D. L. Lewis and D. K. Gattie, The ecology of quiescent microbes, ASM News, vol.57, pp.27-32, 1991.

S. E. Finkel, Long-term survival during stationary phase: evolution and the GASP phenotype, Nat Rev Microbiol, vol.4, pp.113-133, 2006.
DOI : 10.1038/nrmicro1340

, , p.16415927

E. S. Rittershaus, S. H. Baek, and C. M. Sassetti, The normalcy of dormancy: common themes in microbial quiescence, Cell Host Microbe, vol.13, pp.643-51, 2013.

, , p.23768489

H. S. Xu, N. Roberts, F. L. Singleton, R. W. Attwell, D. J. Grimes et al., Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment, Microb Ecol, vol.8, pp.313-336, 1982.

D. B. Roszak and R. R. Colwell, Survival strategies of bacteria in the natural environment, Microbiol Rev, vol.51, p.3312987, 1987.

J. D. Oliver, Recent findings on the viable but nonculturable state in pathogenic bacteria, FEMS Microbiol Rev, vol.34, pp.415-440, 2010.

,

T. Suda, F. Arai, and A. Hirao, Hematopoietic stem cells and their niche, Trends Immunol, vol.26, pp.426-459, 2005.

I. Glauche, K. Moore, L. Thielecke, K. Horn, M. Loeffler et al., Stem cell proliferation and quiescence-two side of the same coin, PLoS Comput Biol, vol.5, 2009.

T. H. Cheung and T. A. Rando, Molecular regulation of stem cell quiescence, Nat Rev Mol Cell Biol, vol.14, p.23698583, 2013.

,

P. Codega, V. Silva-vargas, A. Paul, A. R. Maldonado-soto, A. M. Deleo et al., Prospective identification and purification of quiescent adult neural stem cells from their in vivo niche, Neuron, vol.82, pp.545-59, 2014.

A. Hija, S. Salpeter, A. Klochendler, J. Grimsby, M. Brandeis et al., G0-G1 transition and the restriction point in pancreatic b-cells in vivo, Diabetes, vol.63, pp.578-84, 2014.

A. Okhrimenko, J. R. Gr?-un, K. Westendorf, Z. Fang, S. Reinke et al., Human memory T cells from the bone marrow are resting and maintain long-lasting systemic memory, Proc Natl Acad Sci, vol.111, issue.25, pp.9229-9263, 2014.

,

T. Peng, D. B. Frank, R. S. Kadzik, M. P. Morley, K. S. Rathi et al., Hedgehog actively maintains adult lung quiescence and regulates repair and regeneration, Nature, vol.526, pp.578-82, 2015.

M. Rumman, J. Dhawan, and M. Kassem, Quiescence in adult stem cells: biological significance and relevance to tissue regeneration, Stem Cells, vol.33, pp.2903-2915, 2015.

L. A. Thor-en, K. Liuba, D. Bryder, J. M. Nygren, C. T. Jensen et al., Kit regulates maintenance of quiescent hematopoietic stem cells, J Immunol, vol.180, pp.2045-53, 2008.

, PMID:18250409

J. V. Chakkalakal, K. M. Jones, M. A. Basson, and A. S. Brack, The aged niche disrupts muscle stem cell quiescence, Nature, vol.490, pp.355-60, 2012.

, , p.23023126

J. T. Rodgers and T. A. Rando, Sprouting a new take on stem cell aging, EMBO J, vol.31, pp.4103-4108, 2012.

M. Jones, J. Chase, M. Brinkmeier, J. Xu, D. N. Weinberg et al., Ash1l controls quiescence and self-renewal potential in hematopoietic stem cells, J Clin Invest, vol.125, pp.2007-2027, 2015.

V. Cavallucci, M. Fidaleo, and G. Pani, Neural stem cells and nutrients: poised between quiescence and exhaustion, Trends Endocrinol Metab, vol.27, pp.756-69, 2016.

F. Yue, P. Bi, C. Wang, T. Shan, Y. Nie et al., Pten is necessary for the quiescence and maintenance of adult muscle stem cells, Nat Commun, vol.8, 2017.

J. T. Rodgers, K. Y. King, J. O. Brett, M. J. Cromie, G. W. Charville et al., mTORC1 controls the adaptive transition of quiescent stem cells from G0 to G(Alert), Nature, vol.510, pp.393-399, 2014.

N. C. Lea, S. J. Orr, K. Stoeber, G. H. Williams, E. W. Lam et al., Commitment point during G0->G1 that controls entry into the cell cycle, Mol Cell Biol, vol.23, pp.2351-61, 2013.

, , p.12640120

J. Dhawan and S. Laxman, Decoding the stem cell quiescence cycle-lessons from yeast for regenerative biology, J Cell Sci, vol.128, pp.4467-74, 2015.

