J. M. Haan, S. M. Lehar, and M. J. Bevan, CD8(+) but not CD8(?) dendritic cells cross-prime cytotoxic T cells in vivo, J. Exp. Med, vol.192, pp.1685-1696, 2000.

K. Crozat, The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8alpha+ dendritic cells, J. Exp. Med, vol.207, pp.1283-1292, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00493468

O. P. Joffre, E. Segura, A. Savina, and S. Amigorena, Cross-presentation by dendritic cells, Nat. Rev. Immunol, vol.12, pp.557-569, 2012.

S. Amigorena and A. Savina, Intracellular mechanisms of antigen cross presentation in dendritic cells, Curr. Opin. Immunol, vol.22, pp.109-117, 2010.

E. Segura and S. Amigorena, Cross-presentation in mouse and human dendritic cells, Adv. Immunol, vol.127, pp.1-31, 2015.

A. Savina, NOX2 controls phagosomal pH to regulate antigen processing during crosspresentation by dendritic cells, Cell, vol.126, pp.205-218, 2006.

P. D. Ray, B. W. Huang, and Y. Tsuji, Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling, Cell. Signal, vol.24, pp.981-990, 2012.

M. Schieber and N. S. Chandel, ROS function in redox signaling and oxidative stress, Curr. Biol, vol.24, pp.453-462, 2014.

A. Savina, The small GTPase Rac2 controls phagosomal alkalinization and antigen crosspresentation selectively in CD8(+) dendritic cells, Immunity, vol.30, pp.544-555, 2009.

A. Alloatti, Toll-like receptor 4 engagement on dendritic cells restrains phago-lysosome fusion and promotes cross-presentation of antigens, Immunity, vol.43, pp.1087-1100, 2015.

J. M. Den-haan and M. J. Bevan, Constitutive versus activation-dependent cross-presentation of immune complexes by CD8(+) and CD8(?) dendritic cells in vivo, J. Exp. Med, vol.196, pp.817-827, 2002.

G. Hoeffel, Antigen crosspresentation by human plasmacytoid dendritic cells, Immunity, vol.27, pp.481-492, 2007.
URL : https://hal.archives-ouvertes.fr/pasteur-00360697

G. Moron, P. Rueda, I. Casal, and C. Leclerc, CD8alpha-CD11b+ dendritic cells present exogenous virus-like particles to CD8+T cells and subsequently express CD8alpha and CD205 molecules, J. Exp. Med, vol.195, pp.1233-1245, 2002.

E. Segura, M. Durand, and S. Amigorena, Similar antigen cross-presentation capacity and phagocytic functions in all freshly isolated human lymphoid organ-resident dendritic cells, J. Exp. Med, vol.210, pp.1035-1047, 2013.

J. A. Villadangos and L. Young, Antigen-presentation properties of plasmacytoid dendritic cells, Immunity, vol.29, pp.352-361, 2008.

J. Mouries, Plasmacytoid dendritic cells efficiently cross-prime naive T cells in vivo after TLR activation, Blood, vol.112, pp.3713-3722, 2008.

M. Kool, Facilitated antigen uptake and timed exposure to TLR ligands dictate the antigen-presenting potential of plasmacytoid DCs, J. Leukoc. Biol, vol.90, pp.1177-1190, 2011.

P. Guermonprez and S. Amigorena, Pathways for antigen cross presentation, Springe. Semin. Immunopathol, vol.26, pp.257-271, 2005.

F. Kotsias, E. Hoffmann, S. Amigorena, and A. Savina, Reactive oxygen species production in the phagosome: impact on antigen presentation in dendritic cells, Antioxid. Redox Signal, vol.18, pp.714-729, 2013.

A. Schramm, P. Matusik, G. Osmenda, and T. J. Guzik, Targeting NADPH oxidases in vascular pharmacology, Vasc. Pharmacol, vol.56, pp.216-231, 2012.

S. Y. Sun, N-acetylcysteine, reactive oxygen species and beyond, Cancer Biol. Ther, vol.9, pp.109-110, 2010.

G. R. Drummond, S. Selemidis, K. K. Griendling, and C. G. Sobey, Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets, Nat. Rev. Drug Discov, vol.10, pp.453-471, 2011.

R. Ravindran, Vaccine activation of the nutrient sensor GCN2 in dendritic cells enhances antigen presentation, Science, vol.343, pp.313-317, 2014.

A. Savina, P. Vargas, P. Guermonprez, A. M. Lennon, and S. Amigorena, Measuring pH, ROS production, maturation, and degradation in dendritic cell phagosomes using cytofluorometry-based assays, Methods Mol. Biol, vol.595, pp.383-402, 2010.

