SIV compared to non-natural hosts6&6,
even undetectable in LN of AGM, despite continuous high-levei0, 71). Subsequently, natural hosts rapidly resolve total ISG
plasma viremia (12,4,33). expression to baseline before the transition to chronic infection

e anatomical distribution of virus replication in chronic despite prevalent viremia. is downregulation of ISG expression
infection is also very dierent between non-pathogenic andn natural hosts is in stark contrast to HIV/SIVmac infections, in
pathogenic infection. Indeed, in natural hosts, most virus isvhich ISG expression remains elevated inde nitely (72).
detected in the T cell zone, even if at extremely low levels, while e observation that natural hosts resolve IFN-I related
in pathogenic HIV/SIV infection, most virus is present in fol-responses prompted a series of comparative studies into plas-
licles (Figure 1). Strikingly, in natural hosts, such as AGM andhacytoid dendritic cells (pDCs). pDC tra cking to LN has
to a lesser extent in SM, viral RNA is generally absent in follicldseen reported for both natural and non-natural hosts. A peak of
is is not a matter of the virus, as SIVsm and SIVagm infectionspDC accumulation in LN is observed approximately 7—14 days
of macaques lead to high SIV levels in follicles58)/,Natural aer SIV infection in macaques, SM, and AGMs concomitant
hosts are thus characterized by a limited or absent replication with robust IFN- and IFN- in situ production by pDC in
Tew cells and frequent lack of FDC deposition of virus $3), LN (66,73-76). e tra cking of pDC to tissues during SIV
Understanding the underlying mechanisms of the strong virainfection di ers in several aspects between natural hosts and
control in LN in natural hosts might yield clues helpful for thenon-natural infections: (i) in AGM, an early rst peak of pDC
development of strategies aiming the elimination of HIV reserin LN is observed around days 1-3 p.i. (66); (ii) pDC accumulate
voirs in follicles. in the rectal mucosa in infected humans and macaques, but not
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FIGURE 1 | Viral and host immune cell dynamics in lymph nodes (LNs) from natural hosts versus HIV-1/SIVmac infections. Schematic representation of a LN afte
HIV or SIV infection in pathogenic models (human, macaques, top) and natural hosts [African green monkey (AGM), sooty mangabey, bottom].)(fdg-1 and
SIVmac infection in, respectively, humans and macaques result in the formation of hyperplastic germinal centers in LNs with massive B cell proliferatiencélls

also expand during HIV-1 and SIVmac infections. In ammation is uncontrolled and leads to collagen deposition and brosis. The follicular dendritic cell (FDC)
network is disrupted on the long term. HIV-1 and SIVmac replicates in combined antiretroviral therapy (CART)-naive individuals and animals in both T and B cell
zones, but the viral burden is highest in the B cell zones (follicles). In the follicles, virus replication is concentrated within follicular helper T cel)s Vitus is also
trapped by FDC and remains infectious. On cART, virus persists mostly in:fcells in the follicles, where it is often outreach of conventional CDF cells and of
optimal drug concentrations, as well as in CTLA4CDA4" T cells within the T zone. The latter cells have a capacity for long survival. NK cells and conventional HIV/
SIV-speci c CD8'T cells are often expressing immune checkpoint inhibitors. The presence of CXRGED8'T lymphocytes has been described, but their role

needs to be further studied. (Bottom) In natural hosts, virus replication is strongly controlled during the chronic phase of infection. Most follicles are exempt of viru
Conventional SIV-speci c CD8 T cell responses are weak. NK cells play a major role in the control of viral replication in AGM LNs. Both the IFN- and NK cell
responses appear earlier than in SIVmac-infected macaques. NK cells accumulate in follicles in SIVagm-infected AGMs, which might be a direct consequence of
high production of IL-15 in the follicles. NK cell migration into B cell follicles in response to SIVagm infection is associated with the acquisition of CXCR5. CXCR5
NK cells express high levels of Fc receptors and of CD107a, which raises the question if they have the capacity to control SIVagm replication through antibody-

