, the French National Research Agency (ANR) as part of the second Investissements d'Avenir " programme (light4deaf, ANR-15-RHUS-0001), ANR- HearInNoise-(ANR-17-CE16-0017, LHW-Stiftung, FAUN Stiftung (Suchert Foundation), LABEX Life-senses, 2010.

, LABX-65), and a grant from the Fondation Pour l'Audition to DD (2015-APA Research Grant)

, Address correspondence to: Didier Dulon, p.75015

A. El-amraoui, Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, 25 rue Dr Roux

, Philadelphia Pennsylvania, USA) Microinjections were performed on the left ear as previously described (46) For quantification of in vivo injections of

, Then, in each case, we manually counted all visible inner and outer hair cells and determined the percentage of GFP-positive cells. Statistics. For in vivo recordings (data expressed as mean ± SD or SEM as indicated), statistical significance of the differences observed was tested with Student's t test, 2-way ANOVA coupled to the Bonferroni post hoc test (2-way ANOVA), or 2-tailed unpaired t test with Welch's correction using Prism software (GraphPad) For ex vivo recordings, the data (expressed as mean ± SEM) were analyzed with Origin (Microcal) and Igor software (WaveMetrics) Statistical significance is indicated in the figures, GFP

*. , 05, **P < 0.01, ***P < 0.001. Study approval. All the experiments on mice were carried out according to protocols approved by the Animal Use Committees of INSERM, CEEA50), and Institut Pasteur

A. Adato, USH3A transcripts encode clarin-1, a four-transmembrane-domain protein with a possible role in sensory synapses, European Journal of Human Genetics, vol.6, issue.6, pp.339-350, 2002.
DOI : 10.1093/hmg/6.8.1225

R. Fields, Usher Syndrome Type III: Revised Genomic Structure of the USH3 Gene and Identification of Novel Mutations, The American Journal of Human Genetics, vol.71, issue.3, pp.607-617, 2002.
DOI : 10.1086/342098

H. Västinsalo, Alternative splice variants of the USH3A gene Clarin 1 (CLRN1), European Journal of Human Genetics, vol.374, issue.1, pp.30-35, 2011.
DOI : 10.1159/000083363

T. Joensuu, Mutations in a Novel Gene with Transmembrane Domains Underlie Usher Syndrome Type 3, The American Journal of Human Genetics, vol.69, issue.4, pp.673-684, 2001.
DOI : 10.1086/323610

J. Isosomppi, H. Västinsalo, S. Geller, E. Heon, J. Flannery et al., Disease-causing mutations in the CLRN1 gene alter normal CLRN1 protein trafficking to the plasma membrane, Mol Vis, vol.15, pp.1806-1818, 2009.

M. Zallocchi, Localization and expression of clarin-1, the Clrn1 gene product, in auditory hair cells and photoreceptors, Hearing Research, vol.255, issue.1-2, pp.109-120, 2009.
DOI : 10.1016/j.heares.2009.06.006

R. Geng, Usher syndrome IIIA gene clarin-1 is essential for hair cell function and associated neural activation, Human Molecular Genetics, vol.236, issue.2, pp.2748-2760, 2009.
DOI : 10.1002/dvdy.21026

R. Geng, The Mechanosensory Structure of the Hair Cell Requires Clarin-1, a Protein Encoded by Usher Syndrome III Causative Gene, Journal of Neuroscience, vol.32, issue.28, pp.9485-9498, 2012.
DOI : 10.1523/JNEUROSCI.0311-12.2012

O. Ogun and M. Zallocchi, Clarin-1 acts as a modulator of mechanotransduction activity and presynaptic ribbon assembly, The Journal of Cell Biology, vol.48, issue.3, pp.375-391, 2014.
DOI : 10.1083/jcb.201404016.dv

S. Gopal, Zebrafish Models for the Mechanosensory Hair Cell Dysfunction in Usher Syndrome 3 Reveal That Clarin-1 Is an Essential Hair Bundle Protein, Journal of Neuroscience, vol.35, issue.28, pp.10188-10201, 2015.
DOI : 10.1523/JNEUROSCI.1096-15.2015

