K. Ray, B. Marteyn, P. J. Sansonetti, and C. M. Tang, Life on the inside: the intracellular lifestyle of cytosolic bacteria, Nat Rev Microbiol. Nature Publishing Group, vol.7, pp.333-373, 2009.

P. Cossart and P. J. Sansonetti, Bacterial invasion: the paradigms of enteroinvasive pathogens, Science, vol.304, pp.242-250, 2004.

P. Cossart and C. R. Roy, Manipulation of host membrane machinery by bacterial pathogens, Curr Opin Cell Biol, vol.22, pp.547-54, 2010.

O. Steele-mortimer, The Salmonella-containing vacuole: moving with the times, Curr Opin Microbiol, vol.11, pp.38-45, 2008.

A. Phalipon, L. A. Mulard, and P. J. Sansonetti, Vaccination against shigellosis: is it the path that is difficult or is it the difficult that is the path? Microbes Infect, vol.10, pp.1057-62, 2008.

G. R. Cornelis, The type III secretion injectisome, Nat Rev Microbiol, vol.4, pp.811-836, 2006.

C. Parsot, Shigella type III secretion effectors: how, where, when, for what purposes? Curr Opin Microbiol, vol.12, pp.110-116, 2009.

T. Adam, M. Giry, P. Boquet, and P. Sansonetti, Rho-dependent membrane folding causes Shigella entry into epithelial cells, EMBO J, vol.15, p.8670832, 1996.

P. J. Sansonetti and C. Egile, Molecular bases of epithelial cell invasion by Shigella flexneri, Antonie Van Leeuwenhoek, vol.74, p.10081579, 1998.

C. M. Valencia-gallardo, N. Carayol, T. Van-nhieu, and G. , Cytoskeletal mechanics during Shigella invasion and dissemination in epithelial cells, Cell Microbiol, 2014.

C. L. Francis, T. A. Ryan, B. D. Jones, S. J. Smith, and S. Falkow, Ruffles induced by Salmonella and other stimuli direct macropinocytosis of bacteria, Nature, vol.364, pp.639-681, 1993.

G. N. Schroeder and H. Hilbi, Molecular pathogenesis of Shigella spp.: controlling host cell signaling, invasion, and death by type III secretion, Clin Microbiol Rev, vol.21, pp.134-56, 2008.

J. P. Lim, Macropinocytosis: an endocytic pathway for internalising large gulps, Immunol Cell Biol. Nature Publishing Group, vol.89, pp.836-879, 2011.

T. Van-nhieu, G. Ben-ze'ev-a, and P. J. Sansonetti, Modulation of bacterial entry into epithelial cells by association between vinculin and the Shigella IpaA invasin, EMBO J, vol.16, pp.2717-2746, 1997.

K. Niebuhr, N. Jouihri, A. Allaoui, P. Gounon, P. J. Sansonetti et al., IpgD, a protein secreted by the type III secretion machinery of Shigella flexneri, is chaperoned by IpgE and implicated in entry focus formation, Mol Microbiol, vol.38, p.11029686, 2000.

A. Allaoui, R. Menard, P. J. Sansonetti, and C. Parsot, Characterization of the Shigella flexneri ipgD and ipgF genes, which are located in the proximal part of the mxi locus, Infect Immun, vol.61, p.8478058, 1993.

B. Zumsteg, A. Goosmann, C. Brinkmann, V. Morona, R. Zychlinsky et al., IcsA Is a Shigella flexneri Adhesion Regulated by the Type III Secretion System and Required for Pathogenesis, Cell Host Microbe, vol.15, pp.435-480, 2014.

F. Lafont, T. Van-nhieu, G. Hanada, K. Sansonetti, P. Van-der-goot et al., Initial steps of Shigella infection depend on the cholesterol/sphingolipid raft-mediated CD44-IpaB interaction, EMBO J, vol.21, p.12198147, 2002.

A. Skoudy, J. Mounier, A. Aruffo, H. Ohayon, P. Gounon et al., CD44 binds to the Shigella IpaB protein and participates in bacterial invasion of epithelial cells, Cell Microbiol, vol.2, p.11207560, 2000.

M. Watarai, S. Funato, and C. Sasakawa, Interaction of Ipa proteins of Shigella flexneri with alpha5beta1 integrin promotes entry of the bacteria into mammalian cells, J Exp Med, vol.183, p.8642302, 1996.

F. Garcia-del-portillo and B. B. Finlay, Salmonella invasion of nonphagocytic cells induces formation of macropinosomes in the host cell, Infect Immun, vol.62, p.7927733, 1994.

K. Ray, A. Bobard, A. Danckaert, I. Paz-haftel, C. C. Ehsani et al., Tracking the dynamic interplay between bacterial and host factors during pathogen-induced vacuole rupture in real time, Cell Microbiol, vol.12, pp.545-556, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-01899489

J. Fredlund and J. Enninga, Cytoplasmic access by intracellular bacterial pathogens, Trends Microbiol, vol.22, pp.128-165, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01113445

L. Senerovic, S. P. Tsunoda, C. Goosmann, V. Brinkmann, A. Zychlinsky et al., Spontaneous formation of IpaB ion channels in host cell membranes reveals how Shigella induces pyroptosis in macrophages, Cell Death Dis. Macmillan Publishers Limited, vol.3, p.384, 2012.

N. Mellouk, A. Weiner, N. Aulner, C. Schmitt, M. Elbaum et al., Shigella subverts the host recycling compartment to rupture its vacuole. Cell Host Microbe, vol.16, p.25299335, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01113365

J. A. Swanson, C. Watts, and . Macropinocytosis, Trends Cell Biol, vol.5, pp.424-428, 1995.

K. Niebuhr, S. Giuriato, T. Pedron, D. J. Philpott, F. Gaits et al., Conversion of PtdIns(4,5)P(2) into PtdIns(5)P by the S.flexneri effector IpgD reorganizes host cell morphology, EMBO J, vol.21, p.12356723, 2002.

