S. Absalon, T. Blisnick, L. Kohl, G. Toutirais, G. Doré et al., Intraflagellar transport and functional analysis of genes required for flagellum formation in trypanosomes, Mol. Biol. Cell, vol.19, pp.929-944, 2008.
URL : https://hal.archives-ouvertes.fr/pasteur-00217549

C. Adhiambo, T. Blisnick, G. Toutirais, E. Delannoy, and P. Bastin, A novel function for the atypical small G protein Rab-like 5 in the assembly of the trypanosome flagellum, J. Cell Sci, vol.122, pp.834-841, 2009.

I. Arganda-carreras, R. Fernández-gonzález, A. Muñoz-barrutia, and C. Ortiz-de-solorzano, 3D reconstruction of histological sections: Application to mammary gland tissue, Microsc. Res. Tech, vol.73, pp.1019-1029, 2010.

G. Ball, J. Demmerle, R. Kaufmann, I. Davis, I. M. Dobbie et al., SIMcheck: a Toolbox for Successful Super-resolution Structured Illumination Microscopy, Sci. Rep, vol.5, p.15915, 2015.

P. Bastin, T. Sherwin, and K. Gull, Paraflagellar rod is vital for trypanosome motility, Nature, vol.391, p.548, 1998.

P. L. Beales, E. Bland, J. L. Tobin, C. Bacchelli, B. Tuysuz et al., IFT80, which encodes a conserved intraflagellar transport protein, is mutated in Jeune asphyxiating thoracic dystrophy, Nat. Genet, vol.39, pp.727-729, 2007.

T. Benaglia, D. Chauveau, D. Hunter, and D. Young, mixtools: An R Package for Analyzing Finite Mixture Models, J. Stat. Softw, vol.32, pp.1-29, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00384896

M. Berriman, E. Ghedin, C. Hertz-fowler, G. Blandin, H. Renauld et al., The genome of the African trypanosome Trypanosoma brucei, Science, vol.309, pp.416-422, 2005.

T. Y. Besschetnova, E. Kolpakova-hart, Y. Guan, J. Zhou, B. R. Olsen et al., Identification of signaling pathways regulating primary cilium length and flow-mediated adaptation, Curr. Biol, vol.20, pp.182-187, 2010.

S. Bhogaraju, L. Cajanek, C. Fort, T. Blisnick, K. Weber et al., Molecular basis of tubulin transport within the cilium by IFT74 and IFT81, Science, vol.341, pp.1009-1012, 2013.

T. Blisnick, J. Buisson, S. Absalon, A. Marie, N. Cayet et al., The intraflagellar transport dynein complex of trypanosomes is made of a heterodimer of dynein heavy chains and of light and intermediate chains of distinct functions, Mol. Biol. Cell, vol.25, pp.2620-2633, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01301215

S. Bolte and F. P. Cordelières, A guided tour into subcellular colocalization analysis in light microscopy, J. Microsc, vol.224, pp.213-232, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00132481

S. Bonnefoy, C. M. Watson, K. Kernohan, M. Lemos, S. Hutchinson et al., Biallelic Mutations in LRRC56 encoding a protein associated with intraflagellar transport, cause mucociliary clearance and laterality defects. bioRxiv, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-01931456

M. Bosch-grau, G. Gonzalez-curto, C. Rocha, M. M. Magiera, P. M. Sousa et al., Tubulin glycylases and glutamylases have distinct functions in stabilization and motility of ependymal cilia, J. Cell Biol, vol.202, pp.441-451, 2013.

C. Branche, L. Kohl, G. Toutirais, J. Buisson, J. Cosson et al., Conserved and specific functions of axoneme components in trypanosome motility, J. Cell Sci, vol.119, pp.3443-3455, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00108209

R. Broadhead, H. R. Dawe, H. Farr, S. Griffiths, S. R. Hart et al., Flagellar motility is required for the viability of the bloodstream trypanosome, Nature, vol.440, pp.224-227, 2006.

E. R. Brooks and J. B. Wallingford, Control of vertebrate intraflagellar transport by the planar cell polarity effector Fuz, J. Cell Biol, vol.198, pp.37-45, 2012.