S. Geller, CLRN1 Is Nonessential in the Mouse Retina but Is Required for Cochlear Hair Cell Development, PLoS Genetics, vol.14, issue.2, p.1000607, 2009.
DOI : 10.1371/journal.pgen.1000607.s009

J. Phillips, H. Västinsalo, J. Wegner, A. Clément, E. Sankila et al., The cone-dominant retina and the inner ear of zebrafish express the ortholog of CLRN1, the causative gene of human Usher syndrome type 3A, Gene Expression Patterns, vol.13, issue.8, pp.473-481, 2013.
DOI : 10.1016/j.gep.2013.09.001

A. Constals, Glutamate-Induced AMPA Receptor Desensitization Increases Their Mobility and Modulates Short-Term Plasticity through Unbinding from Stargazin, Neuron, vol.85, issue.4, pp.787-803, 2015.
DOI : 10.1016/j.neuron.2015.01.012

A. Hafner, Lengthening of the Stargazin Cytoplasmic Tail Increases Synaptic Transmission by Promoting Interaction to Deeper Domains of PSD-95, Neuron, vol.86, issue.2, pp.475-489, 2015.
DOI : 10.1016/j.neuron.2015.03.013

Y. Lallemand, V. Luria, R. Haffner-krausz, and P. Lonai, Maternally expressed PGK-Cre transgene as a tool for early and uniform activation of the Cre site-specific recombinase, Transgenic Research, vol.7, issue.2, pp.105-112, 1998.
DOI : 10.1023/A:1008868325009

E. Caberlotto, Usher type 1G protein sans is a critical component of the tip-link complex, a structure controlling actin polymerization in stereocilia, Proceedings of the National Academy of Sciences, vol.456, issue.7219, pp.5825-5830, 2011.
DOI : 10.1038/nature07380

URL : https://hal.archives-ouvertes.fr/pasteur-01472844

E. Pepermans, The CD2 isoform of protocadherin-15 is an essential component of the tip-link complex in mature auditory hair cells, EMBO Molecular Medicine, vol.6, issue.7, pp.984-992, 2014.
DOI : 10.15252/emmm.201403976

URL : https://hal.archives-ouvertes.fr/pasteur-01237053

G. Richardson, J. De-monvel, and C. Petit, How the Genetics of Deafness Illuminates Auditory Physiology, Annual Review of Physiology, vol.73, issue.1, pp.311-334, 2011.
DOI : 10.1146/annurev-physiol-012110-142228

P. Vincent, Y. Bouleau, S. Safieddine, C. Petit, and D. Dulon, Exocytotic Machineries of Vestibular Type I and Cochlear Ribbon Synapses Display Similar Intrinsic Otoferlin-Dependent Ca2+ Sensitivity But a Different Coupling to Ca2+ Channels, Journal of Neuroscience, vol.34, issue.33, pp.10853-10869, 2014.
DOI : 10.1523/JNEUROSCI.0947-14.2014

A. Brandt, J. Striessnig, T. Moser, and . Cav1, 1.3 Channels Are Essential for Development and Presynaptic Activity of Cochlear Inner Hair Cells, The Journal of Neuroscience, vol.23, issue.34, pp.10832-10840, 2003.
DOI : 10.1523/JNEUROSCI.23-34-10832.2003

URL : https://hal.archives-ouvertes.fr/in2p3-00148681

D. Khimich, Hair cell synaptic ribbons are essential for synchronous auditory signalling, Nature, vol.37, issue.7035, pp.889-894, 2005.
DOI : 10.1016/S0896-6273(03)00088-6

S. Johnson, W. Marcotti, and C. Kros, dependence of exocytosis during development of mouse inner hair cells, The Journal of Physiology, vol.68, issue.1, pp.177-191, 2005.
DOI : 10.1016/S0006-3495(95)80305-X

P. Vincent, Y. Bouleau, C. Petit, and D. Dulon, Author response, eLife, vol.38, issue.179, p.10988, 2015.
DOI : 10.7554/eLife.10988.008