I. Cebrian, Sec22b regulates phagosomal maturation and antigen crosspresentation by dendritic cells, Cell, vol.147, pp.1355-1368, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00666062

K. Ray, Tracking the dynamic interplay between bacterial and host factors during pathogen-induced vacuole rupture in real time, Cell. Microbiol, vol.12, pp.545-556, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-01899489

R. S. Balaban, S. Nemoto, T. Finkel, and . Mitochondria, oxidants, and aging. Cell, vol.120, pp.483-495, 2005.

A. L. Orr, Suppressors of superoxide production from mitochondrial complex III, Nat. Chem. Biol, vol.11, pp.834-836, 2015.

S. E. Schriner, Extension of murine life span by overexpression of catalase targeted to mitochondria, Science, vol.308, pp.1909-1911, 2005.

H. Takagi, Plasmacytoid dendritic cells are crucial for the initiation of inflammation and T cell immunity in vivo, Immunity, vol.35, pp.958-971, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00665515

K. Rutault, C. Alderman, B. M. Chain, and D. R. Katz, Reactive oxygen species activate human peripheral blood dendritic cells. Free Radic, Biol. Med, vol.26, pp.232-238, 1999.

H. Matsue, Generation and function of reactive oxygen species in dendritic cells during antigen presentation, J. Immunol, vol.171, pp.3010-3018, 2003.

K. Maemura, Reactive oxygen species are essential mediators in antigen presentation by Kupffer cells, Immunol. Cell Biol, vol.83, pp.336-343, 2005.

K. Ganeshan and A. Chawla, Metabolic regulation of immune responses, Annu. Rev. Immunol, vol.32, pp.609-634, 2014.

M. M. Kaminski, Mitochondrial reactive oxygen species control T cell activation by regulating IL-2 and IL-4 expression: mechanism of ciprofloxacin-mediated immunosuppression, J. Immunol, vol.184, pp.4827-4841, 2010.

L. A. Sena, Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling, Immunity, vol.38, pp.225-236, 2013.

M. L. Wheeler and A. L. Defranco, Prolonged production of reactive oxygen species in response to B cell receptor stimulation promotes B cell activation and proliferation, J. Immunol, vol.189, pp.4405-4416, 2012.

A. P. West, TLR signalling augments macrophage bactericidal activity through mitochondrial ROS, Nature, vol.472, pp.476-480, 2011.

D. Wu, Type 1 interferons induce changes in core metabolism that are critical for immune function, Immunity, vol.44, pp.1325-1336, 2016.

A. Majander, M. Finel, and M. Wikstrom, Diphenyleneiodonium inhibits reduction of iron-sulfur clusters in the mitochondrial NADH-ubiquinone oxidoreductase (Complex I), J. Biol. Chem, vol.269, pp.21037-21042, 1994.

E. A. Matveeva, L. S. Venkova, I. S. Chernoivanenko, and A. A. Minin, Vimentin is involved in regulation of mitochondrial motility and membrane potential by Rac1, Biol. Open, vol.4, pp.1290-1297, 2015.

P. Dammeyer, Induction of cell membrane protrusions by the Nterminal glutaredoxin domain of a rare splice variant of human thioredoxin reductase 1, J. Biol. Chem, vol.283, pp.2814-2821, 2008.

L. Berod and T. Sparwasser, pDCs take a deep breath to fight viruses, Immunity, vol.44, pp.1246-1248, 2016.

L. Cervantes-barragan, Plasmacytoid dendritic cells control T-cell response to chronic viral infection, Proc. Natl. Acad. Sci. USA, vol.109, pp.3012-3017, 2012.
DOI : 10.1073/pnas.1117359109

URL : http://www.pnas.org/content/109/8/3012.full.pdf

C. Guillerey, Pivotal role of plasmacytoid dendritic cells in inflammation and NK-cell responses after TLR9 triggering in mice, Blood, vol.120, pp.90-99, 2012.

M. Swiecki, S. Gilfillan, W. Vermi, Y. Wang, and M. Colonna, Plasmacytoid dendritic cell ablation impacts early interferon responses and antiviral NK and CD8(+) T cell accrual, Immunity, vol.33, pp.955-966, 2010.
DOI : 10.1016/j.immuni.2010.11.020

URL : https://doi.org/10.1016/j.immuni.2010.11.020

G. Schlecht, Murine plasmacytoid dendritic cells induce effector/memory CD8+T-cell responses in vivo after viral stimulation, Blood, vol.104, pp.1808-1815, 2004.
DOI : 10.1182/blood-2004-02-0426

URL : https://hal.archives-ouvertes.fr/pasteur-00327333

C. Keller, Single cell measurements of vacuolar rupture caused by intracellular pathogens, J. Vis. Exp, vol.76, p.50116, 2013.
DOI : 10.3791/50116

URL : https://hal.archives-ouvertes.fr/pasteur-01113507