J. Viala, C. Chaput, I. G. Boneca, A. Cardona, S. E. Girardin et al., Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island, Nat. Immunol, vol.5, pp.1166-1174, 2004.

P. L. Kohler, H. L. Hamilton, K. Cloud-hansen, and J. P. Dillard, AtlA functions as a peptidoglycan lytic transglycosylase in the Neisseria gonorrhoeae type IV secretion system, J. Bacteriol, vol.189, pp.5421-5428, 2007.

K. A. Cloud-hansen, K. T. Hackett, D. L. Garcia, and J. P. Dillard, Neisseria gonorrhoeae uses two lytic transglycosylases to produce cytotoxic peptidoglycan monomers, J. Bacteriol, vol.190, pp.5989-5994, 2008.

Y. A. Chan, K. T. Hackett, and J. P. Dillard, The lytic transglycosylases of Neisseria gonorrhoeae, Microb. Drug Resist, vol.18, pp.271-279, 2012.

C. Medline,

R. E. Schaub, Y. A. Chan, M. Lee, D. Hesek, S. Mobashery et al., Lytic transglycosylases LtgA and LtgD perform distinct roles in remodeling, recycling and releasing peptidoglycan in Neisseria gonorrhoeae, Mol. Microbiol, vol.102, pp.865-881, 2016.

N. T. Blackburn, C. , and A. J. , Identification of four families of peptidoglycan lytic transglycosylases, J. Mol. Evol, vol.52, pp.78-84, 2001.

C. W. Reid, N. T. Blackburn, B. A. Legaree, F. I. Auzanneau, C. et al., Inhibition of membrane-bound lytic transglycosylase B by NAG-thiazoline, FEBS Lett, vol.574, pp.73-79, 2004.

M. F. Templin, D. H. Edwards, and J. V. Höltje, A murein hydrolase is the specific target of bulgecin in Escherichia coli, J. Biol. Chem, vol.267, 1992.

A. M. Thunnissen, H. J. Rozeboom, K. H. Kalk, and B. W. Dijkstra, Structure of the 70-kDa soluble lytic transglycosylase complexed with bulgecin A: implications for the enzymatic mechanism, Biochemistry, vol.34, pp.12729-12737, 1995.

E. J. Van-asselt, K. H. Kalk, and B. W. Dijkstra, Crystallographic studies of the interactions of Escherichia coli lytic transglycosylase Slt35 with peptidoglycan, Biochemistry, vol.39, 1924.

G. Fibriansah, F. I. Gliubich, and A. M. Thunnissen, On the mechanism of peptidoglycan binding and cleavage by the endo-specific lytic transglycosylase MltE from Escherichia coli, Biochemistry, vol.51, pp.9164-9177, 2012.

M. Bonis, A. Williams, S. Guadagnini, C. Werts, and I. G. Boneca, The effect of bulgecin A on peptidoglycan metabolism and physiology of Helicobacter pylori, Microb. Drug Resist, vol.18, pp.230-239, 2012.

M. J. Skalweit, L. , and M. , Bulgecin A as a beta-lactam enhancer for carbapenem-resistant Pseudomonas aeruginosa and carbapenem-resistant Acinetobacter baumannii clinical isolates containing various resistance mechanisms, Drug Des. Devel. Ther, vol.10, pp.3013-3020, 2016.

A. H. Williams, R. Wheeler, C. Thiriau, A. Haouz, M. K. Taha et al., Bulgecin A: the key to a broad-spectrum inhibitor that targets lytic transglycosylases. Antibiotics (Basel) 6, E8 CrossRef Medline 15, J. Bacteriol, vol.179, pp.5465-5470, 1997.
URL : https://hal.archives-ouvertes.fr/pasteur-02013262

H. Engel, A. J. Smink, L. Van-wijngaarden, and W. Keck, Mureinmetabolizing enzymes from Escherichia coli: existence of a second lytic transglycosylase, J. Bacteriol, vol.174, pp.6394-6403, 1992.

A. J. Dijkstra, F. Hermann, and W. Keck, Cloning and controlled overexpression of the gene encoding the 35 kDa soluble lytic transglycosylase from Escherichia coli, FEBS Lett, vol.366, pp.429-435, 1995.

E. J. Van-asselt, A. J. Dijkstra, K. H. Kalk, B. Takacs, W. Keck et al., Crystal structure of Escherichia coli lytic transglycosylase Slt35 reveals a lysozyme-like catalytic domain with an EF-hand, Structure, vol.7, pp.1167-1180, 1999.

