R. Yau and M. Rape, The increasing complexity of the ubiquitin code, Nat Cell Biol, vol.448, issue.6, pp.579-86, 2016.

K. N. Swatek and D. Komander, Ubiquitin modifications, Cell Res, vol.26, issue.4, pp.399-422, 2016.
DOI : 10.1038/cr.2016.39

URL : http://europepmc.org/articles/pmc4822133?pdf=render

M. Hrdinka and M. Gyrd-hansen, The Met1-Linked Ubiquitin Machinery: Emerging 451 Themes of (De)regulation, Mol Cell, vol.68, issue.2, pp.265-280, 2017.
DOI : 10.1016/j.molcel.2017.09.001

N. Zheng and N. Shabek, Ubiquitin Ligases: Structure, Function, and Regulation, 2017.
DOI : 10.1146/annurev-biochem-060815-014922

, Annu Rev Biochem, vol.86, pp.129-157

T. E. Mevissen and D. Komander, Mechanisms of Deubiquitinase Specificity and 455 Regulation, Annu Rev Biochem, vol.86, pp.159-192, 2017.

A. Flotho and F. Melchior, Sumoylation: a regulatory protein modification in health 457 and disease, Annu Rev Biochem, vol.82, pp.357-85, 2013.
DOI : 10.1146/annurev-biochem-061909-093311

R. I. Enchev, Protein neddylation: beyond cullin-RING ligases, Nat Rev Mol 459 Cell Biol, vol.16, issue.1, pp.30-44, 2015.
DOI : 10.1038/nrm3919

URL : http://europepmc.org/articles/pmc5131867?pdf=render

C. Villarroya-beltri, ISGylation-a key to lock the cell gates for preventing the 461 spread of threats, J Cell Sci, vol.130, issue.18, pp.2961-2969, 2017.

M. Basler, The ubiquitin-like modifier FAT10 in antigen processing and 463 antimicrobial defense, Mol Immunol, vol.68, issue.2, pp.129-161, 2015.
DOI : 10.1016/j.molimm.2015.04.012

F. C. Streich, J. Lima, and C. D. , Structural and functional insights to ubiquitin-like 465 protein conjugation, Annu Rev Biophys, vol.43, pp.357-79, 2014.
DOI : 10.1146/annurev-biophys-051013-022958

URL : http://europepmc.org/articles/pmc4118471?pdf=render

K. Husnjak, I. Dikic, M. M. Rahman, and G. Mcfadden, Ubiquitin-binding proteins: decoders of ubiquitin-mediated 467 cellular functions, Nat Rev Microbiol, vol.81, issue.4, pp.291-306, 2011.
DOI : 10.1146/annurev-biochem-051810-094654

A. Decque, Sumoylation coordinates the repression of inflammatory and anti471 viral gene-expression programs during innate sensing, Nat Immunol, vol.17, issue.2, pp.140-149, 2016.

J. Qiu, Ubiquitination independent of E1 and E2 enzymes by bacterial effectors, Nature, vol.522, issue.7601, pp.120-124, 2016.
DOI : 10.1038/nature17657

URL : http://europepmc.org/articles/pmc4905768?pdf=render

S. Bhogaraju, Phosphoribosylation of Ubiquitin Promotes Serine 524 Ubiquitination and Impairs Conventional Ubiquitination, A Single Legionella Effector Catalyzes a Multistep, vol.167, issue.6, pp.1636-1649, 2016.
DOI : 10.1016/j.cell.2016.11.019

URL : http://www.cell.com/article/S0092867416315914/pdf

, Ubiquitination Pathway to Rearrange Tubular Endoplasmic Reticulum for Replication, Host Microbe, vol.527, issue.2, pp.169-181

J. Qiu, A unique deubiquitinase that deconjugates phosphoribosyl-linked 529 protein ubiquitination, Cell Res, vol.27, issue.7, pp.865-881, 2017.
DOI : 10.1038/cr.2017.66