R. Brun and S. , Cultivation and in vitro cloning or procyclic culture forms of Trypanosoma brucei in a semi-defined medium, Acta Trop, vol.36, pp.289-292, 1979.

J. Buisson, N. Chenouard, T. Lagache, T. Blisnick, J. C. Olivo-marin et al., Intraflagellar transport proteins cycle between the flagellum and its base, J. Cell Sci, vol.126, pp.327-338, 2013.

G. Burkard, C. M. Fragoso, and I. Roditi, Highly efficient stable transformation of bloodstream forms of Trypanosoma brucei, Mol. Biochem. Parasitol, vol.153, pp.220-223, 2007.

M. Casanova, F. De-monbrison, J. Van-dijk, C. Janke, M. Pagès et al., Characterisation of polyglutamylases in trypanosomatids, Int. J. Parasitol, vol.45, pp.121-132, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01883473

K. Y. Chan and K. Ersfeld, The role of the Kinesin-13 family protein TbKif13-2 in flagellar length control of Trypanosoma brucei, Mol. Biochem. Parasitol, vol.174, pp.137-140, 2010.

N. Chenouard, J. Buisson, I. Bloch, P. Bastin, and J. C. Olivo-marin, Curvelet analysis of kymograph for tracking bi-directional particles in flurescence microscopy images, International Conference on Image Processing, 2010.

A. Chien, S. M. Shih, R. Bower, D. Tritschler, M. E. Porter et al., Dynamics of the IFT machinery at the ciliary tip. eLife. 6:e28606, 2017.

C. Coutton, A. S. Vargas, A. Amiri-yekta, Z. E. Kherraf, S. F. Ben-mustapha et al., Mutations in CFAP43 and CFAP44 cause male infertility and flagellum defects in Trypanosoma and human, Nat. Commun, vol.9, p.686, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01724640

J. M. Craft, J. A. Harris, S. Hyman, P. Kner, and K. F. Lechtreck, Tubulin transport by IFT is upregulated during ciliary growth by a cilium-autonomous mechanism, J. Cell Biol, vol.208, pp.223-237, 2015.

D. Dacheux, N. Landrein, M. Thonnus, G. Gilbert, A. Sahin et al., A MAP6-related protein is present in protozoa and is involved in flagellum motility, PLoS One, vol.7, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01101397

N. Dagoneau, M. Goulet, D. Geneviève, Y. Sznajer, J. Martinovic et al., DYNC2H1 mutations cause asphyxiating thoracic dystrophy and short rib-polydactyly syndrome, type III, Journal of Cell Biology, vol.84, pp.706-711, 2009.

S. Dean, J. D. Sunter, and R. J. Wheeler, TrypTag.org: A Trypanosome Genome-wide Protein Localisation Resource, Trends Parasitol, vol.33, pp.80-82, 2017.

F. De-chaumont, S. Dallongeville, N. Chenouard, N. Hervé, S. Pop et al., Icy: an open bioimage informatics platform for extended reproducible research, Nat. Methods, vol.9, pp.690-696, 2012.

R. Demonchy, T. Blisnick, C. Deprez, G. Toutirais, C. Loussert et al., Kinesin 9 family members perform separate functions in the trypanosome flagellum, J. Cell Biol, vol.187, pp.615-622, 2009.
URL : https://hal.archives-ouvertes.fr/mnhn-02047425

C. Gadelha, B. Wickstead, P. G. Mckean, and K. Gull, Basal body and flagellum mutants reveal a rotational constraint of the central pair microtubules in the axonemes of trypanosomes, J. Cell Sci, vol.119, pp.2405-2413, 2006.

M. G. Gustafsson, Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy, J. Microsc, vol.198, pp.82-87, 2000.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya et al., Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination, Biophys. J, vol.94, pp.4957-4970, 2008.