S. S. Su, Y. Tanaka, I. Samejima, K. Tanaka, and M. Yanagida, A nitrogen starvation-induced dormant G0 state in fission yeast: the establishment from uncommitted G1 state and its delay for return to proliferation, J Cell Sci, vol.109, p.8799823, 1996.

M. Shimanuki, L. Uehara, T. Pluskal, T. Yoshida, A. Kokubu et al., Klf1, a C2H2 zinc finger-transcription factor, is required for cell wall maintenance during long-term quiescence in differentiated G0 phase, PLoS One, vol.8, p.24167631, 2013.

,

H. A. Coller, L. Sang, and J. M. Roberts, A new description of cellular quiescence, PLoS Biol, vol.4, 2006.

H. Mikkers, J. Fris-en, and . Deconstructing, EMBO J, vol.24, pp.2715-2724, 2015.

, Essentials of stem cell biology, 2014.

J. A. Aguirre-ghiso, Models, mechanisms and clinical evidence for cancer dormancy, Nat Rev Cancer, vol.7, p.17957189, 2007.

,

W. Wei, P. Nurse, and D. Broek, Yeast cells can enter a quiescent state through G1, S, G2 or M phase of the cell cycle, Cancer Res, vol.53, p.8467507, 1993.

D. Laporte, A. Lebaudy, A. Sahin, B. Pinson, J. Ceschin et al., Metabolic status rather than cell cycle signals control quiescence entry and exit, J Cell Biol, vol.192, pp.949-57, 2011.
DOI : 10.1083/jcb.201009028

URL : https://hal.archives-ouvertes.fr/hal-00581392

, , p.21402786

B. Daignan-fornier and I. Sagot, Proliferation/quiescence: the controversial "aller-retour, Cell Div, vol.6, issue.10, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00592485

M. M. Klosinska, C. A. Crutchfield, P. H. Bradley, J. D. Rabinowitz, and J. R. Broach, Yeast cells can access distinct quiescent states, Genes Dev, vol.25, pp.336-385, 2011.

S. Cooper, Reappraisal of serum starvation, the restriction point, G0, and G1 phase arrest points, FASEB J, vol.17, pp.333-373, 2003.

, , p.12631573

H. Madhani, From a to a: yeast as a model for cellular differentiation, 2007.

M. Yanagida, Cellular quiescence: are controlling genes conserved?, Trends Cell Biol, vol.19, pp.705-720, 2009.

C. Allen, S. B?-uttner, A. D. Aragon, J. A. Thomas, O. Meirelles et al., Isolation of quiescent and nonquiescent cells from yeast stationary-phase cultures, J Cell Biol, vol.174, pp.89-100, 2006.

E. Wang, Rapid disappearance of statin, a nonproliferating and senescent cell-specific protein, upon reentering the process of cell cycling, J Cell Biol, vol.101, 1985.

P. J. Coates, R. C. Hobbs, J. Crocker, D. C. Rowlands, P. Murray et al., Identification of the antigen recognized by the monoclonal antibody BU31 as lamins A and C, J Pathol, vol.178, pp.21-30, 1996.

, , vol.178, 199601.

B. Ansari, R. Dover, C. P. Gillmore, and P. A. Hall, Expression of the nuclear membrane protein statin in cycling cells, J Pathol, vol.169, pp.391-397, 1993.

, , p.8501536

J. Bullwinkel, -. Baron, B. Uhr, A. L?-udemann, C. Wohlenberg et al., Ki-67 protein is associated with ribosomal RNA transcription in quiescent and proliferating cells, J Cell Physiol, vol.206, pp.624-659, 2006.

R. Rahmanzadeh, G. H?-uttmann, J. Gerdes, and T. Scholzen, Chromophoreassisted light inactivation of pKi-67 leads to inhibition of ribosomal RNA synthesis, Cell Prolif, vol.40, pp.422-452, 2007.

N. Rivard, L. 'allemain, G. Bartek, J. , P. et al., Abrogation of p27Kip1 by cDNA antisense suppresses quiescence (G0 state) in fibroblasts, J Biol Chem, vol.271, pp.18337-18378, 1996.

W. A. Bresnahan, I. Boldogh, T. Ma, T. Albrecht, and E. A. Thompson, Cyclin E/Cdk2 activity is controlled by different mechanisms in the G0 and G1 phases of the cell cycle, Cell Growth Differ, vol.7, pp.1283-90, 1996.

H. R. Mellor, D. J. Ferguson, and R. Callaghan, A model of quiescent tumour microregions for evaluating multicellular resistance to chemotherapeutic drugs, Br J Cancer, vol.93, pp.302-311, 2005.