A. Brandt, D. Khimich, and T. Moser, Few CaV1.3 Channels Regulate the Exocytosis of a Synaptic Vesicle at the Hair Cell Ribbon Synapse, Journal of Neuroscience, vol.25, issue.50, pp.11577-11585, 2005.
DOI : 10.1523/JNEUROSCI.3411-05.2005

M. Beurg, Control of Exocytosis by Synaptotagmins and Otoferlin in Auditory Hair Cells, Journal of Neuroscience, vol.30, issue.40
DOI : 10.1523/JNEUROSCI.2528-10.2010

URL : https://hal.archives-ouvertes.fr/pasteur-01472847

, J Neurosci, vol.30, issue.40, pp.13281-13290, 2010.

F. Van-petegem, K. Clark, and F. Chatelain,

D. Minor, Structure of a complex between a voltage-gated calcium channel beta-subunit and an alpha-subunit domain, Nature, vol.429, issue.6992, pp.671-675, 2004.

F. Gregory, K. Bryan, T. Pangr?i?, I. Calin-jageman, T. Moser et al., Harmonin inhibits presynaptic Cav1.3 Ca2+ channels in mouse inner hair cells, Nature Neuroscience, vol.459, issue.9, pp.1109-1111, 2011.
DOI : 10.1007/s00424-009-0711-x

F. Gregory, T. Pangrsic, I. Calin-jageman, T. Moser, and A. Lee, 1.3 channels and synchronous exocytosis in mouse inner hair cells, The Journal of Physiology, vol.25, issue.13, pp.3253-3269, 2013.
DOI : 10.1523/JNEUROSCI.4554-04.2005

URL : https://hal.archives-ouvertes.fr/in2p3-00012908

L. Liberman, H. Wang, and M. Liberman, Opposing Gradients of Ribbon Size and AMPA Receptor Expression Underlie Sensitivity Differences among Cochlear-Nerve/Hair-Cell Synapses, Journal of Neuroscience, vol.31, issue.3
DOI : 10.1523/JNEUROSCI.3389-10.2011

, J Neurosci, vol.31, issue.3, pp.801-808, 2011.

A. Wong, Developmental refinement of hair cell synapses tightens the coupling of Ca 2+ influx to exocytosis, EMBO J, vol.33, issue.3, pp.247-264, 2014.

R. Pujol and J. Puel, Excitotoxicity, Synaptic Repair, and Functional Recovery in the Mammalian Cochlea: A Review of Recent Findings, Annals of the New York Academy of Sciences, vol.105, issue.1, pp.249-254, 1999.
DOI : 10.3109/00016488809119493

R. Geng, Modeling and preventing progressive hearing loss in Usher syndrome III. Sci Rep, p.13480, 2017.
DOI : 10.1038/s41598-017-13620-9

URL : https://www.nature.com/articles/s41598-017-13620-9.pdf

G. Tian, R. Lee, P. Ropelewski, and Y. Imanishi, Impairment of Vision in a Mouse Model of Usher Syndrome Type III, Investigative Opthalmology & Visual Science, vol.57, issue.3, pp.866-875, 2016.
DOI : 10.1167/iovs.15-16946

G. Stölting, ?? with Actin Up-regulates L-type Calcium Currents in HL-1 Cardiomyocytes, Journal of Biological Chemistry, vol.53, issue.4, pp.4561-4572, 2015.
DOI : 10.1038/ncb2353

A. Mercer, M. Chen, and W. Thoreson, Lateral Mobility of Presynaptic L-Type Calcium Channels at Photoreceptor Ribbon Synapses, Journal of Neuroscience, vol.31, issue.12, pp.4397-4406, 2011.
DOI : 10.1523/JNEUROSCI.5921-10.2011

URL : http://www.jneurosci.org/content/jneuro/31/12/4397.full.pdf

Z. Jing, Disruption of the Presynaptic Cytomatrix Protein Bassoon Degrades Ribbon Anchorage, Multiquantal Release, and Sound Encoding at the Hair Cell Afferent Synapse, Journal of Neuroscience, vol.33, issue.10, pp.4456-4467, 2013.
DOI : 10.1523/JNEUROSCI.3491-12.2013

J. Neef, The Ca 2+ channel subunit ?2 regulates Ca 2+ channel abundance and function in inner hair cells and is required for hearing

, J Neurosci, vol.29, issue.34, pp.10730-10740, 2009.