J. Halbritter, A. A. Bizet, M. Schmidts, J. D. Porath, D. A. Braun et al., UK10K Consortium. 2013. Defects in the IFT-B component IFT172 cause Jeune and Mainzer-Saldino syndromes in humans, Am. J. Hum. Genet, vol.93, pp.915-925

T. Heuser, C. F. Barber, J. Lin, J. Krell, M. Rebesco et al., Cryoelectron tomography reveals doublet-specific structures and unique interactions in the I1 dynein, Proc. Natl. Acad. Sci. USA, vol.109, pp.2067-2076, 2012.

J. L. Höög, S. Lacomble, C. Bouchet-marquis, L. Briggs, K. Park et al., 3D Architecture of the Trypanosoma brucei Flagella Connector, a Mobile Transmembrane Junction, PLoS Negl. Trop. Dis, vol.10, p.4312, 2016.

D. Huet, T. Blisnick, S. Perrot, and P. Bastin, The GTPase IFT27 is involved in both anterograde and retrograde intraflagellar transport. eLife. 3:e02419, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01301212

L. C. Hughes, K. S. Ralston, K. L. Hill, and Z. H. Zhou, Three-dimensional structure of the Trypanosome flagellum suggests that the paraflagellar rod functions as a biomechanical spring, PLoS One, vol.7, 2012.

L. Hughes, S. Borrett, K. Towers, T. Starborg, and S. Vaughan, Patterns of organelle ontogeny through a cell cycle revealed by whole-cell reconstructions using 3D electron microscopy, J. Cell Sci, vol.130, pp.637-647, 2017.

M. Imboden, N. Müller, A. Hemphill, R. Mattioli, and T. Seebeck, Repetitive proteins from the flagellar cytoskeleton of African trypanosomes are diagnostically useful antigens, Parasitology, vol.110, pp.249-258, 1995.

C. Iomini, V. Babaev-khaimov, M. Sassaroli, and G. Piperno, Protein particles in Chlamydomonas flagella undergo a transport cycle consisting of four phases, J. Cell Biol, vol.153, pp.13-24, 2001.

C. Janke, K. Rogowski, D. Wloga, C. Regnard, A. V. Kajava et al., Tubulin polyglutamylase enzymes are members of the TTL domain protein family, Science, vol.308, pp.1758-1762, 2005.

S. Kelly, J. Reed, S. Kramer, L. Ellis, H. Webb et al., Functional genomics in Trypanosoma brucei: a collection of vectors for the expression of tagged proteins from endogenous and ectopic gene loci, Mol. Biochem. Parasitol, vol.154, pp.103-109, 2007.

C. Kizilyaprak, J. Daraspe, and B. M. Humbel, Focused ion beam scanning electron microscopy in biology, J. Microsc, vol.254, pp.109-114, 2014.

L. Kohl, T. Sherwin, and K. Gull, Assembly of the paraflagellar rod and the flagellum attachment zone complex during the Trypanosoma brucei cell cycle, J. Eukaryot. Microbiol, vol.46, pp.105-109, 1999.

A. Konno, M. Setou, and K. Ikegami, Ciliary and flagellar structure and function-their regulations by posttranslational modifications of axonemal tubulin, Int. Rev. Cell Mol. Biol, vol.294, pp.133-170, 2012.

A. Y. Koyfman, M. F. Schmid, L. Gheiratmand, C. J. Fu, H. A. Khant et al., Structure of Trypanosoma brucei flagellum accounts for its bihelical motion, Proc. Natl. Acad. Sci. USA, vol.108, pp.11105-11108, 2011.

K. G. Kozminski, K. A. Johnson, P. Forscher, and J. L. Rosenbaum, A motility in the eukaryotic flagellum unrelated to flagellar beating, Proc. Natl. Acad. Sci. USA, vol.90, pp.5519-5523, 1993.

T. Kubo, J. M. Brown, K. Bellve, B. Craige, J. M. Craft et al., Together, the IFT81 and IFT74 N-termini form the main module for intraflagellar transport of tubulin, J. Cell Sci, vol.129, pp.2106-2119, 2016.

S. Kuhns and O. E. Blacque, Cilia Train Spotting. Dev. Cell, vol.37, pp.395-396, 2016.

S. Lacomble, S. Vaughan, C. Gadelha, M. K. Morphew, M. K. Shaw et al., Three-dimensional cellular architecture of the flagellar pocket and associated cytoskeleton in trypanosomes revealed by electron microscope tomography, J. Cell Sci, vol.122, pp.1081-1090, 2009.

