J. A. Imlay, Cellular defenses against superoxide and hydrogen peroxide, Annu Rev Biochem, vol.77, pp.755-776, 2008.

S. Mishra and J. Imlay, Why do bacteria use so many enzymes to scavenge hydrogen peroxide?, Arch Biochem Biophys, vol.525, pp.145-160, 2012.

M. Zheng, B. Doan, T. D. Schneider, and G. Storz, OxyR and SoxRS regulation of fur, J Bacteriol, vol.181, pp.4639-4643, 1999.

S. Fulda and M. Hagemann, Salt treatment induces accumulation of flavodoxin in the cyanobacterium Synechocystis sp. PCC6803, J Plant Physiol, vol.146, pp.520-526, 1995.

K. Mazouni, F. Domain, F. Chauvat, and C. Cassier-chauvat, Expression and regulation of the crucial plant-like ferredoxin of cyanobacteria, Mol Microbiol, vol.49, pp.1019-1029, 2003.

A. K. Singh, H. Li, and L. A. Sherman, Microarray analysis and redox control of gene expression in the cyanobacterium Synechocystis sp. PCC 6803, Physiol Plant, vol.120, pp.27-35, 2004.

A. R. Krapp, M. V. Humbert, and N. Carrillo, The soxRS response of Escherichia coli can be induced in the absence of oxidative stress and oxygen by modulation of NADPH content, Microbiology, vol.157, pp.957-965, 2011.

F. J. Redondo, T. C. De-la-pena, C. N. Morcillo, M. M. Lucas, and J. J. Pueyo, Overexpression of flavodoxin in bacteroids induces changes in antioxidant metabolism leading to delayed senescence and starch accumulation in alfalfa root nodules, Plant Physiol, vol.149, pp.1166-1178, 2009.

V. B. Tognetti, J. F. Palatnik, M. F. Fillat, M. Melzer, and M. R. Hajirezaei, Functional replacement of ferredoxin by a cyanobacterial flavodoxin in tobacco confers broad-range stress tolerance, Plant Cell, vol.18, pp.2035-2050, 2006.

A. F. Lodeyro, R. D. Ceccoli, P. Karlusich, J. J. Carrillo, and N. , The importance of flavodoxin for environmental stress tolerance in photosynthetic microorganisms and transgenic plants. Mechanism, evolution and biotechnological potential, FEBS Lett, vol.586, pp.2917-2924, 2012.

J. López-llano, S. Maldonado, S. Jain, A. Lostao, and R. Godoy-ruiz, The long and short flavodoxins: II. The role of the differentiating loop in apoflavodoxin stability and folding mechanism, J Biol Chem, vol.279, pp.47184-47191, 2004.

J. Sancho, Flavodoxins: sequence, folding, binding, function and beyond, Cell Mol Life Sci, vol.63, pp.855-864, 2006.

C. K. Stover, X. Q. Pham, A. L. Erwin, S. D. Mizoguchi, and P. Warrener, Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen, Nature, vol.406, pp.959-964, 2000.

G. P. Bodey, R. Bolivar, V. Fainstein, and L. Jadeja, Infections caused by Pseudomonas aeruginosa, Rev Infect Dis, vol.5, pp.279-313, 1983.

A. J. Morrison and R. P. Wenzel, Epidemiology of infections due to Pseudomonas aeruginosa, Rev Infect Dis, vol.6, pp.627-642, 1984.

J. B. Lyczak, C. L. Cannon, and G. B. Pier, Lung infections associated with cystic fibrosis, Clin Microbiol Rev, vol.15, pp.194-222, 2002.

J. Yeom and W. Park, Pleiotropic effects of the mioC mutation on the physiology of Pseudomonas aeruginosa PAO1, FEMS Microbiol Lett, vol.335, pp.47-57, 2012.