P. Salmenper?-a, P. R. Karhemo, K. Laakkonen, P. Vaheri, and A. , Fibroblast spheroids as a model to study sustained fibroblast quiescence and their crosstalk with tumor cells, Exp Cell Res, vol.345, pp.17-24, 2016.

,

T. Oki, K. Nishimura, J. Kitaura, K. Togami, A. Maehara et al., A novel cell-cycle-indicator, mVenus-p27K-, identifies quiescent cells and visualizes G0-G1 transition, Sci Rep, vol.4, p.24500246, 2014.

,

M. Nakanishi, G. R. Adami, R. S. Robetorye, A. Noda, S. F. Venable et al., Exit from G0 and entry into the cell cycle of cells expressing p21Sdi1 antisense RNA, Proc Natl Acad Sci U S A, vol.92, p.7753810, 1995.

N. S. Thomas, L. C. Burke, A. Bybee, and D. C. Linch, The phosphorylation state of the retinoblastoma (RB) protein in G0/G1 is dependent on growth status, Oncogene, vol.6, pp.317-339, 1991.

A. Sun, L. Bagella, S. Tutton, G. Romano, and A. Giordano, From G0 to S phase: a view of the roles played by the retinoblastoma (Rb) family members in the Rb-E2F pathway, J Cell Biochem, vol.102, pp.1400-1404, 2007.

, , p.17979151

G. Yao, T. J. Lee, S. Mori, J. R. Nevins, and L. You, A bistable Rb-E2F switch underlies the restriction point, Nat Cell Biol, vol.10, pp.476-82, 2008.

,

G. K. Behbehani, S. C. Bendall, M. R. Clutter, W. J. Fantl, and G. P. Nolan, Singlecell mass cytometry adapted to measurements of the cell cycle, Cytometry A, vol.81, pp.552-66, 2012.

G. Charvin, C. Oikonomou, E. D. Siggia, and F. R. Cross, Origin of irreversibility of cell cycle start in budding yeast, PLoS Biol, vol.8, 2010.

, PMID, 20087409.

A. Travesa, T. I. Kalashnikova, R. A. De-bruin, S. R. Cass, C. Chahwan et al., Repression of G1/S transcription is mediated via interaction of the GTB motifs of Nrm1 and Whi5 with Swi6, Mol Cell Biol, vol.33, pp.1476-86, 2013.

K. H. Kim and J. M. Sederstrom, Assaying cell cycle status using flow cytometry, Curr Protoc Mol Biol, vol.111, p.26131851, 2015.

,

M. Shimanuki, S. Y. Chung, Y. Chikashige, Y. Kawasaki, L. Uehara et al., Two-step, extensive alterations in the transcriptome from G0 arrest to cell division in Schizosaccharomyces pombe, Genes Cells, vol.12, p.17535257, 2007.

,

S. Marguerat, A. Schmidt, S. Codlin, W. Chen, and R. Aebersold, Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells, Cell, vol.151, pp.671-83, 2012.

, , p.23101633

O. Farrell and P. H. , Quiescence: early evolutionary origins and universality do not imply uniformity, Philos Trans R Soc Lond B Sci, vol.366, pp.3498-507, 2011.

,

M. Malumbres and M. Barbacid, To cycle or not to cycle: a critical decision in cancer, Nat Rev Cancer, vol.1, p.11902577, 2001.

,

N. Moore and L. S. Quiescent, slow-cycling stem cell populations in cancer: a review of the evidence and discussion of significance, J Oncol, 2011.

S. P. Cavnar, A. D. Rickelmann, K. F. Meguiar, A. Xiao, J. Dosch et al., Modeling selective elimination of quiescent cancer cells from bone marrow, Neoplasia, vol.17, pp.625-658, 2015.

X. Zhang, A. De-milito, M. H. Olofsson, J. Gullbo, D. 'arcy et al., Targeting mitochondrial function to treat quiescent tumor cells in solid tumors, Int J Mol Sci, vol.16, pp.27313-27339, 2015.

,

Z. Xi, M. Yao, Y. Li, C. Xie, J. Holst et al., Guttiferone K impedes cell cycle re-entry of quiescent prostate cancer cells via stabilization of FBXW7 and subsequent c-MYC degradation, Cell Death Dis, vol.7, 2016.

J. Dai, M. A. Miller, N. J. Everetts, X. Wang, P. Li et al., Elimination of quiescent slow-cycling cells via reducing quiescence depth by natural compounds purified from Ganoderma lucidum, Oncotarget, vol.8, issue.8, pp.13770-13781, 2017.