J. E. Lee, J. L. Silhavy, M. S. Zaki, J. Schroth, S. L. Bielas et al., CEP41 is mutated in Joubert syndrome and is required for tubulin glutamylation at the cilium, Nat. Genet, vol.44, pp.193-199, 2012.

D. Li, L. Shao, B. C. Chen, X. Zhang, M. Zhang et al., Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics, Science, vol.349, p.3500, 2015.

J. Lin, T. Heuser, K. Song, X. Fu, and D. Nicastro, One of the nine doublet microtubules of eukaryotic flagella exhibits unique and partially conserved structures, PLoS One, vol.7, 2012.

J. Mijalkovic, B. Prevo, F. Oswald, P. Mangeol, and E. J. Peterman, Ensemble and single-molecule dynamics of IFT dynein in Caenorhabditis elegans cilia, Nat. Commun, vol.8, p.14591, 2017.

M. Oberholzer, G. Langousis, H. T. Nguyen, E. A. Saada, M. M. Shimogawa et al., Independent analysis of the flagellum surface and matrix proteomes provides insight into flagellum signaling in mammalian-infectious Trypanosoma brucei, Mol. Cell. Proteomics, 2011.

N. Pathak, C. A. Austin, and I. A. Drummond, Tubulin tyrosine ligase-like genes ttll3 and ttll6 maintain zebrafish cilia structure and motility, J. Biol. Chem, vol.286, pp.11685-11695, 2011.
DOI : 10.1074/jbc.m110.209817

URL : http://www.jbc.org/content/286/13/11685.full.pdf

I. Perrault, S. Saunier, S. Hanein, E. Filhol, A. A. Bizet et al., Mainzer-Saldino syndrome is a ciliopathy caused by IFT140 mutations, Am. J. Hum. Genet, vol.90, pp.864-870, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00752958

G. Pigino, S. Geimer, S. Lanzavecchia, E. Paccagnini, F. Cantele et al., Electron-tomographic analysis of intraflagellar transport particle trains in situ, J. Cell Biol, vol.187, pp.135-148, 2009.

L. C. Pradel, M. Bonhivers, N. Landrein, and D. R. Robinson, NIMA-related kinase TbNRKC is involved in basal body separation in Trypanosoma brucei, J. Cell Sci, vol.119, pp.1852-1863, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00215921

B. Prevo, P. Mangeol, F. Oswald, J. M. Scholey, and E. J. Peterman, Functional differentiation of cooperating kinesin-2 motors orchestrates cargo import and transport in C. elegans cilia, Nat. Cell Biol, vol.17, pp.1536-1545, 2015.

B. Prevo, J. M. Scholey, and E. J. Peterman, Intraflagellar transport: mechanisms of motor action, cooperation, and cargo delivery, FEBS J, vol.284, pp.2905-2931, 2017.

K. S. Ralston, A. G. Lerner, D. R. Diener, and K. L. Hill, Flagellar motility contributes to cytokinesis in Trypanosoma brucei and is modulated by an evolutionarily conserved dynein regulatory system, Eukaryot. Cell, vol.5, pp.696-711, 2006.

. R-core-team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, 2014.

D. L. Ringo, Flagellar motion and fine structure of the flagellar apparatus in Chlamydomonas, J. Cell Biol, vol.33, pp.543-571, 1967.

K. Rogowski, F. Juge, J. Van-dijk, D. Wloga, J. M. Strub et al., Evolutionary divergence of enzymatic mechanisms for posttranslational polyglycylation, Cell, vol.137, pp.1076-1087, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00400172

P. Rompolas, L. B. Pedersen, R. S. Patel-king, and S. M. King, Chlamydomonas FAP133 is a dynein intermediate chain associated with the retrograde intraflagellar transport motor, J. Cell Sci, vol.120, pp.3653-3665, 2007.