r

dependent and/or -independent cellular cytotoxicity.
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in SM, which has been attributed to heightened levelglof  viral persistence during ART-treated HIV/SIV infections is
in SIVmac infection (7778), and (iii) pDC in LN during acute still unclear. Injection of exogenous IFN- into SlV-infected
SlVmac infection are prone to apoptosis, while for natural host&GM and SM have not been able to reproduce the phenotype
this is not known (3973). Both SM and AGM were demon- of widespread immune activation observed in non-natural hosts
strated to retain intact sensing and IFNproduction in pDC  (70,93). However, the injections of exogenous recombinant IFN-
in response to their native SIV (68-81). Of note, pDC from  induced a rapid state of tolerance in vitm this molecule. It
AGM sense more e ciently SIVagm than SIVmac or HIV-1 is not excluded that one might need to treat for long periods of
viruses (81). Studies in natural hosts have revealed that Siwhe with intermediate breaks to see an e ect on chronic in am-
infection alters the capacity of viral sensing in cells other thamation. e other possible explanation is that IFN-I levels are
pDC, which then can also produce IFN-I during acute infectiomot di erent between pathogenic and non-pathogenic infections
(80). e contribution of pDC to IFN responses during chronic and/or that IFN-I are not the major culprits of the persistent ISG
SIV infection remains unresolved, while some reports have neixpression (6,0). Other factors, such as IFN- , might contribute
detected IFN-I in pDC during chronic infection (74), we haveto ISG upregulation (684). Collectively these comparative stud-
observed IFN- transcripts in LN pDC as far out as 18 monthsies in distinct models indicate that IFN-I signaling is (i) bene cial
post-infection (Bosinger, unpublished observations). during acute infection, (ii) a major contributor to early immune

e consequences of unabated IFN production on immune activation, (iii) alone insu cient to cause chronic immune acti-
function and viral reservoirs in HIV infection are under intensevation, and (iv) its impact is highly context dependent.
study. IFN-induced responses are clearly critical for the control Several other factors have been put forward to explain the
of SIV in LN during acute infection, as antagonism of the IFN- absence of chronic in ammation in natural hosts. For example,
receptors (IFNAR) from before infection to early time points p.iby sequencing for the rst time the genome of the SM, a mutation
in macaques caused elevated levels of LN-associated SIV amb uncovered in the gene encoding TLR4, the primary receptor
plasma viremia (82). for LPS, that yields a truncated protein and attenuated signaling

e eects of IFN during chronic HIV infection are less (95). Intriguingly, this mutation was also observed in the TLR4
clear. Mouse models have shown that persistent TLR and IFdéne of the two other natural host species (AGM, mandrills) (95).
signaling causes damage to the lymphoid structures (83). Seveigmutation might contribute to a lower monocyte/macrophage
studies have demonstrated that irreversible brosis is evident iactivation in natural hosts.
the LNs of SIV-infected macaques, but, interestingly, is absent in e maintenance of viral replication in LNs could impact
natural host infection (3134). e brosis in chronic HIV/SIV systemic in ammation, due to the sheer immune “trac” and
infection might be linked to persistent IFN-related in ammation, recirculatory nature of immune cells. From this point of view,
TGF- produced by regulatory T cells (Treg) leading to collagerthe fact that natural hosts strongly control viral replication in
deposition, and/or other yet unknown factors (84). DisruptionLN might contribute to their capacity to resolve in ammation.
of IFN-I signaling in chronic infection appears to have indeedn this light, understanding the mechanisms by which HIV/SIV
a bene cial e ect on host immunity in certain settings. In thereplication could be controlled in the LN is likely to be critical not
mouse model of lymphocytic choriomeningitis clone 13 infeconly for viral eradication strategies but also for therapies aiming
tion, blockade of IFN- signaling in chronic infection enabled at reversing immune activation.
spontaneous clearance of the virus (85-87). In a remarkable set

of independent studies using ART-suppressed, HIV—infecteq-ARGET CELLS FOR SIV IN LNs FROM
humanized mice, disruption of IFNAR signaling reduced Iatten}\|
ATURAL HOSTS AS COMPARED TO

