, Funding: This work was supported by the European Research Council (ERC) under the Europe Union's 204

, Horizon 2020 research and innovation program

, Government's Investissement d'Avenir program; Laboratoire d'Excellence, Integrative Biology, p.206

, Emerging Infectious Diseases

L. A. Marraffini, CRISPR-Cas immunity in prokaryotes, Nature, vol.526, pp.55-61, 2015.

P. D. Hsu, E. S. Lander, and F. Zhang, Development and applications of CRISPR-Cas9 for genome 223 engineering, Cell, vol.157, pp.1262-78, 2014.

H. Ledford, Nat. News, vol.522, p.20, 2015.

, Pennisi E: The CRISPR craze, Science, vol.341, pp.833-839, 2013.

K. S. Makarova, Y. I. Wolf, O. S. Alkhnbashi, F. Costa, S. A. Shah et al., , p.227

E. Charpentier and D. H. Haft, An updated evolutionary classification of CRISPR-Cas systems, Nat. 228 Rev. Microbiol, vol.13, pp.722-736, 2015.

, This study updated the classification and nomenclature of CRISPR-Cas systems and outlined their 230 occurrence and diversity in bacteria and archaea

S. J. Brouns, M. M. Jore, M. Lundgren, E. R. Westra, R. J. Slijkhuis et al., Makarova 232 KS, Koonin EV, van der Oost J: Small CRISPR RNAs guide antiviral defense in prokaryotes, Science, vol.233, pp.960-964, 2008.

T. Sinkunas, G. Gasiunas, S. P. Waghmare, M. J. Dickman, R. Barrangou et al., In 235 vitro reconstitution of Cascade-mediated CRISPR immunity in Streptococcus thermophilus, EMBO J, vol.236, pp.385-94, 2013.

J. E. Garneau, M. E. Dupuis, M. Villion, D. A. Romero, R. Barrangou et al., , p.238

A. H. Magadan and S. Moineau, The CRISPR/Cas bacterial immune system cleaves bacteriophage and 239 plasmid DNA, Nature, vol.468, pp.67-71, 2010.

G. Gasiunas, R. Barrangou, P. Horvath, and V. Siksnys, Cas9-crRNA ribonucleoprotein complex 241 mediates specific DNA cleavage for adaptive immunity in bacteria, Proc. Natl. Acad. Sci, vol.242, pp.15539-15540, 2012.

M. Jinek, K. Chylinski, I. Fonfara, M. Hauer, J. A. Doudna et al., A programmable dual244 RNA-guided DNA endonuclease in adaptive bacterial immunity, Science, vol.337, p.11, 2012.

R. Barrangou and J. A. Doudna, Applications of CRISPR technologies in research and beyond. Nat. 246 Biotechnol, vol.34, pp.933-941, 2016.

R. J. Citorik, M. Mimee, and T. K. Lu, Sequence-specific antimicrobials using efficiently delivered 248 RNA-guided nucleases, Nat Biotechnol, vol.32, pp.1141-1146, 2014.

*. , This report established a proof of concept that CRISPR-Cas9 systems can be delivered by phages to 250 target E. coli in vitro and in vivo

D. Bikard, W. Jiang, P. Samai, A. Hochschild, F. Zhang et al., Programmable repression 252 and activation of bacterial gene expression using an engineered CRISPR-Cas system, Nucleic Acids 253 Res, vol.41, pp.7429-7437, 2013.

W. Jiang, D. Bikard, D. Cox, F. Zhang, and L. A. Marraffini, RNA-guided editing of bacterial genomes 255 using CRISPR-Cas systems, Nat Biotechnol, vol.31, pp.233-239, 2013.

M. L. Luo, A. S. Mullis, R. T. Leenay, and C. L. Beisel, Repurposing endogenous type I CRISPR-Cas systems 257 for programmable gene repression, Nucleic Acids Res, vol.43, pp.674-681, 2015.

L. S. Qi, M. H. Larson, L. A. Gilbert, J. A. Doudna, J. S. Weissman et al., Repurposing 259 CRISPR as an RNA-guided platform for sequence-specific control of gene expression, Cell, vol.260, pp.1173-83, 2013.

M. Goren, I. Yosef, and U. Qimron, Sensitizing pathogens to antibiotics using the CRISPR-Cas 262 system, Drug Resist. Updat. Rev. Comment. Antimicrob. Anticancer Chemother, vol.30, p.18, 2017.

P. Horvath, D. A. Romero, A. C. Coute-monvoisin, M. Richards, H. Deveau et al., , p.264

C. Fremaux and R. Barrangou, Diversity, activity, and evolution of CRISPR loci in Streptococcus 265 thermophilus, J Bacteriol, vol.190, pp.1401-1413, 2008.

A. Stern, L. Keren, O. Wurtzel, G. Amitai, and R. Sorek, Self-targeting by CRISPR: gene regulation or 267 autoimmunity?, Trends Genet, vol.26, pp.335-375, 2010.

E. Semenova, M. M. Jore, K. A. Datsenko, A. Semenova, E. R. Westra et al., , p.269

S. J. Brouns and K. Severinov, Interference by clustered regularly interspaced short palindromic repeat 270 (CRISPR) RNA is governed by a seed sequence, Proc Natl Acad Sci U A, vol.108, pp.10098-103, 2011.

B. Wiedenheft, E. Van-duijn, J. B. Bultema, S. P. Waghmare, K. Zhou et al., , p.272

A. J. Heck, E. J. Boekema, and M. J. Dickman, RNA-guided complex from a bacterial immune system 273 enhances target recognition through seed sequence interactions, Proc Natl Acad Sci U A, vol.274, pp.10092-10099, 2011.