J. Yeom and W. Park, Biochemical characterization of ferredoxin-NADP(+) reductase interaction with flavodoxin in Pseudomonas putida, BMB Rep, vol.45, pp.476-481, 2012.

G. M. Boratyn, A. A. Schaffer, R. Agarwala, S. F. Altschul, and D. J. Lipman, Domain enhanced lookup time accelerated BLAST, Biol Direct, vol.7, p.12, 2012.

M. F. Fillat, W. E. Borrias, and P. J. Weisbeek, Isolation and overexpression in Escherichia coli of the flavodoxin gene from Anabaena PCC 7119, Biochem J, vol.280, pp.187-191, 1991.

J. D. Pellett, D. F. Becker, A. K. Saenger, J. A. Fuchs, and M. T. Stankovich, Role of aromatic stacking interactions in the modulation of the two-electron reduction potentials of flavin and substrate/product in Megasphaera elsdenii short-chain acylcoenzyme A dehydrogenase, Biochemistry, vol.40, pp.7720-7728, 2001.

N. R. Morero, Pseudomonas aeruginosa deficient in 8oxodeoxyguanine repair system shows a high frequency of resistance to ciprofloxacin, FEMS Microbiol Lett, vol.290, pp.217-226, 2009.

L. H. Sanders, J. Sudhakaran, and M. D. Sutton, The GO system prevents ROSinduced mutagenesis and killing in Pseudomonas aeruginosa, FEMS Microbiol Lett, vol.294, pp.89-96, 2009.

M. S. Cooke, M. D. Evans, M. Dizdaroglu, and J. Lunec, Oxidative DNA damage: mechanisms, mutation, and disease, FASEB J, vol.17, pp.1195-1214, 2003.

A. J. Moyano, A. M. Luján, C. E. Smania, and A. M. , MutS deficiency and activity of the error-prone DNA polymerase IV are crucial for determining mucA as the main target for mucoid conversion in Pseudomonas aeruginosa, Mol Microbiol, vol.64, pp.547-559, 2007.

K. Mathee, O. Ciofu, C. Sternberg, P. W. Lindum, and J. I. Campbell, Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung, Microbiology, vol.145, pp.1349-1357, 1999.

U. A. Ochsner, M. L. Vasil, E. Alsabbagh, K. Parvatiyar, and D. J. Hassett, Role of the Pseudomonas aeruginosa oxyR-recG operon in oxidative stress defense and DNA repair: OxyR-dependent regulation of katB-ankB, ahpB, and ahpC-ahpF, J Bacteriol, vol.182, pp.4533-4544, 2000.

N. T. Liberati, J. M. Urbach, S. Miyata, D. G. Lee, and E. Drenkard, An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants, Proc Natl Acad Sci U S A, vol.103, pp.2833-2838, 2006.

E. I. Lutter, M. M. Faria, H. R. Rabin, and D. G. Storey, Pseudomonas aeruginosa cystic fibrosis isolates from individual patients demonstrate a range of levels of lethality in two Drosophila melanogaster infection models, Infect Immun, vol.76, pp.1877-1888, 2008.

S. Limmer, S. Haller, E. Drenkard, J. Lee, and S. Yu, Pseudomonas aeruginosa RhlR is required to neutralize the cellular immune response in a Drosophila melanogaster oral infection model, Proc Natl Acad Sci U S A, vol.108, pp.17378-17383

C. Kiewitz and B. Tümmler, Sequence diversity of Pseudomonas aeruginosa: impact on population structure and genome evolution, J Bacteriol, vol.182, pp.3125-3135, 2000.

D. H. Spencer, A. Kas, E. E. Smith, C. K. Raymond, and E. H. Sims, Wholegenome sequence variation among multiple isolates of Pseudomonas aeruginosa, J Bacteriol, vol.185, pp.1316-1325, 2003.

K. Mathee, G. Narasimhan, C. Valdes, X. Qiu, and J. M. Matewish, Dynamics of Pseudomonas aeruginosa genome evolution, Proc Natl Acad Sci, vol.105, pp.3100-3105, 2008.