HIV levels and ameliorated systemic immune activation§8g,
In both the LCMV and hu-mouse HIV datasets, IFN-blockadePATHOGENIC HIV AND SIVmac

reduced expression of co-inhibitory molecules on CD&ells INFECTIONS

and improved cellular antiviral responses; thus, the mechanism of

action was presumed to be alleviation of IFN-mediated exhaufeducing the persistent HIV/SIV reservoir remains an essential
tion of T cell responses. ese studies provide some rationale fomilestone for the achievement of a functional cure for HIV-1 infec-
IFN blockade to be applied as a therapy to lower the reservoir, Bifin; however, this goal has been signi cantly hindered by poor
this hypothesis would rst need validation of e cacy and safetymeans for identi cation of the CD4T cell subsets that harbor

in pre-clinical studies. Taken together, the observations thdgplication-competent virus, as well as by the anatomic location
(|) SIV natural host Species avoid |0ng_term 1ISG expression arﬂj these cells in sanctuaries for HIV. Several key di erences in
(ii) in vivoantagonism of type | IFN signaling can improve antivi-the nature of cells targeted by SIV in natural versus non-natural
ral immunity and reduce reservoir levels in the hu-mouse moddlosts have been identi ed, raising the fascinating hypothesis that
suggest that the overall contribution of IFN in chronic HIVv/ the type of infected CDAT cells, even more than the quantity,
SIV infection is harmful by maintaining high levels of immunecould contribute to the dierent capacity to control immune
activation and contributing to immune dysfunction. However, activation and disease progression between the two hosts.
exogenous administration of IFN- to ART-suppressed, HIV-

infected patients have shown in some cases clinical bene t @entral Memory CD4 * T Cells (TCM)

terms of reduced levels of cell-associated HIV DNA (90-92kn vivoand in vitrocomparative studies showed that the frequency
us, the contribution of IFN- to chronic in ammation and of SIV-infected TCM in SM is signi cantly lower as compared
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to both CD4 T e ector memory cells of SM and CDACM of  non-pathogenic infection of SM (59) and AGM (49), where fol-
macaques in both blood and LN (38). us, SM are partially  licles o en remain virus free. LN&§ cells showed lower levels of
protecting the important CD4TCM cell subset from SIV infec- Ki-67 expression than nonsf memory CD4 T cells and fewer
tion. In line with this relative preservation from viral infection, of the Ty cells expressed CCRS5, but this was similar between
CD4" TCM cells are more preserved in SlV-infected SM commacaques and natural hosts (59). Phenotypic studies.arells
pared to SIV-infected rhesus macaques (46).*AI@M cells are  in natural hosts are though limited so far and whetherc€lls in
long-lived, self-renewing cells able to replenish the pool of nori-N expand di erently during SIV infection in natural hosts needs
self-renewing, shorter lived CD4 ector memory cells, thus to be further investigated.

their maintenance is key for the homeostasis of the overall CD4

T cell compartment and immune memory. Remarkably, a loWlCD4*PD-1*CTLA-4* T Cells

contribution of infected CD4TCM to the overall viral reservoir e contribution of T g4 cells to the persistent reservoir progres-
has similarly been described in (i) long-term non-progressorsively decreases with increased length of cCARIO{®, suggest-
with protective HLA alleles (96); (ii) viremic non progressorsjng that other cell subsets, apart fromy Tells, can contribute to
i.e., rare HIV-infected individuals who maintain high CO4cell ~ the magnitude of the pool of latently infected cells. In a recent
levels despite uncontrolled viremia (97); and (iii) post-treatmenstudy, it was found that PD=Xells, the subset that contributes
controllers, i.e., patients with a durable control of viremia a emmost to T cells, were indeed the dominant contributors to the
ART-interruption (98). With a distinct strategy, AGMs have alsoviral DNA pool in the B cell follicles in the LN in ART-treated
evolved to protect memory CD4T cells from viral infection. SIV-infected macaques; however, CTLARB-1 memory CD4
Indeed, CD4 molecules get downregulated from the surface ®fcells, a subset comprised predominantly of Tregs, were identi-
the CD4 T cells when the latter get activated. Of note, these celisd as a previously unrecognized component of the SIV reservoir
maintain their T helper functional activity (99). (11). ese cells are signi cantly enriched in SIV DNA in mul-