R. Garc-ia-rodas and O. Zaragoza, Catch me if you can: phagocytosis and killing avoidance by Cryptococcus neoformans, FEMS Immunol Med Microbiol, vol.64, pp.147-61, 2012.

C. Coelho, A. L. Bocca, and A. Casadevall, The intracellular life of Cryptococcus neoformans, Annu Rev Pathol, vol.9, pp.219-257, 2014.

H. Du, G. Guan, X. Li, M. Gulati, L. Tao et al., N-acetylglucosamine-induced cell death in Candida albicans and its implications for adaptive mechanisms of nutrient sensing in yeasts, MBio, vol.6, pp.1376-1391, 2015.

J. D. Oliver and R. Bockian, In vivo resuscitation, and virulence towards mice, of viable but nonculturable cells of Vibrio vulnificus, Appl Environ Microbiol, vol.61, p.7618873, 1995.

L. Li, N. Mendis, H. Trigui, J. D. Oliver, and S. P. Faucher, The importance of the viable but non-culturable state in human bacterial pathogens, Front Microbiol, vol.5, p.258, 2014.

T. Ding, Y. Suo, Q. Xiang, X. Zhao, S. Chen et al., Significance of viable but nonculturable Escherichia coli: induction, detection, and control, J Microbiol Biotechnol, vol.27, p.27974728, 2016.

,

J. V. Gray, G. A. Petsko, G. C. Johnston, D. Ringe, R. A. Singer et al., Sleeping beauty:" quiescence in Saccharomyces cerevisiae, Microbiol Mol Biol Rev, vol.68, p.15187181, 2004.

,

C. De-virgilio, The essence of yeast quiescence, FEMS Microbiol Rev, vol.36, pp.306-345, 2012.

K. Sajiki, M. Hatanaka, T. Nakamura, K. Takeda, M. Shimanuki et al., Genetic control of cellular quiescence in S. pombe, J Cell Sci, vol.122, pp.1418-1447, 2009.

G. Yao, Modelling mammalian cellular quiescence, Interface Focus, vol.4, p.24904737, 2014.
DOI : 10.1098/rsfs.2013.0074

URL : http://rsfs.royalsocietypublishing.org/content/royfocus/4/3/20130074.full.pdf

D. Sun and L. Buttitta, Protein phosphatase 2A promotes the transition to G0 during terminal differentiation in Drosophila, Development, vol.142, pp.3033-3078, 2015.

Y. Guo, K. Flegel, J. Kumar, D. J. Mckay, and L. A. Buttitta, Ecdysone signaling induces two phases of cell cycle exit in Drosophila cells, Biol Open, vol.5, pp.1648-61, 2016.

L. Li and R. Bhatia, Stem cell quiescence, Clin Cancer Res, vol.17, pp.4936-4977, 2011.

M. Yanagida, N. Ikai, M. Shimanuki, and K. Sajiki, Nutrient limitations alter cell division control and chromosome segregation through growth-related kinases and phosphatases, Philos Trans R Soc Lond B Biol Sci, vol.366, 2011.
DOI : 10.1098/rstb.2011.0124

URL : http://rstb.royalsocietypublishing.org/content/royptb/366/1584/3508.full.pdf

J. Klein and I. Grummt, Cell cycle-dependent regulation of RNA polymerase I transcription: the nucleolar transcription factor UBF is inactive in mitosis and early G1, Proc Natl Acad Sci U S A, vol.96, p.10339547, 1999.

B. Roche, B. Arcangioli, and R. A. Martienssen, RNA interference is essential for cellular quiescence, Science, vol.354, p.5651, 2016.
DOI : 10.1126/science.aah5651

URL : https://hal.archives-ouvertes.fr/pasteur-01868276

, , p.27738016

T. Pluskal, T. Hayashi, S. Saitoh, A. Fujisawa, and M. Yanagida, Specific biomarkers for stochastic division patterns and starvation-induced quiescence under limited glucose levels in fission yeast, FEBS J, vol.278, pp.1299-315, 2011.

K. Sajiki, T. Pluskal, M. Shimanuki, and M. Yanagida, Metabolomic analysis of fission yeast at the onset of nitrogen starvation, Metabolites, vol.3, pp.1118-1147, 2013.

T. A. Kohda, K. Tanaka, M. Konomi, M. Sato, M. Osumi et al., Fission yeast autophagy induced by nitrogen starvation generates a nitrogen source that drives adaptation processes, Genes Cells, vol.12, pp.155-70, 2007.

,

M. Markaki and N. Tavernarakis, Metabolic control by target of rapamycin and autophagy during ageing-a mini-review, Gerontology, vol.59, pp.340-348, 2013.

Z. An, A. Tassa, C. Thomas, R. Zhong, G. Xiao et al., Autophagy is required for G1/G0 quiescence in response to nitrogen starvation in Saccharomyces cerevisiae

, Autophagy, vol.10, pp.1702-1713, 2014.