G. L. Winsor, D. K. Lam, L. Fleming, R. Lo, and M. D. Whiteside, Pseudomonas Genome Database: improved comparative analysis and population genomics capability for Pseudomonas genomes, Nucleic Acids Res, vol.39, pp.596-600, 2011.

A. M. Smania, I. Segura, R. J. Pezza, C. Becerra, and I. Albesa, Emergence of phenotypic variants upon mismatch repair disruption in Pseudomonas aeruginosa, Microbiology, vol.150, pp.1327-1338, 2004.

S. Feliziani, A. M. Luján, A. J. Moyano, C. Sola, and J. L. Bocco, Mucoidy, quorum sensing, mismatch repair and antibiotic resistance in Pseudomonas aeruginosa from cystic fibrosis chronic airways infections, PLOS One, vol.5, p.12669, 2010.

A. Løbner-olesen and E. Boye, Different effects of mioC transcription on initiation of chromosomal and minichromosomal replication in Escherichia coli, Nucleic Acids Research, vol.20, pp.3029-3036, 1992.

O. M. Birch, K. S. Hewitson, M. Fuhrmann, K. Burgdorf, and J. E. Baldwin, MioC is an FMN-binding protein that is essential for Escherichia coli biotin synthase activity in vitro, J Biol Chem, vol.275, pp.32277-32280, 2000.

K. J. Puan, H. Wang, T. Dairi, T. Kuzuyama, and C. T. Morita, fldA is an essential gene required in the 2-C-methyl-D-erythritol 4-phosphate pathway for isoprenoid biosynthesis, FEBS Lett, vol.579, pp.3802-3806, 2005.

P. J. Pomposiello, M. H. Bennik, and B. Demple, Genome-wide transcriptional profiling of the Escherichia coli responses to superoxide stress and sodium salicylate, J Bacteriol, vol.183, pp.3890-3902, 2001.

M. Zheng, X. Wang, L. J. Templeton, D. R. Smulski, and R. A. Larossa, DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide, J Bacteriol, vol.183, pp.4562-4570, 2001.

K. D. Schmidt, B. Tümmler, and U. Römling, Comparative genome mapping of Pseudomonas aeruginosa PAO with P. aeruginosa C, which belongs to a major clone in cystic fibrosis patients and aquatic habitats, J Bacteriol, vol.178, pp.85-93, 1996.

M. W. Silby, C. Winstanley, S. A. Godfrey, S. B. Levy, and R. W. Jackson, Pseudomonas genomes: diverse and adaptable, FEMS Microbiol Rev, vol.35, pp.652-680, 2011.
DOI : 10.1111/j.1574-6976.2011.00269.x

URL : https://academic.oup.com/femsre/article-pdf/35/4/652/18128746/35-4-652.pdf

D. J. Hassett and M. S. Cohen, Bacterial adaptation to oxidative stress: implications for pathogenesis and interaction with phagocytic cells, FASEB J, vol.3, pp.2574-2582, 1989.
DOI : 10.1096/fasebj.3.14.2556311

Q. Wei, P. N. Minh, A. Dotsch, F. Hildebrand, and W. Panmanee, Global regulation of gene expression by OxyR in an important human opportunistic pathogen, Nucleic Acids Res, vol.40, pp.4320-4333, 2012.

S. E. Maddocks and P. C. Oyston, Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins, Microbiology, vol.154, pp.3609-3623, 2008.

J. D. Hayes, J. U. Flanagan, and I. R. Jowsey, Glutathione transferases, Annu Rev Pharmacol Toxicol, vol.45, pp.51-88, 2005.

J. Rosti, C. J. Barton, S. Albrecht, P. Dupree, and M. Pauly, UDP-glucose 4epimerase isoforms UGE2 and UGE4 cooperate in providing UDP-galactose for cell wall biosynthesis and growth of Arabidopsis thaliana, Plant Cell, vol.19, pp.1565-1579, 2007.