G. E. Murphy, K. Narayan, B. C. Lowekamp, L. M. Hartnell, J. Heymann et al., Correlative 3D imaging of whole mammalian cells with light and electron microscopy, J Struct Biol, vol.176, p.21907806, 2011.

G. Knott and C. Genoud, Is EM dead?, J Cell Sci, vol.126, pp.4545-52, 2013.

S. Ehsani, J. C. Santos, C. D. Rodrigues, R. Henriques, A. L. Zimmer et al., Hierarchies of Host Factor Dynamics at the Entry Site of Shigella flexneri during Host Cell Invasion, Infect Immun, vol.80, pp.2548-2557, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01899474

P. J. Sansonetti, A. Ryter, P. Clerc, A. T. Maurelli, and J. Mounier, Multiplication of Shigella flexneri within HeLa cells: lysis of the phagocytic vacuole and plasmid-mediated contact hemolysis, Infect Immun, vol.51, p.3510976, 1986.

K. Ohya, Y. Handa, M. Ogawa, M. Suzuki, and C. Sasakawa, IpgB1 is a novel Shigella effector protein involved in bacterial invasion of host cells. Its activity to promote membrane ruffling via Rac1 and Cdc42 activation, J Biol Chem, vol.280, p.15849186, 2005.

M. Koivusalo, C. Welch, H. Hayashi, C. C. Scott, M. Kim et al., Amiloride inhibits macropinocytosis by lowering submembranous pH and preventing Rac1 and Cdc42 signaling, J Cell Biol, vol.188, pp.547-63, 2010.

B. Hetrick, M. S. Han, L. A. Helgeson, and B. J. Nolen, Small molecules CK-666 and CK-869 inhibit actin-related protein 2/3 complex by blocking an activating conformational change, Chem Biol, vol.20, pp.701-713, 2013.

S. Yoshida, A. D. Hoppe, N. Araki, and . Swanson, Sequential signaling in plasma-membrane domains during macropinosome formation in macrophages, J Cell Sci, vol.122, pp.3250-61, 2009.

I. Paz, M. Sachse, N. Dupont, J. Mounier, C. Cederfur et al., Galectin-3, a marker for vacuole lysis by invasive pathogens, Cell Microbiol, vol.12, pp.530-544, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00486248

E. L. Racoosin and J. A. Swanson, Macropinosome maturation and fusion with tubular lysosomes in macrophages, J Cell Biol, vol.121, p.8099075, 1993.

A. Guichard, V. Nizet, and E. Bier, RAB11-mediated trafficking in host-pathogen interactions. Nat Rev Microbiol, All Rights Reserved, vol.12, pp.624-658, 2014.

O. Ullrich, Rab11 regulates recycling through the pericentriolar recycling endosome, J Cell Biol, vol.135, p.8922376, 1996.

M. Wilcke, L. Johannes, T. Galli, V. Mayau, B. Goud et al., Rab11 Regulates the Compartmentalization of Early Endosomes Required for Efficient Transport from Early Endosomes to the Trans-Golgi Network, J Cell Biol, vol.151, p.11121436, 2000.

M. Bohdanowicz and S. Grinstein, Role of phospholipids in endocytosis, phagocytosis, and macropinocytosis, Physiol Rev, vol.93, p.23303906, 2013.

Y. Egami, T. Taguchi, M. Maekawa, H. Arai, and N. Araki, Small GTPases and phosphoinositides in the regulatory mechanisms of macropinosome formation and maturation, Front Physiol, vol.5, p.374, 2014.

L. J. Hewlett, R. Prescott-a, and C. Watts, The coated pit and macropinocytic pathways serve distinct endosome populations, J Cell Biol, vol.124, p.8120092, 1994.

M. Mettlen, A. Platek, P. Van-der-smissen, S. Carpentier, M. Amyere et al., Src triggers circular ruffling and macropinocytosis at the apical surface of polarized MDCK cells, Traffic, vol.7, pp.589-603, 2006.

J. C. Santos, M. Duchateau, J. Fredlund, A. Weiner, A. Mallet et al., The COPII complex and lysosomal VAMP7 determine intracellular Salmonella localization and growth, Cell Microbiol, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01899448

Z. Rizopoulos, G. Balistreri, S. Kilcher, C. K. Martin, M. Syedbasha et al., Vaccinia Virus Infection Requires Maturation of Macropinosomes, Traffic, vol.16, p.25869659, 2015.

M. A. Hamon, D. Ribet, F. Stavru, and P. Cossart, Listeriolysin O: the Swiss army knife of Listeria, Trends Microbiol, vol.20, pp.360-368, 2012.

J. Pizarro-cerdá and P. Cossart, Subversion of cellular functions by Listeria monocytogenes, J Pathol, vol.208, pp.215-238, 2006.

J. L. Gaillard, P. Berche, J. Mounier, S. Richard, and P. Sansonetti, In vitro model of penetration and intracellular growth of Listeria monocytogenes in the human enterocyte-like cell line Caco-2, Infect Immun, vol.55, p.3117693, 1987.

C. M. Alpuche-aranda, E. L. Racoosin, J. A. Swanson, and S. I. Miller, Salmonella stimulate macrophage macropinocytosis and persist within spacious phagosomes, J Exp Med, vol.179, p.8294870, 1994.

S. Sidik, H. Kottwitz, J. Benjamin, J. Ryu, A. Jarrar et al., A Shigella flexneri virulence plasmid encoded factor controls production of outer membrane vesicles. G3 (Bethesda), vol.4, pp.2493-503, 2014.