M. Ghildiyal and P. D. Zamore, Small silencing RNAs: an expanding universe, Nat. Rev. Genet, vol.10, pp.94-108, 2009.

H. Ishizu, H. Siomi, and M. C. Siomi, Biology of PIWI-interacting RNAs: new insights into biogenesis and function inside and outside of germlines, Genes Dev, vol.26, pp.2361-2373, 2012.

J. Brennecke, A. A. Aravin, A. Stark, M. Dus, M. Kellis et al., Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila, Cell, vol.128, pp.1089-1103, 2007.

L. S. Gunawardane, K. Saito, K. M. Nishida, K. Miyoshi, Y. Kawamura et al., A slicer-mediated mechanism for repeat-associated siRNA 5 end formation in Drosophila, Science, vol.315, pp.1587-1590, 2007.

M. C. Siomi, K. Sato, D. Pezic, and A. A. Aravin, PIWI-interacting small RNAs: the vanguard of genome defence, Nat. Rev. Mol. Cell Biol, vol.12, pp.246-258, 2011.

R. J. Ross, M. M. Weiner, and H. Lin, PIWI proteins and PIWI-interacting RNAs in the soma, Nature, vol.505, pp.353-359, 2014.

P. Miesen, J. Joosten, and R. P. Van-rij, PIWIs Go Viral: Arbovirus-Derived piRNAs in Vector Mosquitoes, PLoS Pathog, vol.12, p.1006017, 2016.

D. Palakodeti, M. Smielewska, Y. Lu, G. W. Yeo, and B. R. Graveley, The PIWI proteins SMEDWI-2 and SMEDWI-3 are required for stem cell function and piRNA expression in planarians, RNA, vol.14, pp.1174-1186, 2008.

P. W. Reddien, N. J. Oviedo, J. R. Jennings, J. C. Jenkin, and A. Sánchez-alvarado, SMEDWI-2 is a PIWI-like protein that regulates planarian stem cells, Science, vol.310, pp.1327-1330, 2005.

X. Zhou, G. Battistoni, O. Demerdash-el, J. Gurtowski, J. Wunderer et al., Dual functions of Macpiwi1 in transposon silencing and stem cell maintenance in the flatworm Macrostomum lignano, RNA, vol.21, pp.1885-1897, 2015.

, Nucleic Acids Research, vol.45, issue.8, p.4891, 2017.

Y. Rinkevich, A. Rosner, C. Rabinowitz, Z. Lapidot, E. Moiseeva et al., Piwi positive cells that line the vasculature epithelium, underlie whole body regeneration in a basal chordate, Dev. Biol, vol.345, pp.94-104, 2010.

K. Seipel, N. Yanze, and V. Schmid, The germ line and somatic stem cell gene Cniwi in the jellyfish Podocoryne carnea, Int. J. Dev. Biol, vol.48, pp.1-7, 2004.

C. D. Malone, J. Brennecke, M. Dus, A. Stark, W. R. Mccombie et al., Specialized piRNA pathways act in germline and somatic tissues of the Drosophila ovary, Cell, vol.137, pp.522-535, 2009.

C. Li, V. V. Vagin, S. Lee, J. Xu, S. Ma et al., Collapse of germline piRNAs in the absence of Argonaute3 reveals somatic piRNAs in flies, Cell, vol.137, pp.509-521, 2009.

Z. Yan, H. Y. Hu, X. Jiang, V. Maierhofer, E. Neb et al., Widespread expression of piRNA-like molecules in somatic tissues, Nucleic Acids Res, vol.39, pp.6596-6607, 2011.

E. J. Lee, S. Banerjee, H. Zhou, A. Jammalamadaka, M. Arcila et al., Identification of piRNAs in the central nervous system, RNA, vol.17, pp.1090-1099, 2011.

V. D. Martinez, E. A. Vucic, K. L. Thu, R. Hubaux, K. S. Enfield et al., Unique somatic and malignant expression patterns implicate PIWI-interacting RNAs in cancer-type specific biology, Sci. Rep, vol.5, p.10423, 2015.

F. Cichocki, T. Lenvik, N. Sharma, G. Yun, S. K. Anderson et al., Cutting edge: KIR antisense transcripts are processed into a 28-Base PIWI-Like RNA in human NK cells, J. Immunol, vol.185, 2009.

N. Vodovar, A. W. Bronkhorst, K. W. Van-cleef, P. Miesen, H. Blanc et al., Arbovirus-derived piRNAs exhibit a ping-pong signature in mosquito cells, PLoS One, vol.7, p.30861, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01379361

P. Miesen, E. Girardi, and R. P. Van-rij, Distinct sets of PIWI proteins produce arbovirus and transposon-derived piRNAs in Aedes aegypti mosquito cells, Nucleic Acids Res, vol.43, pp.6545-6556, 2015.