C. Santrich, L. Moore, T. Sherwin, P. Bastin, C. Brokaw et al., LeBowitz. 1997. A motility function for the paraflagellar rod of Leishmania parasites revealed by PFR-2 gene knockouts, Mol. Biochem. Parasitol, vol.90, pp.149-156

J. Schindelin, I. Arganda-carreras, E. Frise, V. Kaynig, M. Longair et al., Fiji: an opensource platform for biological-image analysis, Nat. Methods, vol.9, pp.676-682, 2012.

A. Schneider, U. Plessmann, and K. Weber, Subpellicular and flagellar microtubules of Trypanosoma brucei are extensively glutamylated, J. Cell Sci, vol.110, pp.431-437, 1997.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nat. Methods, vol.9, pp.671-675, 2012.

N. C. Shaner, G. G. Lambert, A. Chammas, Y. Ni, P. J. Cranfill et al., A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum, Nat. Methods, vol.10, pp.407-409, 2013.

T. Sherwin and K. Gull, The cell division cycle of Trypanosoma brucei brucei: timing of event markers and cytoskeletal modulations, 1989.

, Trans. R. Soc. Lond. B Biol. Sci, vol.323, pp.573-588

M. Sirajuddin, L. M. Rice, and R. D. Vale, Regulation of microtubule motors by tubulin isotypes and post-translational modifications, Nat. Cell Biol, vol.16, pp.335-344, 2014.

J. J. Snow, G. Ou, A. L. Gunnarson, M. R. Walker, H. M. Zhou et al., Two anterograde intraflagellar transport motors cooperate to build sensory cilia on C. elegans neurons, Nat. Cell Biol, vol.6, pp.1109-1113, 2004.

L. Stepanek and G. Pigino, Microtubule doublets are double-track railways for intraflagellar transport trains, Science, vol.352, pp.721-724, 2016.

I. Subota, D. Julkowska, L. Vincensini, N. Reeg, J. Buisson et al., Proteomic analysis of intact flagella of procyclic Trypanosoma brucei cells identifies novel flagellar proteins with unique sub-localization and dynamics, Mol. Cell. Proteomics, vol.13, pp.1769-1786, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01301216

M. Taschner and E. Lorentzen, The Intraflagellar Transport Machinery, Cold Spring Harb. Perspect. Biol, vol.8, p.28092, 2016.

L. Tetley and K. Vickerman, Differentiation in Trypanosoma brucei: host-parasite cell junctions and their persistence during acquisition of the variable antigen coat, J. Cell Sci, vol.74, pp.1-19, 1985.

J. Van-dijk, K. Rogowski, J. Miro, B. Lacroix, B. Eddé et al., A targeted multienzyme mechanism for selective microtubule polyglutamylation, Mol. Cell, vol.26, pp.437-448, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00217041

E. Vannuccini, E. Paccagnini, F. Cantele, M. Gentile, D. Dini et al., Two classes of short intraflagellar transport train with different 3D structures are present in Chlamydomonas flagella, J. Cell Sci, vol.129, pp.2064-2074, 2016.

R. J. Wheeler, E. Gluenz, and K. Gull, Basal body multipotency and axonemal remodelling are two pathways to a 9+0 flagellum, Nat. Commun, vol.6, p.8964, 2015.

C. L. Williams, J. C. Mcintyre, S. R. Norris, P. M. Jenkins, L. Zhang et al., Direct evidence for BBSome-associated intraflagellar transport reveals distinct properties of native mammalian cilia, Nat. Commun, vol.5, p.5813, 2014.

J. L. Wingfield, H. Mengoni, Y. Y. Bomberger, J. D. Jiang, J. M. Walsh et al., IFT trains in different stages of assembly queue at the ciliary base for consecutive release into the cilium. eLife. 6:e26609, 2017.

E. Wirtz and C. Clayton, Inducible gene expression in trypanosomes mediated by a prokaryotic repressor, Science, vol.268, pp.1179-1183, 1995.

D. Wloga, D. M. Webster, K. Rogowski, M. H. Bré, N. Levilliers et al., TTLL3 Is a tubulin glycine ligase that regulates the assembly of cilia, Dev. Cell, vol.16, pp.867-876, 2009.