e mechanisms of TCM protection are not clear. It has tiple tissue compartments, including the blood, LN, spleen, and
been suggested that CCR5 plays a role. us, CD4£ells from  gut and have been shown to harbor replication-competent and
natural hosts express less CCR5 in blood, LN, and mucosaéectious virus (11). CTLA#PD-1 cells localized in the extra-
compared to humans and macaques (10Q,). It also has been follicular zones of the LN in ART-treated SIV-infected macaques
shown thatin vitro stimulation of SM CD4T cells, particularly and HIV-infected humans. erefore, in addition to PD*1Tex
the TCM, fail to upregulate CCR5 (32). CO4LM cells express- cells, HIV-1 and SIVmac are able to establish and maintain viral
ing low levels of cell-surface CCR5 are less susceptible to $Wfsistence through the speci c targeting of another CDdell
infection when compared to TCM of macaques both in vivesubset, CTLA-4PD-1 cells. ese cells seem to have long living
andin vitro (46,102). However, SIV from natural hosts can alsacapacities (11). Further studies are needed to determine if the
e ciently use other coreceptors than CCR5 to infect primaryrare SIV-producing cells in the T zone of natural host's LNs cor
CD4' T cells and other factors might as well be implicated in theespond, at least partially, to these CTLRZ-1 cells.
relative preservation of TCM to infection in natural hosts (103).

LN comprises a higher fraction of TCM compared to mucosaPlasmacytoid Dendritic Cell
tissues, the latter containing higher proportions of e ector cell$Jnlike humans’ and macaques’ pDC, pDC from natural hosts
in mammals (104). us it is possible that in natural hosts, the display substantially lower CD&4nd CCRS5 surface expression
lower ratio of TCM infection is related to the control of viral (80). e lowered SIV receptor/coreceptor expression however
replication in LN, whereas the predominant virus replicationdoes not a ect the ability of SIVagm to infect pDCs. Indeed,
in the gut would explain why most virus infects C24dector  high rates of pDC infection were detected in the spleen of AGM,
T cells in natural hosts. Altogether, the viral tissue distributiorio a similar high rate as pDC infection by HIV in cART-naive
could thus in part also explain the lower frequency of infectiolmumans (81).
rate in TCM compared to CD4 ector T cells in natural hosts.

POTENTIAL IMMUNE-MEDIA TED
Follicular Helper T Cells (T ¢n) MECHANISMS FOR VIRAL CONTROL IN
Tru correspond to a subpopulation of memory CDR cells | N: THE ROLE OF CD8* T AND NK CELLS
expressing high levels of CXCR5 and PD-1 residing within
the follicles of secondary lymphoid organs. ey impact the ere are several clear lines of evidence that CO8ells play an
activation, di erentiation and survival of B cells. Several studimportant role for the overall control of HIV-1/SIVmac replica-
ies explored the frequencies, function, and infection rate.of T tion (108,109). Some of the most convincing evidences have been
cells in HIV-infected humans or SIV-infected macaques. ey obtained in macaques and include a temporal correlation between
revealed that & cells are infected at high frequencies in chroniche rise of SIV-specic CD8T cells and post-peak viremia
infection. Despite the high rate of HIV/SIVmac replication indecline, as well as the increase of viremia a er ind@petion
Ten cells, these cells expand during HIV and SIVmac infectionsf CD8 cells (110). Of note, most in videpletion studies used
(45,59,105,106). More recently, it was shown thag Tells con- monoclonal antibodies that did not discringite between CD8
stitute an important source of persistent replication-competen and NK cells, and thus in some of these studies, the contribu-
virus in ART-treated, aviremic individuals (8). By contrasttion of NK cells remained undetermined. Nonetheless, the role
a low infection rate of i cells has been described duringof CD8 T cells in viral control is undeniable and is evident in
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HIV controllers and rhesus macaques with speci ¢ MHC alleleplayed by CD8T cells during natural host's SIV infection, in vivo
(111,112). cell depletion experiments have been conducted. Administration
CD8" T cells in LN are generally located in the T cell zonesf anti-CD8 and anti-CD20 antibodies during the rst 2 weeks

