M. S. Goodwin and A. A. Weiss, Adenylate cyclase toxin is critical for colonization and pertussis toxin is critical for lethal infection by Bordetella pertussis in infant mice, Infection and immunity, vol.58, pp.3445-3447, 1990.

N. Khelef, H. Sakamoto, and N. Guiso, Both adenylate cyclase and hemolytic activities are required by Bordetella pertussis to initiate infection, Microbial pathogenesis, vol.12, pp.227-235, 1992.

P. Guermonprez, N. Khelef, E. Blouin, P. Rieu, P. Ricciardi-castagnoli et al., The adenylate cyclase toxin of Bordetella pertussis binds to target cells via the alpha(M)beta(2) integrin (CD11b/CD18), The Journal of experimental medicine, vol.193, pp.1035-1079, 2001.

J. Vojtova, J. Kamanova, and P. Sebo, Bordetella adenylate cyclase toxin: a swift saboteur of host defense, Curr Opin Microbiol, vol.9, pp.69-75, 2006.

R. Fiser, J. Masin, M. Basler, J. Krusek, V. Spulakova et al., Third activity of Bordetella adenylate cyclase (AC) toxin-hemolysin. Membrane translocation of AC domain polypeptide promotes calcium influx into CD11b+ monocytes independently of the catalytic and hemolytic activities, J Biol Chem, vol.282, pp.2808-2820, 2007.

L. Bumba, J. Masin, R. Fiser, and P. Sebo, Bordetella adenylate cyclase toxin mobilizes its beta2 integrin receptor into lipid rafts to accomplish translocation across target cell membrane in two steps, PLoS pathogens, vol.6, p.1000901, 2010.

R. Fiser, J. Masin, L. Bumba, E. Pospisilova, C. Fayolle et al., Calcium influx rescues adenylate cyclase-hemolysin from rapid cell membrane removal and enables phagocyte permeabilization by toxin pores, PLoS pathogens, vol.8, p.1002580, 2012.

T. Wald, I. Petry-podgorska, R. Fiser, T. Matousek, J. Dedina et al., Quantification of potassium levels in cells treated with Bordetella adenylate cyclase toxin, Analytical biochemistry, vol.450, pp.57-62, 2014.

A. Dunne, P. J. Ross, E. Pospisilova, J. Masin, A. Meaney et al., Inflammasome activation by adenylate cyclase toxin directs Th17 responses and protection against Bordetella pertussis, Journal of immunology, vol.185, pp.1711-1719, 2010.

P. Sebo, C. Fayolle, O. Andria, D. Ladant, C. Leclerc et al., Cell-invasive activity of epitope-tagged adenylate cyclase of Bordetella pertussis allows in vitro presentation of a foreign epitope to CD8+ cytotoxic T cells, Infection and immunity, vol.63, pp.3851-3857, 1995.

C. Fayolle, P. Sebo, D. Ladant, A. Ullmann, and C. Leclerc, In vivo induction of CTL responses by recombinant adenylate cyclase of Bordetella pertussis carrying viral CD8+ T cell epitopes, Journal of immunology, vol.156, pp.4697-4706, 1996.

J. Holubova, J. Kamanova, J. Jelinek, J. Tomala, J. Masin et al., Delivery of large heterologous polypeptides across the cytoplasmic membrane of antigen-presenting cells by the Bordetella RTX hemolysin moiety lacking the adenylyl cyclase domain, Infection and immunity, vol.80, pp.1181-1192, 2012.

M. Simsova, P. Sebo, and C. Leclerc, The adenylate cyclase toxin from Bordetella pertussis-a novel promising vehicle for antigen delivery to dendritic cells, IJMM, vol.293, pp.571-576, 2004.

I. Adkins, J. Holubova, M. Kosova, and L. Sadilkova, Bacteria and their toxins tamed for immunotherapy, Current pharmaceutical biotechnology, vol.13, pp.1446-1473, 2012.

J. Macdonald-fyall, D. Xing, M. Corbel, S. Baillie, R. Parton et al., Adjuvanticity of native and detoxified adenylate cyclase toxin of Bordetella pertussis towards co-administered antigens, Vaccine, vol.22, pp.4270-4281, 2004.