P. Miesen, A. Ivens, A. H. Buck, and R. P. Van-rij, Small RNA profiling in dengue virus 2-infected aedes mosquito cells reveals viral piRNAs and novel host miRNAs, PLoS Negl. Trop. Dis, vol.10, p.4452, 2016.

E. Schnettler, C. L. Donald, S. Human, M. Watson, R. W. Siu et al., Knockdown of piRNA pathway proteins results in enhanced Semliki Forest virus production in mosquito cells, J. Gen. Virol, vol.94, pp.1680-1689, 2013.

P. Leger, E. Lara, B. Jagla, O. Sismeiro, Z. Mansuroglu et al., Dicer-2-and Piwi-mediated RNA interference in rift valley fever virus-infected mosquito cells, J. Virol, vol.87, pp.1631-1648, 2013.

E. M. Morazzani, M. R. Wiley, M. G. Murreddu, Z. N. Adelman, and K. M. Myles, Production of virus-derived ping-pong-dependent piRNA-like small RNAs in the mosquito soma, PLoS Pathog, vol.8, p.1002470, 2012.

C. L. Campbell, W. C. Black, A. M. Hess, and B. D. Foy, Comparative genomics of small RNA regulatory pathway components in vector mosquitoes, BMC Genomics, vol.9, p.425, 2008.

V. Nene, J. R. Wortman, D. Lawson, B. Haas, C. Kodira et al., Genome sequence of Aedes aegypti, a major arbovirus vector, Science, vol.316, pp.1718-1723, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00156214

P. Arensburger, R. H. Hice, J. A. Wright, N. L. Craig, and P. W. Atkinson, The mosquito Aedes aegypti has a large genome size and high transposable element load but contains a low proportion of transposon-specific piRNAs, BMC Genomics, vol.12, p.606, 2011.

I. Biryukova and T. Ye, Endogenous siRNAs and piRNAs derived from transposable elements and genes in the malaria vector mosquito Anopheles gambiae, BMC Genomics, vol.16, p.278, 2015.

F. Zhong, N. Zhou, K. Wu, Y. Guo, W. Tan et al., A SnoRNA-derived piRNA interacts with human interleukin-4 pre-mRNA and induces its decay in nuclear exosomes, Nucleic Acids Res, vol.43, pp.10474-10491, 2015.

S. P. Keam, P. E. Young, A. L. Mccorkindale, T. H. Dang, J. L. Clancy et al., The human Piwi protein Hiwi2 associates with tRNA-derived piRNAs in somatic cells, Nucleic Acids Res, vol.42, pp.8984-8995, 2014.

L. Castellano, E. Rizzi, J. Krell, M. Di-cristina, R. Galizi et al., The germline of the malaria mosquito produces abundant miRNAs, endo-siRNAs, piRNAs and 29-nt small RNAs, BMC Genomics, p.100, 2015.

N. Robine, N. C. Lau, S. Balla, Z. Jin, K. Okamura et al., A broadly conserved pathway generates 3 UTR-directed primary piRNAs, Curr. Biol, vol.19, pp.2066-2076, 2009.

J. Yamtich, S. Heo, J. Dhahbi, D. I. Martin, and D. Boffelli, piRNA-like small RNAs mark extended 3 UTRs present in germ and somatic cells, BMC Genomics, vol.16, p.462, 2015.

W. F. Marzluff, E. J. Wagner, and R. J. Duronio, Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail, Nat. Rev. Genet, vol.9, pp.843-854, 2008.

M. Davila-lopez and T. Samuelsson, Early evolution of histone mRNA 3 end processing, RNA, vol.14, pp.1-10, 2007.

X. Chen, X. Jiang, J. Gu, M. Xu, Y. Wu et al., Genome sequence of the Asian Tiger mosquito, Aedes albopictus, reveals insights into its biology, genetics, and evolution, Proc. Natl. Acad. Sci. U.S.A, vol.112, pp.5907-5915, 2015.

S. Crochu, S. Cook, H. Attoui, R. N. Charrel, R. De-chesse et al., Sequences of flavivirus-related RNA viruses persist in DNA form integrated in the genome of Aedes spp. mosquitoes, J. Gen. Virol, vol.85, pp.1971-1980, 2004.

A. D. Baxevanis and D. Landsman, Histone Sequence Database: a compilation of highly-conserved nucleoprotein sequences, Nucleic Acids Res, vol.24, pp.245-247, 1996.

A. Akhmanova, K. Miedema, and W. Hennig, Identification and characterization of the Drosophila histone H4 replacement gene, FEBS Lett, vol.388, pp.219-222, 1996.

M. E. Haac, M. A. Anderson, H. Eggleston, K. M. Myles, and Z. N. Adelman, The hub protein loquacious connects the microRNA and short interfering RNA pathways in mosquitoes, Nucleic Acids Res, vol.43, pp.3688-3700, 2015.

B. Simon, J. P. Kirkpatrick, S. Eckhardt, M. Reuter, E. A. Rocha et al., Recognition of 2'-O-methylated 3'-end of piRNA by the PAZ domain of a Piwi protein, Structure, vol.19, pp.172-180, 2011.