A. K. Leung, H. S. Duewel, J. F. Honek, and A. M. Berghuis, Crystal structure of the lytic transglycosylase from bacteriophage lambda in complex with hexa-N-acetylchitohexaose, Biochemistry, vol.40, pp.5665-5673, 2001.

E. J. Van-asselt, A. M. Thunnissen, and B. W. Dijkstra, High resolution crystal structures of the Escherichia coli lytic transglycosylase Slt70 and its complex with a peptidoglycan fragment, J. Mol. Biol, vol.291, pp.877-898, 1999.

T. Romeis, W. Vollmer, and J. V. Höltje, Characterization of three different lytic transglycosylases in Escherichia coli, FEMS Microbiol. Lett, vol.111, pp.141-146, 1993.

W. Vollmer, B. Joris, P. Charlier, and S. Foster, Bacterial peptidoglycan (murein) hydrolases, FEMS Microbiol. Rev, vol.32, pp.259-286, 2008.

C. Medline,

T. Fukamizo, T. Minematsu, Y. Yanase, K. Hayashi, G. et al., Substrate size dependence of lysozyme-catalyzed reaction, Arch. Biochem. Biophys, vol.250, pp.312-321, 1986.

J. V. Höltje, E. Scheurwater, C. W. Reid, C. , and A. J. , Lytic transglycosylases: bacterial space-making autolysins, Int. J. Biochem. Cell Biol, vol.75, pp.586-591, 1996.

K. E. Van-straaten, B. W. Dijkstra, W. Vollmer, and A. M. Thunnissen, Crystal structure of MltA from Escherichia coli reveals a unique lytic transglycosylase fold, J. Mol. Biol, vol.352, 2005.

A. J. Powell, Z. J. Liu, R. A. Nicholas, and C. Davies, Crystal structures of the lytic transglycosylase MltA from N. gonorrhoeae and E. coli: insights into interdomain movements and substrate binding, J. Mol. Biol, vol.359, pp.122-136, 2006.

C. Artola-recolons, M. Lee, N. Bernardo-garcía, B. Blázquez, D. Hesek et al., High-resolution crystal structure of MltE, an outer membrane-anchored endolytic peptidoglycan lytic transglycosylase from Escherichia coli, CrossRef Medline, vol.9, pp.2384-2386, 2011.

C. Artola-recolons, L. I. Llarrull, E. Lastochkin, S. Mobashery, J. A. Hermoso et al., Structure of Escherichia coli Lytic transglycosylase MltA with bound chitohexaose: implications for peptidoglycan binding and cleavage, Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun, vol.67, pp.21197-21205, 2007.

T. Fukamizo, T. Torikata, S. Kuhara, and K. Hayashi, Human lysozyme-catalyzed reaction of chitooligosaccharides, J. Biochem, vol.92, pp.709-716, 1982.

A. J. Kirby, The lysozyme mechanism sorted: after 50 years, Nat. Struct. Biol, vol.8, pp.737-739, 2001.

D. J. Vocadlo, G. J. Davies, R. Laine, and S. G. Withers, Catalysis by hen egg-white lysozyme proceeds via a covalent intermediate, Nature, vol.412, pp.835-838, 2001.

A. F. Monzingo, E. M. Marcotte, P. J. Hart, and J. D. Robertus, Chitinases, chitosanases, and lysozymes can be divided into procaryotic and eucaryotic families sharing a conserved core, Nat. Struct. Biol, vol.3, pp.133-140, 1996.

P. D. Adams, P. V. Afonine, G. Bunkóczi, V. B. Chen, I. W. Davis et al., PHENIX: a comprehensive Python-based system for macromolecular structure solution, Acta Crystallogr. D Biol. Crystallogr, vol.66, pp.213-221, 2010.

G. M. Sheldrick, A short history of SHELX, Acta Crystallogr. A, vol.64, pp.112-122, 2008.

W. Kabsch, XDS. XDS. Acta Crystallogr. D Biol. Crystallogr, vol.66, pp.125-132, 2010.

P. Emsley, C. , and K. , Coot: model-building tools for molecular graphics, Acta Crystallogr. D Biol. Crystallogr, vol.60, pp.2126-2132, 2004.

, The CCP4 suite: programs for protein crystallography, Collaborative Computational Project, Number, vol.4, pp.760-763, 1994.

I. W. Davis, L. W. Murray, J. S. Richardson, and D. C. Richardson, MolProbity: structure validation and all-atom contact analysis for nucleic acids and their complexes, Nucleic Acids Res, vol.32, 2004.

F. W. Studier, Protein production by auto-induction in high density shaking cultures, Protein Expr. Purif, vol.41, pp.207-234, 2005.