Y. M. Abdelrahman and R. J. Belland, The chlamydial developmental cycle, FEMS Microbiol. Rev, vol.29, pp.949-959, 2005.

P. D. Adams, P. V. Afonine, G. Bunkoczi, V. B. Chen, I. W. Davis et al., PHENIX: a comprehensive Python-based system for macromolecular structure solution, Acta Crystallogr. Sec. D Biol. Crystallogr, vol.66, pp.213-221, 2010.

P. D. Adams, R. W. Grosse-kunstleve, L. W. Hung, T. R. Ioerger, A. J. Mccoy et al., PHENIX: building new software for automated crystallographic structure determination, Acta Crystallogr. Sec. D Biol. Crystallogr, vol.58, pp.1948-1954, 2002.

M. Albrecht, C. M. Sharma, R. Reinhardt, J. Vogel, and T. Rudel, Deep sequencing-based discovery of the Chlamydia trachomatis transcriptome, Nucleic Acids Res, vol.38, pp.868-877, 2010.

A. Allaoui, P. J. Sansonetti, P. , and C. , MxiD, an outer membrane protein necessary for the secretion of the Shigella flexneri lpa invasins, Mol. Microbiol, vol.7, pp.59-68, 1993.

M. L. Barta, K. P. Battaile, S. Lovell, and P. S. Hefty, Hypothetical protein CT398 (CdsZ) interacts with sigma(54) (RpoN)-holoenzyme and the type III secretion export apparatus in Chlamydia trachomatis, Protein Sci, vol.24, pp.1617-1632, 2015.

L. D. Bauler and T. Hackstadt, Expression and targeting of secreted proteins from Chlamydia trachomatis, J. Bacteriol, vol.196, pp.1325-1334, 2014.

R. Belland, G. Zhong, D. Crane, D. Hogan, D. Sturdevant et al., Genomic transcriptional profiling of the developmental cycle of Chlamydia trachomatis, Proc. Natl. Acad. Sci. U.S.A, vol.100, pp.8478-8483, 2003.

S. Birkelund, H. Johnsen, and G. Christiansen, Chlamydia trachomatis serovar L2 induces protein tyrosine phosphorylation during uptake by HeLa cells, Infect. Immun, vol.62, pp.4900-4908, 1994.

N. Bleimling, K. Alexandrov, R. Goody, and A. Itzen, Chaperone-assisted production of active human Rab8A GTPase in Escherichia coli, Protein Expr. Purif, vol.65, pp.190-195, 2009.

A. J. Brinkworth, D. S. Malcolm, A. T. Pedrosa, K. Roguska, S. Shahbazian et al., Chlamydia trachomatis Slc1 is a type III secretion chaperone that enhances the translocation of its invasion effector substrate TARP, Mol. Microbiol, vol.82, pp.131-144, 2011.

R. Brunham, R. , and J. , Immunology of Chlamydia infection: Implications for a Chlamydia trachomatis vaccine, Nat. Rev. Immunol, vol.5, pp.149-161, 2005.

D. W. Buchan, F. Minneci, T. C. Nugent, K. Bryson, and D. T. Jones, Scalable web services for the PSIPRED protein analysis workbench, Nucleic Acids Res, vol.41, pp.349-357, 2013.

V. Carpenter, Y. S. Chen, L. Dolat, and R. H. Valdivia, The effector TepP mediates recruitment and activation of phosphoinositide 3-kinase on early Chlamydia trachomatis vacuoles, vol.2, pp.207-224, 2017.

Y. S. Chen, R. J. Bastidas, H. A. Saka, V. K. Carpenter, and K. L. Richards, The Chlamydia trachomatis type III secretion chaperone Slc1 engages multiple early effectors, including TepP, a tyrosine-phosphorylated protein required for the recruitment of CrkI-II to nascent inclusions and innate immune signaling, PLoS Pathog, vol.10, p.1003954, 2014.

D. Clifton, K. Fields, N. Grieshaber, C. Dooley, E. Fischer et al., , 2004.

, A chlamydial type III translocated protein is tyrosine-phosphorylated at the site of entry and associated with recruitment of actin, Proc. Natl. Acad. Sci. U.S.A, vol.101, pp.10166-10171

, The CCP4 suite: programs for protein crystallography, Acta Crystallogr. D. Biol. Crystallogr, vol.50, pp.760-763, 1994.

M. M. Cossé, R. D. Hayward, and A. Subtil, One face of Chlamydia trachomatis: the infectious elementary body, Curr. Top. Microbiol. Immunol, 2016.