T. Sideri, C. Rallis, D. A. Bitton, B. M. Lages, F. Suo et al., Parallel profiling of fission yeast deletion mutants for proliferation and for lifespan during long-term quiescence, Bethesda), vol.3, pp.145-55, 2014.

M. M?-uller, O. Schmidt, M. Angelova, K. Faseri, S. Weys et al., The coordinated action of the MVB pathway and autophagy ensures cell survival during starvation, Elife, vol.4, p.25902403, 2015.

,

H. Huang, T. Kawamata, T. Horie, H. Tsugawa, Y. Nakayama et al., Bulk RNA degradation by nitrogen starvationinduced autophagy in yeast, EMBO J, vol.34, pp.154-68, 2015.

,

E. Welter and Z. Elazar, Autophagy mediates nonselective RNA degradation in starving yeast, EMBO J, vol.34, p.25492883, 2015.
DOI : 10.15252/embj.201490621

URL : http://emboj.embopress.org/content/embojnl/34/2/131.full.pdf

,

I. Sagot, B. Pinson, B. Salin, and B. Daignan-fornier, Actin bodies in yeast quiescent cells: an immediately available actin reserve?, Mol Biol Cell, vol.17, pp.4645-55, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00093132

D. Laporte, B. Salin, B. Daignan-fornier, and I. Sagot, Reversible cytoplasmic localization of the proteasome in quiescent yeast cells, J Cell Biol, vol.181, pp.737-782, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00287603

R. S. Yedidi, A. K. Fatehi, and C. Enenkel, Proteasome dynamics between proliferation and quiescence stages of Saccharomyces cerevisiae, Crit Rev Biochem Mol Biol, vol.51, pp.497-512, 2016.

D. Laporte, F. Courtout, B. Salin, J. Ceschin, and I. Sagot, An array of nuclear microtubules reorganizes the budding yeast nucleus during quiescence, J Cell Biol, vol.203, pp.585-94, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00940307

D. Laporte, F. Courtout, B. Pinson, J. Dompierre, B. Salin et al., A stable microtubule array drives fission yeast polarity reestablishment upon quiescence exit, J Cell Biol, vol.210, pp.99-113, 2015.

,

S. Mochida and M. Yanagida, Distinct modes of DNA damage response in S. pombe G0 and vegetative cells, Genes Cells, vol.11, pp.13-27, 2006.

, , p.16371129

S. Gangloff and B. Arcangioli, DNA repair and mutations during quiescence in yeast, FEMS Yeast Res, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01868274

N. Kim and S. Jinks-robertson, Transcription as a source of genomic instability, Nat Rev Genet, vol.13, p.22330764, 2012.

,

T. Lindahl, Instability and decay of the primary structure of DNA, Nature, vol.362, pp.709-724, 1993.

D. Walter, A. Lier, A. Geiselhart, F. B. Thalheimer, S. Huntscha et al., Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem cells, Nature, vol.520, pp.549-52, 2015.

S. Ben-hassine and B. Arcangioli, Tdp1 protects against oxidative DNA damage in non-dividing fission yeast, EMBO J, vol.28, pp.632-672, 2009.

, PMID, 19197239.

K. H. Campbell, J. Mcwhir, W. A. Ritchie, and I. Wilmut, Sheep cloned by nuclear transfer from a cultured cell line, Nature, vol.380, pp.64-70, 1996.

, , p.8598906

I. Wilmut, A. E. Schnieke, J. Mcwhir, A. J. Kind, and K. H. Campbell, Viable offspring derived from fetal and adult mammalian cells, Nature, vol.385, pp.810-813, 1997.

P. K. Kallingappa, P. M. Turner, M. P. Eichenlaub, A. L. Green, F. C. Oback et al., Quiescence loosens epigenetic constraints in bovine somatic cells and improves their reprogramming into totipotency, Biol Reprod, vol.95, p.27281704, 2016.

,

T. A. Volpe, C. Kidner, I. M. Hall, G. Teng, S. I. Grewal et al., Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi, Science, vol.297, p.12193640, 2002.

,

S. E. Castel and R. A. Martienssen, RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond, Nat Rev Genet, vol.14, pp.100-112, 2013.

T. Volpe, V. Schramke, G. L. Hamilton, S. A. White, G. Teng et al., RNA interference is required for normal centromere function in fission yeast, Chromosome Res, vol.11, pp.137-183, 2003.

I. M. Hall, K. Noma, and S. I. Grewal, RNA interference machinery regulates chromosome dynamics during mitosis and meiosis in fission yeast, Proc Natl Acad Sci U S A, vol.100, pp.193-201, 2003.