D. Mendus, Thrombospondins 1 and 2 are important for afferent synapse formation and function in the inner ear, European Journal of Neuroscience, vol.32, issue.8, pp.1256-1267, 2014.
DOI : 10.1523/JNEUROSCI.1247-12.2012

S. Yamada and W. Nelson, Synapses: Sites of Cell Recognition, Adhesion, and Functional Specification, Annual Review of Biochemistry, vol.76, issue.1, pp.267-294, 2007.
DOI : 10.1146/annurev.biochem.75.103004.142811

D. Owald, Cooperation of Syd-1 with Neurexin synchronizes pre- with postsynaptic assembly, Nature Neuroscience, vol.22, issue.9, pp.1219-1226, 2012.
DOI : 10.1016/0076-6879(83)01013-7

B. Fell, ??2??2 Controls the Function and Trans-Synaptic Coupling of Cav1.3 Channels in Mouse Inner Hair Cells and Is Essential for Normal Hearing, Journal of Neuroscience, vol.36, issue.43, pp.11024-11036, 2016.
DOI : 10.1523/JNEUROSCI.3468-14.2016

S. Ness, Genetic homogeneity and phenotypic variability among Ashkenazi Jews with Usher syndrome type III, Journal of Medical Genetics, vol.40, issue.10, pp.767-772, 2003.
DOI : 10.1136/jmg.40.10.767

I. Ebermann, R. Wilke, T. Lauhoff, D. Lübben, E. Zrenner et al., Two truncating USH3A mutations , including one novel, in a German family with Usher syndrome, Mol Vis, vol.13, pp.1539-1547, 2007.

M. Sadeghi, E. Cohn, W. Kimberling, L. Tranebjaerg, and C. Möller, Audiological and vestibular features in affected subjects with USH3: A genotype/phenotype correlation, International Journal of Audiology, vol.74, issue.5, pp.307-316, 2005.
DOI : 10.1086/381685

B. Pan, Gene therapy restores auditory and vestibular function in a mouse model of Usher syndrome type 1c, Nature Biotechnology, vol.72, issue.3, pp.264-272, 2017.
DOI : 10.1523/JNEUROSCI.0852-10.2010

A. Emptoz, Local gene therapy durably restores vestibular function in a mouse model of Usher syndrome type 1G, Proceedings of the National Academy of Sciences, vol.36, issue.36, pp.9695-9700, 2017.
DOI : 10.1016/j.cell.2015.10.023

URL : https://hal.archives-ouvertes.fr/hal-01661148

K. Legendre, S. Safieddine, P. Küssel-andermann, and C. Petit, ??II-??V spectrin bridges the plasma membrane and cortical lattice in the lateral wall of the auditory outer hair cells, Journal of Cell Science, vol.121, issue.20, pp.3347-3356, 2008.
DOI : 10.1242/jcs.028134

S. Papal, The giant spectrin ??V couples the molecular motors to phototransduction and Usher syndrome type I proteins along their trafficking route, Human Molecular Genetics, vol.94, issue.18, pp.3773-3788, 2013.
DOI : 10.1016/S0091-679X(08)94013-9

K. Kamiya, An unusually powerful mode of low-frequency sound interference due to defective hair bundles of the auditory outer hair cells, Proceedings of the National Academy of Sciences, vol.14, issue.6
DOI : 10.1038/nn.2827

URL : https://hal.archives-ouvertes.fr/pasteur-01115196

, Proc Natl Acad Sci U S A, vol.111, issue.25, pp.9307-9312, 2014.

L. Calvez, S. Guilhaume, A. Romand, R. Aran, J. Avan et al., CD1 hearing-impaired mice. II: Group latencies and optimal f2/f1 ratios of distortion product otoacoustic emissions, and scanning electron microscopy, Hearing Research, vol.120, issue.1-2, pp.51-61, 1998.
DOI : 10.1016/S0378-5955(98)00051-3