Early studies have revealed massive in ltrations of activatesof SIVagmeoinfection in pig-tailed macaques (pathogenic infec-
CD8' T cells into B cell follicles in progressors, but this could b#on) and AGM (non-pathogenic infection), led to dramatically
due to the disruption of the FDC network in late stage diseask erent results in the two species (128). In pig-tailed macaques,
(113-416). Nevertheless, the magnitude of fully cytolytic CD8a one-log increase in peak viremia and four-log increase in set-
T cells was signi cantly higher in LN compared to blood (117)point viremia were observed following antibody administrations.
and HIV-1-specic CD8 T cells are preferentially located in Moreover, these animals rapidly progressed toward disease and
LN compared to blood, including a subset of responses that désplayed CMV reactivation. By strong contrast, in AGM, deple-
present solely in secondary lymphoid organs (118). is pref-tion of CD8 and CD20 cells did not modify peak viremia and
erential location of HIV-1-speci ¢ CD8T cells in the LN was the animals displayed only a minor delay in post-peak viremia
also observed in chronically infected individuals on cART (118Yecline compared to control animals, and all animals remained
ese migrating CD8* T cells localize to the extra-follicular clinically healthy (128). In another study, treatment of SIVsm-
zones of the LNs, where most of endogenous HIV-1-speci infected SM using a CD8peci c Ab (OKT8F) led to a profound
CTL were also observed, far from sites of virus replicatiodepletion of CD8 cells in both blood and tissues such as LN, but
inside the follicles (117). A er in vivdepletion of CD8cells in  only minor changes in plasma viremia (129). Similar results were
SlVmac-infected macaques, the frequency of SiV-infected celitso observed in AGMs in which CD&ll depletion during the
in extra-follicular regions increased and reached levels similacute phase led only to a delay of 5-10 days in the post-peak viral
to that in B cell follicles §Scon rming that CD8 T cells exert decline (130). By contrast, virtually all CDB8 vivo depletion
control of viral replication predominantly in the T cell zones.studies conducted in non-natural host models during acute or
Until recently, it was considered that CD8 cells generally chronic SIV infection have reported signi cant increases in viral
do not migrate into the B cell follicles and it was further sugloads and rapid disease progression (180;:433). Altogether,
gested that antiretroviral drugs ine ciently di use into or are these data highlight that while CTL responses can play a large
unequally distributed within LN (84), collectively making fol- role in HIV controllers, they may contribute only modestly to
licles a prime sanctuary for HIV/SIV replication. Nonethelessthe control of viral replication in LN in natural hosts. us, while
a small proportion of CD8T cells expressing CXCRBas CD8' T cells might still be involved to some extent in the control
been recently described in both SIVmac and HIV-1 infectionsf viral replication in the T cell zone, they most likely do not
(119421). e levels of these CXCREDS8" T cells in LN represent the major cellular component of viral control in LN
were higher in HIV-infected individuals compared to healthyfollicles during SIV infection in natural hosts.
donors, and they were detected in close proximity to viral'RNA  As an alternative to CD8T cells, multiple lines of evidence
cells, probably starting from primary infection on (1122). pointed toward a role of NK cells in the control of SIV replication
e frequency of SIV-specic CXCR5CD8" T cells correlated in LN of natural hosts. Upon SIV infection, AGM temporarily
negatively with that of SIV infection in:J cells and viremia, display high levels of IFN- and IL-15 in the plasma (70). ese
suggesting a role of CXCRED8" T cells in viral control (50). cytokines are known to activate NK cells and enhance their cyto-
However, other studies highlighted a regulatory phenotype dbxic prole (134,135). Plasma IFN- levels correlated indeed
CXCR5CD8 T cells with poor capacity of viral control which with activation and cytotoxic activity (CD107a) of NK cells and
could further impair germinal center function in HIV infection plasma IL-15 with the proliferation (Ki-67) of NK cells in LN
(120,123). Unfortunately, little is known about these recentlyduring acute SIVagm infection (70). During the acute phase of
described follicular CD8T cells, and whether the contrasting SIVagm infection, CD107a&\K cells increased to higher levels in
results are due to the presence of distinct CXCRB' T cell LN than in blood (70). Studies in SM demonstrated a more rapid
subsets, di erences in the infection models studied or other yeictivation of NK cells compared to macaques (138). ese
unknown factors. previous studies raised the hypothesis that NK cells may play a role
In natural hosts, the contribution of CD8 cells to controlling  in LN viral control in natural hosts. It was subsequently shown
SIV replication may be comparatively small. Indeed, althougthat upon SIVagm infection, NK cells change their distribution
SIV-speci c CD8 T cell responses were observed for SIV-infectedithin LN and migrate into follicles, where they accumulate
SM and AGM, their magnitude and breadth were similar or eve(¥9). e increase of NK cell numbers in follicles was associated
lower than those generally observed in HIV-1 and SIVmac prowith a high production of IL-15 within follicles, presented in
gressive infections both in blood and LN (12274). However, it membrane-bound form by FDC and antigen-presenting-like
has been suggested that these responses appear temporally eaxdits (49). By contrast, the number of functionally competent
in LN of natural hosts compared to pathogenic species and thiiK cells in LN decrease in macaques in response to SIV infection
this confers an advantage (56). Of note, these cells do not seen(i®,138). e pattern of LN homing receptors (CX3CR1, CD62L,
migrate into follicles. CD8T cells from natural hosts were indeed CXCR3, CCR7) were similar on NK cells from SIV-infected AGM
found to be exclusively located in the T cell zones both in horand MAC and do not explain the higher levels of NK cells in LN of
infected and SlIV-infected animals (12). In line with this, CD8 AGM as compared to MAC (49). It is more likely that in SIVagm
T cells in LN from AGM do not upregulate CXCRS5 in response tinfection, the IL-15 in the follicles enhances the survival of
SIV infection (49). To further address the question of the role(d)IK cells. Interestingly, SIVagm-infected AGM showed high levels