A. Smialowska, I. Djupedal, J. Wang, P. Kylsten, P. Swoboda et al., RNAi mediates post-transcriptional repression of gene expression in fission yeast Schizosaccharomyces pombe, Biochem Biophys Res Commun, vol.444, pp.254-263, 2014.

K. J. Woolcock, R. Stunnenberg, D. Gaidatzis, H. R. Hotz, S. Emmerth et al., RNAi keeps Atf1-bound stress response genes in check at nuclear pores, Genes Dev, vol.27, pp.683-92, 2012.

,

T. Sugiyama, H. P. Cam, R. Sugiyama, K. Noma, M. Zofall et al., SHREC, an effector complex for heterochromatic transcriptional silencing, Cell, vol.128, p.17289569, 2007.

,

A. Shimada, K. Dohke, M. Sadaie, K. Shinmyozu, J. Nakayama et al., Phosphorylation of Swi6/HP1 regulates transcriptional gene silencing at heterochromatin, Genes Dev, vol.23, pp.18-23, 2009.

, PMID, 19136623.

A. Kloc, M. Zaratiegui, N. E. Martienssen, and R. , RNA interference guides histone modification during the S phase of chromosomal replication, Curr Biol, vol.18, pp.490-495, 2008.

M. Zaratiegui, S. E. Castel, D. V. Irvine, A. Kloc, J. Ren et al., RNAi promotes heterochromatic silencing through replication-coupled release of RNA pol II, Nature, vol.479, pp.135-143, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-02013927

S. E. Castel, J. Ren, S. Bhattacharjee, A. Y. Chang, M. Valbuena et al., Dicer promotes transcription termination at sites of replication stress to maintain genome stability, Cell, vol.159, pp.572-83, 2014.

H. Kato, D. B. Goto, R. A. Martienssen, T. Urano, K. Furukawa et al., RNA polymerase II is required for RNAi-dependent heterochromatin assembly, Science, vol.309, p.15947136, 2005.

,

I. Djupedal, M. Portoso, H. Spa-hr, C. Bonilla, and C. M. Gustafsson,

R. C. and E. K. , RNA pol II subunit Rpb7 promotes centromeric transcription and RNAi-directed chromatin silencing, Genes Dev, vol.19, pp.2301-2307, 2005.

F. E. Reyes-turcu, K. Zhang, M. Zofall, E. Chen, and S. I. Grewal, Defects in RNA quality control factors reveal RNAi-independent nucleation of heterochromatin, Nat Struct Mol Biol, vol.18, pp.1132-1140, 2011.

, , p.21892171

A. Lisica, C. Engel, M. Jahnel, E. Rold-an, E. A. Galburt et al., Mechanisms of backtrack recovery by RNA polymerases I and II, Proc Natl Acad Sci, vol.113, issue.11, pp.2946-51, 2016.

,

J. F. Lemay, M. Larochelle, S. Marguerat, S. Atkinson, J. Bachand et al., The RNA exosome promotes transcription termination of backtracked RNA polymerase II, Nat Struct Mol Biol, vol.21, pp.919-945, 2014.

,

P. Braglia, J. Kawauchi, and N. J. Proudfoot, Co-transcriptional RNA cleavage provides a failsafe termination mechanism for yeast RNA

I. , Nucleid Acids Res, vol.39, p.20972219, 2011.

,

D. A. Bernstein, V. K. Vyas, and G. R. Fink, Genes come and go: the evolutionary path of budding yeast RNase III enzymes, RNA Biol, vol.9, pp.1123-1131, 2012.

D. A. Bernstein, V. K. Vyas, D. E. Weinberg, I. A. Drinnenberg, D. P. Bartel et al., Candida albicans Dicer (CaDcr1) is required for efficient ribosomal and spliceosomal RNA maturation, Proc Natl Acad Sci U S A, vol.109, pp.523-531, 2012.

S. Wehner, A. K. D?-orrich, P. Ciba, A. Wilde, and M. Marz, pRNA: NoRCassociated RNA of rRNA operons, RNA Biol, vol.11, pp.3-9, 2014.

, , p.24440945

H. Bierhoff, K. Schmitz, F. Maass, J. Ye, and I. Grummt, Noncoding transcripts in sense and antisense orientation regulate the epigenetic state of ribosomal RNA genes, Cold Spring Harb Symp Quant Biol, vol.75, pp.357-64, 2010.

, , p.21502405

H. Bierhoff, M. A. Dammert, D. Brocks, S. Dambacher, G. Schotta et al., Quiescence-induced lncRNAs trigger H4K20 trimethylation and transcriptional silencing, Mol Cell, vol.54, pp.675-82, 2014.