B. Cresnar, A. Plaper, K. Breskvar, and T. Hudnik-plevnik, cDNA sequence and deduced amino acid sequence of a fungal stress protein induced in Rhizopus nigricans by steroids, Biochem Biophys Res Commun, vol.250, pp.664-667, 1998.

A. Fanous, M. Hecker, A. Gorg, H. Parlar, and F. Jacob, Corynebacterium glutamicum as an indicator for environmental cobalt and silver stress-a proteome analysis, J Environ Sci Health B, vol.45, pp.666-675, 2010.
DOI : 10.1080/03601234.2010.502442

R. Grifantini, C. Toukoki, A. Colaprico, and I. Gryllos, Peroxide stimulon and role of PerR in group A Streptococcus, J Bacteriol, vol.193, pp.6539-6551, 2011.

R. Bryk, C. D. Lima, H. Erdjument-bromage, P. Tempst, and C. Nathan, Metabolic enzymes of mycobacteria linked to antioxidant defense by a thioredoxin-like protein, Science, vol.295, pp.1073-1077, 2002.

N. Cifani, B. Pompili, M. Anile, M. Patella, and D. Diso, Reactive-oxygenspecies-mediated P. aeruginosa killing is functional in human cystic fibrosis macrophages, PLOS One, vol.8, p.71717, 2013.

G. W. Lau, B. E. Britigan, and D. J. Hassett, Pseudomonas aeruginosa OxyR is required for full virulence in rodent and insect models of infection and for resistance to human neutrophils, Infect Immun, vol.73, pp.2550-2553, 2005.

M. A. Jacobs, A. Alwood, I. Thaipisuttikul, D. Spencer, and E. Haugen, Comprehensive transposon mutant library of Pseudomonas aeruginosa, Proc Natl Acad Sci U S A, vol.100, pp.14339-14344, 2003.
DOI : 10.1073/pnas.2036282100

URL : http://www.pnas.org/content/100/24/14339.full.pdf

M. E. Kovach, P. H. Elzer, D. S. Hill, G. T. Robertson, and M. A. Farris, Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes, Gene, vol.166, pp.175-176, 1995.

K. H. Choi and H. P. Schweizer, mini-Tn7 insertion in bacteria with single attTn7 sites: example Pseudomonas aeruginosa, Nat Protoc, vol.1, pp.153-161, 2006.
DOI : 10.1038/nprot.2006.24

T. T. Hoang, R. R. Karkhoff-schweizer, A. J. Kutchma, and H. P. Schweizer, A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants, Gene, vol.212, pp.77-86, 1998.

M. Shin, Ferredoxin-NADP reductase from spinach, Methods Enzymol, vol.23, pp.440-447, 1971.
DOI : 10.1016/s0076-6879(71)23116-5

J. M. Delong, R. K. Prange, D. M. Hodges, C. F. Forney, and M. C. Bishop, Using a modified ferrous oxidation-xylenol orange (FOX) assay for detection of lipid hydroperoxides in plant tissue, J Agric Food Chem, vol.50, pp.248-254, 2002.

J. J. Sedmak and S. E. Grossberg, A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250, Anal Biochem, vol.79, pp.544-552, 1977.

A. Rodríguez-rojas and J. Blázquez, The Pseudomonas aeruginosa pfpI gene plays an antimutator role and provides general stress protection, J Bacteriol, vol.191, pp.844-850, 2009.

S. M. Fleiszig, J. P. Wiener-kronish, H. Miyazaki, V. Vallas, and K. E. Mostov, Pseudomonas aeruginosa-mediated cytotoxicity and invasion correlate with distinct genotypes at the loci encoding exoenzyme S, Infect Immun, vol.65, pp.579-586, 1997.