B. Orr, G. Douce, S. Baillie, R. Parton, and J. Coote, Adjuvant effects of adenylate cyclase toxin of Bordetella pertussis after intranasal immunisation of mice, Vaccine, vol.25, pp.64-71, 2007.

G. Y. Cheung, D. Xing, S. Prior, M. J. Corbel, R. Parton et al., Effect of different forms of adenylate cyclase toxin of Bordetella pertussis on protection afforded by an acellular pertussis vaccine in a murine model, Infection and immunity, vol.74, pp.6797-805, 2006.

G. Dadaglio, C. Fayolle, X. Zhang, B. Ryffel, M. Oberkampf et al., Antigen targeting to CD11b+ dendritic cells in association with TLR4/TRIF signaling promotes strong CD8+ T cell responses, Journal of immunology, vol.193, pp.1787-1798, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01942445

M. Basler, J. Masin, R. Osicka, and P. Sebo, Pore-forming and enzymatic activities of Bordetella pertussis adenylate cyclase toxin synergize in promoting lysis of monocytes, Infection and immunity, vol.74, pp.2207-2214, 2006.

A. Osickova, J. Masin, C. Fayolle, J. Krusek, M. Basler et al., Adenylate cyclase toxin translocates across target cell membrane without forming a pore, Mol Microbiol, vol.75, pp.1550-1562, 2010.

N. Matzner, I. M. Zemtsova, T. X. Nguyen, M. Duszenko, E. Shumilina et al., Ion channels modulating mouse dendritic cell functions, Journal of immunology, vol.181, pp.6803-6809, 2008.

A. Osickova, R. Osicka, E. Maier, R. Benz, and P. Sebo, An amphipathic alpha-helix including glutamates 509 and 516 is crucial for membrane translocation of adenylate cyclase toxin and modulates formation and cation selectivity of its membrane channels, J Biol Chem, vol.274, pp.37644-37650, 1999.

J. Banchereau, F. Briere, C. Caux, J. Davoust, S. Lebecque et al., Immunobiology of dendritic cells, Annu Rev Immunol, vol.18, pp.767-811, 2000.

K. M. Ardeshna, A. R. Pizzey, S. Devereux, and A. Khwaja, The PI3 kinase, p38 SAP kinase, and NF-kappaB signal transduction pathways are involved in the survival and maturation of lipopolysaccharide-stimulated human monocyte-derived dendritic cells, Blood, vol.96, pp.1039-1046, 2000.

J. F. Arrighi, M. Rebsamen, F. Rousset, V. Kindler, and C. Hauser, A critical role for p38 mitogen-activated protein kinase in the maturation of human blood-derived dendritic cells induced by lipopolysaccharide, TNF-alpha, and contact sensitizers, Journal of immunology, vol.166, pp.3837-3845, 2001.

T. Nakahara, H. Uchi, K. Urabe, Q. Chen, M. Furue et al., Role of c-Jun N-terminal kinase on lipopolysaccharide induced maturation of human monocyte-derived dendritic cells, International immunology, vol.16, pp.1701-1709, 2004.

M. Rescigno, M. Martino, C. L. Sutherland, M. R. Gold, and P. Ricciardi-castagnoli, Dendritic cell survival and maturation are regulated by different signaling pathways, The Journal of experimental medicine, vol.188, pp.2175-2180, 1998.

G. J. Randolph, G. Sanchez-schmitz, and V. Angeli, Factors and signals that govern the migration of dendritic cells via lymphatics: recent advances, Springer Semin Immunopathol, vol.26, pp.273-287, 2005.

D. Alvarez, E. H. Vollmann, and U. H. Von-andrian, Mechanisms and consequences of dendritic cell migration, Immunity, vol.29, pp.325-342, 2008.

E. Scandella, Y. Men, S. Gillessen, R. Forster, and M. Groettrup, Prostaglandin E2 is a key factor for CCR7 surface expression and migration of monocyte-derived dendritic cells, Blood, vol.100, pp.1354-1361, 2002.

K. Shortman and Y. J. Liu, Mouse and human dendritic cell subtypes, Nature reviews Immunology, vol.2, pp.151-161, 2002.

E. Shumilina, S. M. Huber, and F. Lang, Ca2+ signaling in the regulation of dendritic cell functions, American journal of physiology Cell physiology, vol.300, pp.1205-1214, 2011.