URL : https://www.nature.com/articles/cr201766.pdf

A. Hotson, Xanthomonas type III effector XopD targets SUMO-conjugated 531 proteins in planta, Mol Microbiol, vol.50, issue.2, pp.377-89, 2003.
DOI : 10.1046/j.1365-2958.2003.03730.x

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1046/j.1365-2958.2003.03730.x

J. G. Kim, Xanthomonas type III effector XopD desumoylates tomato 533 transcription factor SlERF4 to suppress ethylene responses and promote pathogen growth, Host Microbe, vol.534, issue.2, pp.143-54, 2013.
DOI : 10.1016/j.chom.2013.01.006

URL : https://doi.org/10.1016/j.chom.2013.01.006

M. J. Sheedlo, Structural basis of substrate recognition by a bacterial 536 deubiquitinase important for dynamics of phagosome ubiquitination, Proc Natl Acad Sci U S 537 A, vol.112, issue.49, pp.261-276, 2015.

K. Puvar, Cycle inhibiting factors (cifs): cyclomodulins that usurp the ubiquitin543 dependent degradation pathway of host cells, Toxins (Basel), vol.56, issue.36, pp.356-68, 2011.

J. Cui, Glutamine deamidation and dysfunction of ubiquitin/NEDD8 induced 545 by a bacterial effector family, Science, vol.329, issue.5996, pp.1215-1223, 2010.

C. Yu, Gln40 deamidation blocks structural reconfiguration and activation of 547 SCF ubiquitin ligase complex by Nedd8, Nat Commun, vol.6, p.10053, 2015.

R. M. Mccormack, Shigella IpaH0722 E3 ubiquitin ligase effector targets TRAF2 to 553 inhibit PKC-NF-kappaB activity in invaded epithelial cells, Nat Microbiol, vol.1, issue.7, pp.66-73, 2010.

D. W. Kim, The Shigella flexneri effector OspG interferes with innate immune 558 responses by targeting ubiquitin-conjugating enzymes, Proc Natl Acad Sci U S A, vol.102, issue.39, pp.559-14046, 2005.

X. Gao, NleB, a bacterial effector with glycosyltransferase activity, targets 561 GAPDH function to inhibit NF-kappaB activation, Cell Host Microbe, vol.13, issue.1, pp.87-99, 2010.

, PLoS Pathog, vol.6, issue.1, p.1000743

S. Suzuki, Shigella IpaH7.8 E3 ubiquitin ligase targets glomulin and activates 565 inflammasomes to demolish macrophages, Proc Natl Acad Sci U S A, vol.111, issue.40, pp.4011-4019, 2010.

E. Fiskin, Global Analysis of Host and Bacterial Ubiquitinome in Response to 569 Salmonella Typhimurium Infection, Mol Cell, vol.62, issue.6, pp.967-981, 2016.

A. Alonso, Emerging roles of sumoylation in the regulation of actin, 571 microtubules, intermediate filaments, and septins, Cytoskeleton (Hoboken), vol.72, issue.7, pp.4041-4052, 2015.

H. Bierne and P. Cossart, When bacteria target the nucleus: the emerging family of 575 nucleomodulins, Cell Microbiol, vol.14, issue.5, pp.622-655, 2012.

A. Cougnoux, Bacterial genotoxin colibactin promotes colon tumour growth 577 by inducing a senescence-associated secretory phenotype, Gut, vol.63, issue.12, pp.1932-1974, 2014.

T. Kubori and J. E. Galan, Temporal regulation of salmonella virulence effector 579 function by proteasome-dependent protein degradation, Cell, vol.115, issue.3, pp.333-375, 2003.

J. C. Patel, Diversification of a Salmonella virulence protein function by 581 ubiquitin-dependent differential localization, Cell, vol.137, issue.2, pp.283-94, 2009.