,

F. Li, R. Martienssen, and W. Z. Cande, Coordination of DNA replication and histone modification by the Rik1-Dos2 complex, Nature, vol.475, pp.244-252, 2011.

M. Gonzalez and F. Li, DNA replication, RNAi and epigenetic inheritance, Epigenetics, vol.7, pp.14-23, 2012.

R. Pi~-non, Folded chromosomes in non-cycling yeast cells: evidence for a characteristic g0 form, Chromosoma, vol.67, p.359278, 1978.

,

M. T. Rutledge, M. Russo, J. M. Belton, J. Dekker, and J. R. Broach, The yeast genome undergoes significant topological reorganization in quiescence, Nucleid Acids Res, vol.43, p.26202961, 2015.

,

G. Sch?-afer, C. R. Mcevoy, and H. G. Patterton, The Saccharomyces cerevisiae linker histone Hho1p is essential for chromatin compaction in stationary phase and is displaced by transcription, Proc Natl Acad Sci U S A, vol.105, pp.14838-14881, 2008.

Q. Yu, H. Kuzmiak, Y. Zou, L. Olsen, P. A. Defossez et al., Saccharomyces cerevisiae linker histone Hho1p functionally interacts with core histone H4 and negatively regulates the establishment of transcriptionally silent chromatin, J Biol Chem, vol.284, pp.740-50, 2009.

, PMID, 19017647.

M. Ngubo, G. Kemp, and H. G. Patterton, Nano-electrospray tandem mass spectrometric analysis of the acetylation state of histones H3 and H4 in stationary phase in Saccharomyces cerevisiae, BMC Biochem, vol.12, p.34, 2011.

,

D. Laporte, F. Courtout, S. Tollis, and I. Sagot, Quiescent Saccharomyces cerevisiae forms telomere hyperclusters at the nuclear membrane vicinity through a multifaceted mechanism involving Esc1, the Sir complex, and chromatin condensation, Mol Biol Cell, vol.27, pp.1875-84, 2016.

J. N. Mcknight, J. W. Boerma, L. L. Breeden, and T. Tsukiyama, Global promoter targeting of a conserved lysine deacetylase for transcriptional shutoff during quiescence entry, Mol Cell, vol.59, pp.732-775, 2015.

,

S. Miles and L. L. Breeden, A common strategy for initiating the transition from proliferation to quiescence, Curr Genet, vol.63, pp.179-86, 2016.

,

J. J. Sandmeier, S. French, Y. Osheim, W. L. Cheung, C. M. Gallo et al., RPD3 is required for the inactivation of yeast ribosomal DNA genes in stationary phase, EMBO J, vol.21, pp.4959-68, 2002.

, , p.12234935

H. Nishida, T. Matsumoto, S. Kondo, M. Hamamoto, and H. Yoshikawa, The early diverging ascomycetous budding yeast Saitoella complicata has three histone deacetylases belonging to the Clr6, Hos2 and Rpd3 lineages, J Gen Appl Microbiol, vol.60, p.24646756, 2014.

,

J. S. Rawlings, M. Gatzka, P. G. Thomas, and J. N. Ihle, Chromatin condensation via the condensin II complex is required for peripheral T-cell quiescence, EMBO J, vol.30, pp.263-76, 2011.

V. Boonsanay, T. Zhang, A. Georgieva, S. Kostin, H. Qi et al., Regulation of skeletal muscle stem cell quiescence by Suv420h1-dependent facultative heterochromatin formation, vol.18, pp.229-271, 2016.

,

A. G. Evertts, A. L. Manning, X. Wang, N. J. Dyson, B. A. Garcia et al., H4K20 methylation regulates quiescence and chromatin compaction

, Mol Biol Cell, vol.24, pp.3025-3062, 2013.

L. Dai, S. Ye, H. W. Li, D. F. Chen, H. L. Wang et al., SETD4 regulates cell quiescence and catalyzes the trimethylation of H4K20 during diapause formation of Artemia, Mol Cell Biol, vol.37, p.28031330, 2017.

,

J. P. Svensson, M. Shukla, V. Menendez-benito, U. Norman-alexsson, P. Audergon et al., A nucleosome turnover map reveals that the stability of histone H4 Lys20 methylation depends on histone recycling in transcribed chromatin, Genome Res, vol.25, pp.872-83, 2015.

S. L. Sanders, M. Portoso, J. Mata, J. Allshire, R. C. Kouzarides et al., Methylation of histone H4 lysing 20 controls recruitment of Crb2 to sites of DNA damage, Cell, vol.119, p.15550243, 2004.

,

Y. Wang, B. Reddy, J. Thompson, H. Wang, K. Noma et al., Regulation of Set9-mediated H4K20 methylation by a PWWP domain protein, Mol Cell, vol.33, pp.428-465, 2009.