M. Da-cunha, C. Milho, F. Almeida, S. V. Pais, V. Borges et al., Identification of type III secretion substrates of Chlamydia trachomatis using Yersinia enterocolitica as a heterologous system, BMC Microbiol, vol.14, p.40, 2014.

S. Doublié, Production of selenomethionyl proteins in prokaryotic and eukaryotic expression systems, Methods Mol. Biol, vol.363, pp.91-108, 2007.

B. Dursina, R. Reents, C. Delon, Y. Wu, M. Kulharia et al., Identification and specificity profiling of protein prenyltransferase inhibitors using new fluorescent phosphoisoprenoids, J. Am. Chem. Soc, vol.128, pp.2822-2835, 2006.

P. Emsley, C. , and K. , Coot: model-building tools for molecular graphics, Acta Crystallogr. D. Biol. Crystallogr, vol.60, pp.2126-2132, 2004.

P. Emsley, B. Lohkamp, W. G. Scott, C. , and K. , Features and development of Coot, Acta Crystallogr. D. Biol. Crystallogr, vol.66, pp.486-501, 2010.

P. Engström, B. D. Nguyen, J. Normark, I. Nilsson, R. J. Bastidas et al., Mutations in hemG mediate resistance to salicylidene acylhydrazides, demonstrating a novel link between protoporphyrinogen oxidase (HemG) and Chlamydia trachomatis infectivity, J. Bacteriol, vol.195, pp.506-519, 2013.

P. R. Evans, An introduction to data reduction: space-group determination, scaling and intensity statistics, Acta Crystallogr. D. Biol. Crystallogr, vol.67, pp.282-292, 2011.

F. S. Fawaz, C. Van-ooij, E. Homola, S. C. Mutka, and J. N. Engel, Infection with Chlamydia trachomatis alters the tyrosine phosphorylation and/or localization of several host cell proteins including cortactin, Infect. Immun, vol.65, pp.5301-5308, 1997.

J. C. Ferrell and K. A. Fields, A working model for the type III secretion mechanism in Chlamydia. Microbes Infect, vol.18, pp.84-92, 2016.

S. P. Fling, R. A. Sutherland, L. N. Steele, B. Hess, S. E. Orazio et al., CD8+ T cells recognize an inclusion membrane-associated protein from the vacuolar pathogen Chlamydia trachomatis, Proc. Natl. Acad. Sci. U.S.A, vol.98, pp.1160-1165, 2001.
DOI : 10.1073/pnas.98.3.1160

URL : http://www.pnas.org/content/98/3/1160.full.pdf

J. E. Galán, M. Lara-tejero, T. C. Marlovits, and S. Wagner, Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells, Annu. Rev. Microbiol, vol.68, pp.415-438, 2014.

L. Gehre, O. Gorgette, S. Perrinet, M. C. Prevost, M. Ducatez et al., Sequestration of host metabolism by an intracellular pathogen, Elife, vol.5, p.12552, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01397781

B. V. Geisbrecht, S. Bouyain, and M. Pop, An optimized system for expression and purification of secreted bacterial proteins, Protein Expr. Purif, vol.46, pp.23-32, 2006.
DOI : 10.1016/j.pep.2005.09.003

S. Gong, L. Lei, X. Chang, R. Belland, and G. Zhong, Chlamydia trachomatis secretion of hypothetical protein CT622 into host cell cytoplasm via a secretion pathway that can be inhibited by the type III secretion system inhibitor compound 1, Microbiology, vol.157, pp.1134-1144, 2011.

P. Gouet, E. Courcelle, D. I. Stuart, and F. Metoz, ESPript: analysis of multiple sequence alignments in PostScript, Bioinformatics, vol.15, pp.305-308, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00314288

S. R. Harris, I. N. Clarke, H. M. Seth-smith, A. W. Solomon, L. T. Cutcliffe et al., Whole-genome analysis of diverse Chlamydia trachomatis strains identifies phylogenetic relationships masked by current clinical typing, Nat. Genet, vol.44, pp.413-419, 2012.
DOI : 10.1038/ng.2214

URL : http://researchonline.lshtm.ac.uk/26747/1/ng.2214.pdf

L. Holm, S. Kääriäinen, C. Wilton, P. , and D. , Using Dali for structural comparison of proteins, Curr. Protoc. Bioinformatics, vol.5, 2006.
DOI : 10.1002/0471250953.bi0505s14

L. Holm, R. , and P. , Dali server: conservation mapping in 3D, Nucleic Acids Res, vol.38, pp.545-549, 2010.
DOI : 10.1093/nar/gkq366

URL : https://academic.oup.com/nar/article-pdf/38/suppl_2/W545/16772546/gkq366.pdf

C. M. Johnson and D. J. Fisher, Site-Specific, insertional inactivation of incA in Chlamydia trachomatis using a group II intron, PLoS ONE, vol.8, p.83989, 2013.