C. Dong, R. J. Davis, and R. A. Flavell, MAP kinases in the immune response, Annu Rev Immunol, vol.20, pp.55-72, 2002.

T. Nakahara, Y. Moroi, H. Uchi, and M. Furue, Differential role of MAPK signaling in human dendritic cell maturation and Th1/Th2 engagement, Journal of dermatological science, vol.42, pp.1-11, 2006.

Y. Yao, Q. Xu, M. J. Kwon, R. Matta, Y. Liu et al., ERK and p38 MAPK signaling pathways negatively regulate CIITA gene expression in dendritic cells and macrophages, Journal of immunology, vol.177, pp.70-76, 2006.

B. Chladkova, J. Kamanova, L. Palova-jelinkova, J. Cinova, P. Sebo et al., Gliadin fragments promote migration of dendritic cells, Journal of cellular and molecular medicine, vol.15, pp.938-948, 2011.

N. Iijima, Y. Yanagawa, J. M. Clingan, and K. Onoe, CCR7-mediated c-Jun N-terminal kinase activation regulates cell migration in mature dendritic cells, International immunology, vol.17, pp.1201-1212, 2005.

J. Norgauer, Y. Ibig, D. Gmeiner, Y. Herouy, and B. L. Fiebich, Prostaglandin E2 synthesis in human monocyte-derived dendritic cells, International journal of molecular medicine, vol.12, pp.83-86, 2003.

N. Kloft, T. Busch, C. Neukirch, S. Weis, F. Boukhallouk et al., Poreforming toxins activate MAPK p38 by causing loss of cellular potassium, Biochemical and biophysical research communications, vol.385, pp.503-506, 2009.

C. Y. Kao, F. C. Los, D. L. Huffman, S. Wachi, N. Kloft et al., Global functional analyses of cellular responses to pore-forming toxins, PLoS pathogens, vol.7, p.1001314, 2011.

D. L. Huffman, L. Abrami, R. Sasik, J. Corbeil, F. G. Van-der-goot et al., Mitogenactivated protein kinase pathways defend against bacterial pore-forming toxins, Proceedings of the National Academy of Sciences of the United States of America, vol.101, pp.10995-1000, 2004.

L. J. Bischof, C. Y. Kao, F. C. Los, M. R. Gonzalez, Z. Shen et al., Activation of the unfolded protein response is required for defenses against bacterial pore-forming toxin in vivo, PLoS pathogens, vol.4, p.1000176, 2008.

M. R. Gonzalez, M. Bischofberger, B. Freche, S. Ho, R. G. Parton et al., Poreforming toxins induce multiple cellular responses promoting survival, Cellular microbiology, vol.13, pp.1026-1043, 2011.

G. Dadaglio, S. Morel, C. Bauche, Z. Moukrim, F. A. Lemonnier et al.,

, Recombinant adenylate cyclase toxin of Bordetella pertussis induces cytotoxic T lymphocyte responses against HLA*0201-restricted melanoma epitopes, International immunology, vol.15, pp.1423-1430, 2003.

L. Mascarell, C. Fayolle, C. Bauche, D. Ladant, and C. Leclerc, Induction of neutralizing antibodies and Th1-polarized and CD4-independent CD8+ T-cell responses following delivery of human immunodeficiency virus type 1 Tat protein by recombinant adenylate cyclase of Bordetella pertussis, J Virol, vol.79, pp.9872-9884, 2005.

P. J. Ross, C. E. Sutton, S. Higgins, A. C. Allen, K. Walsh et al., Relative contribution of Th1 and Th17 cells in adaptive immunity to Bordetella pertussis: towards the rational design of an improved acellular pertussis vaccine, PLoS pathogens, vol.9, p.1003264, 2013.

K. H. Mills, P. J. Ross, A. C. Allen, and M. M. Wilk, Do we need a new vaccine to control the reemergence of pertussis?, Trends Microbiol, vol.22, pp.49-52, 2014.

, by TLR4/TRIF signaling 17 at higher toxoid concentrations. Grey untested hypotheses in this