Y. Tian, D. K. Simanshu, J. Ma, and D. J. Patel, Structural basis for piRNA 2'-O-methylated 3'-end recognition by Piwi PAZ (Piwi/Argonaute/Zwille) domains, Proc. Natl. Acad. Sci. U.S.A, vol.108, pp.903-910, 2011.

S. Kawaoka, N. Izumi, S. Katsuma, and Y. Tomari, 3 end formation of PIWI-interacting RNAs in vitro, Mol. Cell, vol.43, pp.1015-1022, 2011.

A. Aravin, D. Gaidatzis, S. Pfeffer, M. Lagos-quintana, P. Landgraf et al., A novel class of small RNAs bind to MILI protein in mouse testes, Nature, vol.442, pp.203-207, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00092778

A. Girard, R. Sachidanandam, G. J. Hannon, and M. A. Carmell, A germline-specific class of small RNAs binds mammalian Piwi proteins, Nature, vol.442, pp.199-202, 2006.

S. T. Grivna, E. Beyret, Z. Wang, and H. Lin, A novel class of small RNAs in mouse spermatogenic cells, Genes Dev, vol.20, pp.1709-1714, 2006.

T. Watanabe, A. Takeda, T. Tsukiyama, K. Mise, T. Okuno et al., Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes, Genes Dev, vol.20, pp.1732-1743, 2006.

V. V. Vagin, A distinct small RNA pathway silences selfish genetic elements in the germline, Science, vol.313, pp.320-324, 2006.

O. S. Akbari, I. Antoshechkin, H. Amrhein, B. Williams, R. Diloreto et al., The developmental transcriptome of the mosquito Aedes aegypti, an invasive species and major arbovirus vector, vol.3, pp.1493-1509, 2013.

F. Mohn, D. Handler, and J. Brennecke, Noncoding RNA. piRNA-guided slicing specifies transcripts for Zucchini-dependent, phased piRNA biogenesis, Science, vol.348, pp.812-817, 2015.

B. Barckmann, S. Pierson, J. Dufourt, C. Papin, C. Armenise et al., Aubergine iCLIP reveals piRNA-dependent decay of mRNAs involved in germ cell development in the early embryo, Cell Rep, vol.12, pp.1205-1216, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01186665

S. Krishna, A. Nair, S. Cheedipudi, D. Poduval, J. Dhawan et al., Deep sequencing reveals unique small RNA repertoire that is regulated during head regeneration in Hydra magnipapillata, Nucleic Acids Res, vol.41, pp.599-616, 2013.

S. Forcob, A. Bulic, F. J-¨-onsson, H. J. Lipps, and J. Postberg, , 2014.

, Epigenet. Chromatin, vol.7, p.4

P. K. Padmanabhan, C. Dumas, M. Samant, A. Rochette, M. J. Simard et al., Novel features of a PIWI-like protein homolog in the parasitic protozoan leishmania, PLoS One, vol.7, p.52612, 2012.

M. S. Klenov, S. A. Lavrov, A. P. Korbut, A. D. Stolyarenko, E. Y. Yakushev et al., Impact of nuclear Piwi elimination on chromatin state in Drosophila melanogaster ovaries, Nucleic Acids Res, vol.42, pp.6208-6218, 2014.

F. Martin, S. Barends, S. Jaeger, L. Schaeffer, L. Prongidi-fix et al., Cap-assisted internal initiation of translation of histone H4, Mol. Cell, vol.41, pp.197-209, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00561405

N. F. Parrish, K. Fujino, Y. Shiromoto, Y. W. Iwasaki, H. Ha et al., ) piRNAs derived from ancient viral processed pseudogenes as transgenerational sequence-specific immune memory in mammals, RNA, vol.21, pp.1691-1703, 2015.

B. W. Han, W. Wang, C. Li, Z. Weng, and P. D. Zamore, Noncoding RNA. piRNA-guided transposon cleavage initiates Zucchini-dependent, phased piRNA production, Science, vol.348, pp.817-821, 2015.

J. Gonzalez, H. Qi, N. Liu, and H. Lin, Piwi is a key regulator of both somatic and germline stem cells in the Drosophila testis, Cell Rep, vol.12, pp.150-161, 2015.

T. Kiuchi, H. Koga, M. Kawamoto, K. Shoji, H. Sakai et al., A single female-specific piRNA is the primary determiner of sex in the silkworm, Nature, vol.509, pp.633-636, 2014.

C. Rouget, C. Papin, A. Boureux, A. Meunier, B. Franco et al., Maternal mRNA deadenylation and decay by the piRNA pathway in the early Drosophila embryo, Nature, vol.467, pp.1128-1132, 2010.

G. Chirn, R. Rahman, Y. A. Sytnikova, J. A. Matts, M. Zeng et al., Conserved piRNA expression from a distinct set of piRNA cluster loci in eutherian mammals, PLoS Genet, vol.11, p.1005652, 2015.