W. Kabsch, XDS. Acta Crystallogr. D. Biol. Crystallogr, vol.66, pp.125-132, 2010.

L. Kari, W. M. Whitmire, J. H. Carlson, D. D. Crane, N. Reveneau et al., Pathogenic diversity among Chlamydia trachomatis ocular strains in nonhuman primates is affected by subtle genomic variations, J. Infect. Dis, vol.197, pp.449-456, 2008.

B. A. Kellogg and C. D. Poulter, Chain elongation in the isoprenoid biosynthetic pathway, Curr. Opin. Chem. Biol, vol.1, pp.570-578, 1997.

N. M. Lowden, L. Yeruva, C. M. Johnson, A. K. Bowlin, and D. J. Fisher, Use of aminoglycoside 3' adenyltransferase as a selection marker for Chlamydia trachomatis intron-mutagenesis and in vivo intron stability, BMC Res. Notes, vol.8, p.570, 2015.

E. I. Lutter, C. Bonner, M. J. Holland, R. J. Suchland, W. E. Stamm et al., Phylogenetic analysis of Chlamydia trachomatis Tarp and correlation with clinical phenotype, Infect. Immun, vol.78, pp.3678-3688, 2010.

M. J. Mckuen, K. E. Mueller, Y. S. Bae, and K. A. Fields, Fluorescencereported allelic exchange mutagenesis reveals a role for Chlamydia trachomatis TmeA in invasion that is independent of host AHNAK, Infect. Immun, vol.85, pp.640-657, 2017.

R. Ménard, P. J. Sansonetti, P. , and C. , Nonpolar mutagenesis of the ipa genes defines IpaB, IpaC, and IpaD as effectors of Shigella flexneri entry into epithelial cells, J. Bacteriol, vol.175, pp.5899-5906, 1993.

K. E. Mueller and K. A. Fields, Application of ?-lactamase reporter fusions as an indicator of effector protein secretion during infections with the obligate intracellular pathogen Chlamydia trachomatis, PLoS ONE, vol.10, 2015.

S. Muschiol, G. Boncompain, F. Vromman, P. Dehoux, S. Normark et al., Identification of a family of type III secreted effectors conserved in pathogenic Chlamydiae, Infect. Immun, vol.79, pp.571-580, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-00568001

L. K. Oesterlin, R. S. Goody, and A. Itzen, Posttranslational modifications of Rab proteins cause effective displacement of GDP dissociation inhibitor, Proc. Natl. Acad. Sci. U.S.A, vol.109, pp.5621-5626, 2012.

J. Painter and E. A. Merritt, Optimal description of a protein structure in terms of multiple groups undergoing TLS motion, Acta Crystallogr. D. Biol. Crystallogr, vol.62, pp.439-450, 2006.

S. V. Pais, C. Milho, F. Almeida, and L. J. Mota, Identification of novel type III secretion chaperone-substrate complexes of Chlamydia trachomatis, PLoS ONE, vol.8, p.56292, 2013.

C. Parsot, E. Ageron, C. Penno, M. Mavris, K. Jamoussi et al., A secreted anti-activator, OspD1, and its chaperone, Spa15, are involved in the control of transcription by the type III secretion apparatus activity in Shigella flexneri, Mol. Microbiol, vol.56, pp.1627-1635, 2005.

C. Parsot, C. Hamiaux, P. , and A. L. , The various and varying roles of specific chaperones in type III secretion systems, Curr. Opin. Microbiol, vol.6, pp.7-14, 2003.

M. J. Patton, S. Mccorrister, C. Grant, G. Westmacott, R. Fariss et al., Chlamydial protease-like activity factor and type III secreted effectors cooperate in inhibition of p65 nuclear translocation, vol.7, pp.1427-1443, 2016.

W. Rocchia, S. Sridharan, A. Nicholls, E. Alexov, A. Chiabrera et al., Rapid grid-based construction of the molecular surface and the use of induced surface charge to calculate reaction field energies: applications to the molecular systems and geometric objects, J. Comput. Chem, vol.23, pp.128-137, 2002.