Frontiers in Immunology| www.frontiersin.org 7 April 2018 | Volume 9 | Article 780



Huot et al. Natural Host LN Dynamics

of CXCR5 NK cells in LN (49). is suggests that migration of also be attractive targets to mimic or induce the conditions in
NK cells into AGM follicles was CXCR5-mediated. e presencenatural hosts that are conducive to virus clearance in the LNs.
of CXCRS5 NK cells was observed in secondary lymphoid organRecently, the use of NKG2A inhibitors has also been suggested as
(LN, spleen), but not in blood or gut of SIV-infected AGM. us, an attractive approach in HIV cure strategies (144). Many open
the CXCR5 expression on NK cells during SIVagm infection waguestions remain, including delineation of factors responsible for
tissue-speci c. Of note, this enrichment of CXCRK cells in  the high IL-15 production in LN follicles, the maintenance of an
secondary lymphoid organs was not observed in SIVmac-infectéatact FDC network, the upregulation of CXCR5 on NK cells in
macaques. Strikingly, IL-15-mediated depletion of NK cells ilLN and the very rapid innate antiviral responses in natural hosts.
chronic SIVagm infection led to high viral replication in the e remaining gaps in the knowledge base will require future
follicles as well as in the T zones (49). ese results indicate thattudies to understand how natural hosts reduce in ammation
Teu cells are not resistant to SIV infection in AGM and clearhand how they protect LN architecture. Such ongoing studies are
reveal a crucial role for NK cells in the viral control within LNhoped to direct future strategies aimed at granting permissive

of a natural host. entry of relevant e ector cells into the highly restricted lymphoid
follicles, thus creating a unique opportunity for reservoir elear
CONCLUDING REMARKS ance and representing a further step toward HIV remission and

cure. Altogether, studies in natural hosts of SIV continue to reveal
Herein, we summarize current knowledge on di erences in LNclues highly relevant for understanding and managing HIV infec-
of non-natural versus natural hosts. e remarkable control tion in humans.
and clearance of virus from lymphoid follicles in natural hosts
is associated with multiple di erences compared to pathogenia UTHOR CONTRIBUTIONS
infection: (1) LN architecture is preserved; (2) in ammation
is controlled; (3) FDC network is maintained intact; (4) rapidNH, SB, MP, RR, and MM-T wrote the review. NH designed
mobilization of innate antiviral responses; (5) viral replicationthe gure and the table. RR and MM-T edited the text. MM-T
is strongly controlled; (6)F are particularly spared from virus; composed and oversaw the chapters.
(7) NK cells migrate into follicles; and (8) high IL-15 produc-
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