L. A. Knodler, Ubiquitination of the bacterial inositol phosphatase, SopB, 583 regulates its biological activity at the plasma membrane, Trends Cell Biol, vol.11, issue.11, pp.193-224, 2005.

P. S. Dunphy, Ehrlichia chaffeensis exploits host SUMOylation pathways to 589 mediate effector-host interactions and promote intracellular survival, Infect Immun, vol.82, issue.10, pp.590-4154, 2014.

A. R. Beyer, The Anaplasma phagocytophilum effector AmpA hijacks host cell 592 SUMOylation, Cell Microbiol, vol.17, issue.4, pp.504-523, 2015.

K. Jo, Host Cell Nuclear Localization of Shigella flexneri Effector OspF Is 594 Facilitated by SUMOylation, J Microbiol Biotechnol, vol.27, issue.3, pp.610-615, 2017.

G. Xu, Global analysis of lysine ubiquitination by ubiquitin remnant 596 immunoaffinity profiling, Nat Biotechnol, vol.28, issue.8, pp.868-73, 2010.

J. Becker, Detecting endogenous SUMO targets in mammalian cells and 598 tissues, Nat Struct Mol Biol, vol.20, issue.4, pp.525-556, 2013.

L. Herhaus and I. Dikic, Expanding the ubiquitin code through post-translational 600 modification, EMBO Rep, vol.16, issue.9, pp.1071-83, 2015.

L. S. Collier-hyams, Cutting edge: bacterial modulation of epithelial signaling 602 via changes in neddylation of cullin-1, J Immunol, vol.175, issue.7, pp.4194-4202, 2005.

A. Kumar, Commensal bacteria modulate cullin-dependent signaling via 604 generation of reactive oxygen species, EMBO J, vol.26, issue.21, pp.4457-66, 2007.

A. Kumar, The bacterial fermentation product butyrate influences epithelial 606 signaling via reactive oxygen species-mediated changes in cullin-1 neddylation, J Immunol, vol.182, issue.1, pp.538-584, 2009.

S. Patrick, A unique homologue of the eukaryotic protein-modifier ubiquitin 609 present in the bacterium Bacteroides fragilis, a predominant resident of the human 610 gastrointestinal tract, Microbiology, vol.157, p.612, 2011.

, Eukaryotic-Like Ubiquitin Protein That Mediates Intraspecies Antagonism. MBio, vol.8, issue.6

R. J. Collier and H. A. Cole, Diphtheria toxin subunit active in vitro, Science, vol.164, issue.3884, pp.1179-81, 1969.

Y. Zhang, The inflammation-associated Salmonella SopA is a HECT-like E3 616 ubiquitin ligase, Mol Microbiol, vol.62, issue.3, pp.786-93, 2006.

H. Piscatelli, The EHEC type III effector NleL is an E3 ubiquitin ligase that 618 modulates pedestal formation, PLoS One, vol.6, issue.4, p.19331, 2011.

B. Wu, NleG Type 3 effectors from enterohaemorrhagic Escherichia coli are 620 U-box E3 ubiquitin ligases, PLoS Pathog, vol.6, issue.6, pp.222-248, 2006.

R. B. Abramovitch, Type III effector AvrPtoB requires intrinsic E3 ubiquitin 624 ligase activity to suppress plant cell death and immunity, Proc Natl Acad Sci U S A, vol.103, pp.2851-625, 2006.

L. Zhang, Cysteine methylation disrupts ubiquitin-chain sensing in NF-kB 626 activation, Nature, vol.481, issue.7380, pp.204-212, 2011.

S. Misaghi, Chlamydia trachomatis-derived deubiquitinating enzymes in 628 mammalian cells during infection, Mol Microbiol, vol.61, issue.1, pp.142-50, 2006.

G. Le-negrate, ChlaDub1 of Chamydia trachomatis suppresses NF-kappaB 630 activation and inhibits IkappaBalpha ubiquitination and degradation, Cell Microbiol, vol.10, issue.9, pp.631-1879, 2008.