H. A. Saka, J. W. Thompson, Y. S. Chen, Y. Kumar, L. G. Dubois et al., Quantitative proteomics reveals metabolic and pathogenic properties of Chlamydia trachomatis developmental forms, Mol. Microbiol, vol.82, pp.1185-1203, 2011.

M. A. Scidmore, Cultivation and laboratory maintenance of Chlamydia trachomatis, Curr. Protoc. Microbiol. 11A, vol.1, 2005.

P. Sledz, H. Zheng, K. Murzyn, M. Chruszcz, M. D. Zimmerman et al., New surface contacts formed upon reductive lysine methylation: improving the probability of protein crystallization, Protein Sci, vol.19, pp.1395-1404, 2010.

K. E. Spaeth, S. Y. Chen, and R. H. Valdivia, The Chlamydia type III secretion system C-ring engages a chaperone-effector protein complex, PLoS Pathog, vol.5, p.1000579, 2009.

A. Subtil, C. Delevoye, M. E. Balañá, L. Tastevin, S. Perrinet et al., A directed screen for chlamydial proteins secreted by a type III mechanism identifies a translocated protein and numerous other new candidates, Mol. Microbiol, vol.56, pp.1636-1647, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00021366

A. Subtil, C. Parsot, and A. Varsat, Secretion of predicted Inc proteins of Chlamydia pneumoniae by a heterologous type III machinery, Mol. Microbiol, vol.39, pp.792-800, 2001.

H. R. Taylor, M. J. Burton, D. Haddad, S. West, W. et al., Trachoma. Lancet, vol.384, pp.2142-2152, 2014.

N. A. Thomas, I. Ma, M. E. Prasad, R. , and C. , Expanded roles for multicargo and class 1B effector chaperones in type III secretion, J. Bacteriol, vol.194, pp.3767-3773, 2012.

J. D. Thompson, D. G. Higgins, and T. J. Gibson, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res, vol.22, pp.4673-4680, 1994.

N. R. Thomson, M. T. Holden, C. Carder, N. Lennard, S. J. Lockey et al., Chlamydia trachomatis: genome sequence analysis of lymphogranuloma venereum isolates, Genome Res, vol.18, pp.161-171, 2008.

S. Vandermoten, É. Haubruge, and M. Cusson, New insights into short-chain prenyltransferases: structural features, evolutionary history and potential for selective inhibition, Cell. Mol. Life Sci, vol.66, pp.3685-3695, 2009.

F. Vromman, M. Laverrière, S. Perrinet, A. Dufour, and A. Subtil, Quantitative monitoring of the Chlamydia trachomatis developmental cycle using GFP-expressing bacteria, microscopy and flow cytometry, PLoS ONE, vol.9, p.99197, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01448137

F. H. Wallrapp, J. J. Pan, G. Ramamoorthy, D. E. Almonacid, B. S. Hillerich et al., Prediction of function for the polyprenyl transferase subgroup in the isoprenoid synthase superfamily, Proc. Natl. Acad. Sci. U.S.A, vol.110, 2013.

T. S. Walter, C. Meier, R. Assenberg, K. F. Au, J. Ren et al., , 2006.

, Lysine methylation as a routine rescue strategy for protein crystallization, Structure, vol.14, pp.1617-1622

Y. Wang, S. Kahane, L. T. Cutcliffe, R. J. Skilton, P. R. Lambden et al., Development of a transformation system for Chlamydia trachomatis: restoration of glycogen biosynthesis by acquisition of a plasmid shuttle vector, PLoS Pathog, vol.7, p.1002258, 2011.

Y. W. Wu, L. K. Oesterlin, K. T. Tan, H. Waldmann, K. Alexandrov et al., Membrane targeting mechanism of Rab GTPases elucidated by semisynthetic protein probes, Nat. Chem. Biol, vol.6, pp.534-540, 2010.
DOI : 10.1038/nchembio.386

A. Zemla, LGA: a method for finding 3D similarities in protein structures, Nucleic Acids Res, vol.31, pp.3370-3374, 2003.
DOI : 10.1093/nar/gkg571

URL : https://academic.oup.com/nar/article-pdf/31/13/3370/9487387/gkg571.pdf

H. Zeng, S. Gong, S. Hou, Q. Zou, and G. Zhong, Identification of antigen-specific antibody responses associated with upper genital tract pathology in mice infected with Chlamydia muridarum, Infect. Immun, vol.80, pp.1098-1106, 2012.