S. H. Sternberg, S. Redding, M. Jinek, E. C. Greene, and J. A. Doudna, DNA interrogation by the CRISPR 276 RNA-guided endonuclease Cas9, Nature, vol.507, p.23, 2014.

D. Paez-espino, W. Morovic, C. L. Sun, B. C. Thomas, K. Ueda et al., 278 Strong bias in the bacterial CRISPR elements that confer immunity to phage, Nat. Commun, vol.4, p.32, 2013.

B. J. Caliando and C. A. Voigt, Targeted DNA degradation using a CRISPR device stably carried in the 307 host genome, Nat. Commun, vol.6, p.6989, 2015.

D. Bikard, A. Hatoum-aslan, D. Mucida, and L. A. Marraffini, CRISPR interference can prevent natural 309 transformation and virulence acquisition during in vivo bacterial infection, Cell Host Microbe, vol.310, pp.177-186, 2012.

N. Beloglazova, P. Petit, R. Flick, G. Brown, A. Savchenko et al., Structure and activity of 312 the Cas3 HD nuclease MJ0384, an effector enzyme of the CRISPR interference, EMBO J, vol.313, pp.4616-4627, 2011.

T. Sinkunas, G. Gasiunas, C. Fremaux, R. Barrangou, P. Horvath et al., Cas3 is a single315 stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system, EMBO J, vol.316, pp.1335-1377, 2011.

D. B. Wigley, Bacterial DNA repair: recent insights into the mechanism of RecBCD, p.318

. Adnab, Nat. Rev. Microbiol, vol.11, pp.9-13, 2013.

L. Cui and D. Bikard, Consequences of Cas9 cleavage in the chromosome of Escherichia, Nucleic Acids Res, vol.44, pp.4243-4251, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01967442

, This study investigated the outcomes of Cas9-based self-targeting in bacteria and established the 322 interplay between DNA damage and DNA repair

S. Hagens and U. Bläsi, Genetically modified filamentous phage as bactericidal agents: a pilot 324 study, Lett. Appl. Microbiol, vol.37, pp.318-323, 2003.

Z. Moradpour, Z. Sepehrizadeh, F. Rahbarizadeh, A. Ghasemian, M. T. Yazdi et al., 326 Genetically engineered phage harbouring the lethal catabolite gene activator protein gene with an 327 inducer-independent promoter for biocontrol of Escherichia coli, FEMS Microbiol. Lett, vol.328, pp.67-71, 2009.

C. Westwater, L. M. Kasman, D. A. Schofield, P. A. Werner, J. W. Dolan et al., , p.330

, Genetically Engineered Phage To Deliver Antimicrobial Agents to Bacteria: an Alternative Therapy 331 for Treatment of Bacterial Infections, Antimicrob. Agents Chemother, vol.47, p.41, 2003.

S. Hagens, A. Habel, . Ahsen-u-von, . Gabain-a-von, and U. Bläsi, Therapy of Experimental, vol.333

, Pseudomonas Infections with a Nonreplicating Genetically Modified Phage. Antimicrob. Agents 334 Chemother, vol.48, pp.3817-3822, 2004.

D. Bikard, C. W. Euler, W. Jiang, P. M. Nussenzweig, G. W. Goldberg et al., , p.336

L. A. Marraffini, Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials, Nat 337 Biotechnol, vol.32, pp.1146-50, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01103559

*. , This report established a proof of concept that CRISPR-Cas9 systems can be delivered by phages to 339 target S. aureus in vitro and in vivo

I. Yosef, M. Manor, R. Kiro, and U. Qimron, Temperate and lytic bacteriophages programmed to 341 sensitize and kill antibiotic-resistant bacteria, Proc. Natl. Acad. Sci, vol.112, pp.7267-7272, 2015.

*. , This study provides novel strategies to re-sensitize bacteria to antibiotics using plasmid targeting 343 CRISPR-Cas systems

E. R. Westra, Ü. Pul, N. Heidrich, M. M. Jore, M. Lundgren et al., H-NS-mediated repression of CRISPR-based immunity in Escherichia coli 346 K12 can be relieved by the transcription activator LeuO, Mol. Microbiol, vol.77, p.45, 2010.

S. J. Labrie, J. E. Samson, and S. Moineau, Bacteriophage resistance mechanisms, Nat Rev Microbiol, vol.348, pp.317-344, 2010.

A. Sulakvelidze, Z. Alavidze, and J. G. Morris, Bacteriophage Therapy. Antimicrob. Agents Chemother, vol.350, pp.649-659, 2001.

H. Ando, S. Lemire, D. P. Pires, and T. K. Lu, Engineering Modular Viral Scaffolds for Targeted Bacterial 352 Population Editing, Cell Syst, vol.1, pp.187-196, 2015.

A. C. Mapes, B. W. Trautner, K. S. Liao, and R. F. Ramig, Development of expanded host range phage 354 active on biofilms of multi-drug resistant Pseudomonas aeruginosa, vol.355, p.49, 2016.

I. Yosef, M. G. Goren, R. Globus, S. Molshanski-mor, and U. Qimron, Extending the Host Range of 357 Bacteriophage Particles for DNA Transduction, Mol. Cell, vol.66, p.50, 2017.

K. Selle, T. R. Klaenhammer, and R. Barrangou, CRISPR-based screening of genomic island excision 359 events in bacteria, Proc. Natl. Acad. Sci, vol.112, pp.8076-8081, 2015.

, This report established that native CRISPR-Cas systems can be co-opted to select for rare deletion 361 events of expendable genetic islands

A. Pawluk, R. Staals, C. Taylor, B. Watson, S. Saha et al., 363 Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species

. Microbiol, , vol.1, p.16085, 2016.