R. I. Joh, J. S. Khanduja, I. A. Calvo, M. Mistry, C. M. Palmieri et al., Survival in quiescence requires the euchromatic deployment of Clr4/SUV39H by Argonaute-associated small RNAs, Mol Cell, vol.64, pp.1088-101, 2016.

,

B. E. Bernstein, T. S. Mikkelsen, X. Xie, M. Kamal, D. J. Huebert et al., A bivalent chromatin structure marks key developmental genes in embryonic stem cells, Cell, vol.125, pp.315-341, 2006.

L. Liu, T. H. Cheung, G. W. Charville, B. M. Hurgo, T. Leavitt et al., Chromatin modifications as determinants of muscle stem cell quiescence and chronological aging, Cell Rep, vol.4, pp.189-204, 2013.

,

C. P. Young, C. Hillyer, K. Hokamp, D. J. Fitzpatrick, N. K. Konstantinov et al., Distinct histone methylation and transcription profiles are established during the development of cellular quiescence in yeast, BMC Genomics, vol.18, p.107, 2017.

J. Brumbaugh, D. Phanstiel, and J. J. Coon, Unraveling the histone's potential: a proteomics perspective, Epigenetics, vol.3, p.18849650, 2008.

,

K. Zhang, Y. Chen, Z. Zhang, and Y. Zhao, Identification and verification of lysine propionylation and butyrylation in yeast core histones using PTMap software, J Proteome Res, vol.8, pp.900-906, 2008.

,

A. M. Arnaudo and B. A. Garcia, Proteomic characterization of novel histone post-translational modifications, Epigenetics Chromatin, vol.6, p.24, 2013.

Y. M. Xu, J. Y. Du, and A. T. Lau, Posttranslational modifications of human histone H3: an update, Proteomics, vol.14, p.25044606, 2014.

,

Y. Zhao and B. A. Garcia, Comprehensive catalog of currently documented histone modifications, Cold Spring Harb Perspect Biol, vol.7, 2015.

,

M. Zhou, L. Pa-sa-toli-c, and D. L. Stenoien, Profiling of histone post-translational modifications in mouse brain with high-resolution top-down mass spectrometry, J Proteome Res, vol.16, pp.599-608, 2017.

I. Inha, L. Buchanan, M. R?-onnerblad, C. Bonilla, M. Durand-dubief et al., Genome-wide mapping of histone modifications and mass spectrometry reveal H4 acetylation bias and H3K36 methylation at gene promoters in fission yeast, Epigenomics, vol.2, pp.377-93, 2010.

P. Mews, B. M. Zee, S. Liu, G. Donahue, B. A. Garcia et al., Histone methylation has dynamics distinct from those of histone acetylation in cell cycle reentry from quiescence, Mol Cell Biol, vol.34, pp.3968-80, 2014.

K. Matsubara, N. Sano, T. Umehara, and M. Horikoshi, Global analysis of functional surfaces of core histones with comprehensive point mutants, Genes Cells, vol.12, pp.13-33, 2007.

S. Kawashima, Y. Nakabayashi, K. Matsubara, N. Sano, T. Enomoto et al., Global analysis of core histones reveals nucleosomal surfaces required for chromosome bi-orientation, EMBO J, vol.30, pp.3353-67, 2011.

B. G. Mellone, L. Ball, N. Suka, M. R. Grunstein, J. F. Partridge et al., Centromere silencing and function in fission yeast is governed by the amino terminus of histone H3, Curr Biol, vol.13, pp.1748-57, 2003.

, , p.14561399

S. Watt, J. Mata, L. Opez-maury, L. Marguerat, S. Burns et al., urg1: a uracil-regulatable promoter system for fission yeast with short induction and repression times, PLoS One, vol.3, p.18197241, 1428.

,

D. A. Chan and A. J. Giaccia, Harnessing synthetic lethal interactions in anticancer drug discovery, Nat Rev Drug Discov, vol.10, pp.351-64, 2011.

,

U. H. Weidle, D. Maisel, and D. Eick, Synthetic lethality-based targets for discovery of new cancer therapeutics, Cancer Genomics Proteomics, vol.8, p.21737609, 2011.

J. M. Thompson, Q. H. Nguyen, M. Singh, and O. V. Razorenova, Approaches to identifying synthetic lethal interactions in cancer, Yale J Biol Med, vol.88, p.26029013, 2015.

R. Srivas, J. P. Shen, C. C. Yang, S. M. Sun, J. Li et al., A network of conserved synthetic lethal interactions for exploration of precision cancer therapy, Mol Cell, vol.63, pp.514-539, 2016.