A. P. Bhavsar, J. A. Guttman, and B. B. Finlay, Manipulation of host-cell pathways by bacterial pathogens, Nature, vol.163, issue.7164, pp.827-834, 2007.
DOI : 10.4049/jimmunol.174.5.2892

D. Ribet, C. , and P. , Pathogen-Mediated Posttranslational Modifications: A Re-emerging Field, Cell, vol.143, issue.5, pp.694-702, 2010.
DOI : 10.1016/j.cell.2010.11.019

H. Ashida and C. Sasakawa, Bacterial E3 ligase effectors exploit host ubiquitin systems, Current Opinion in Microbiology, vol.35, pp.16-22, 2016.
DOI : 10.1016/j.mib.2016.11.001

H. Bierne, M. Hamon, C. , and P. , Epigenetics and bacterial infections. Cold Spring Harb, Perspect. Med, vol.2, p.10272, 2012.

J. Beltran, P. M. Federspiel, J. D. Sheng, X. , C. et al., Proteomics and integrative omic approaches for understanding host???pathogen interactions and infectious diseases, Molecular Systems Biology, vol.13, issue.3, p.922, 2017.
DOI : 10.15252/msb.20167062

C. Vogel and E. M. Marcotte, Insights into the regulation of protein abundance from proteomic and transcriptomic analyses, Nature Reviews Genetics, vol.285, issue.4, pp.227-232, 2012.
DOI : 10.1074/jbc.R109.077883

M. A. Hamon, E. Batsche, B. Regnault, T. N. Tham, S. Seveau et al., Histone modifications induced by a family of bacterial toxins, Proceedings of the National Academy of Sciences, vol.282, issue.20, pp.13467-13472, 2007.
DOI : 10.1074/jbc.M610926200

S. Kutsch, D. Degrandi, and K. Pfeffer, Immediate lymphotoxin ?? receptor-mediated transcriptional response in host defense against L. monocytogenes, Immunobiology, vol.213, issue.3-4, pp.353-366, 2008.
DOI : 10.1016/j.imbio.2007.10.011

A. Lebreton, G. Lakisic, V. Job, L. Fritsch, T. N. Tham et al., A Bacterial Protein Targets the BAHD1 Chromatin Complex to Stimulate Type III Interferon Response, Science, vol.11, issue.6, pp.1319-1321, 2011.
DOI : 10.1111/j.1469-0691.2005.01146.x

URL : https://hal.archives-ouvertes.fr/cea-00819299

C. Wang, C. H. Chou, C. Tseng, X. Ge, and L. M. Pinchuk, infection, Canadian Journal of Microbiology, vol.176, issue.1, pp.441-446, 2011.
DOI : 10.1186/1471-2105-6-309

URL : https://hal.archives-ouvertes.fr/pasteur-00625311

C. Archambaud, M. A. Nahori, G. Soubigou, C. Becavin, L. Laval et al., Impact of lactobacilli on orally acquired listeriosis, Proceedings of the National Academy of Sciences, vol.19, issue.2, pp.16684-16689, 2012.
DOI : 10.1093/bioinformatics/19.2.185

URL : https://hal.archives-ouvertes.fr/hal-01003361

H. A. Eskandarian, F. Impens, M. A. Nahori, G. Soubigou, J. Y. Coppee et al., A Role for SIRT2-Dependent Histone H3K18 Deacetylation in Bacterial Infection, Science, vol.13, issue.8, p.1238858, 2013.
DOI : 10.1038/nprot.2011.355

URL : https://hal.archives-ouvertes.fr/pasteur-00853764

J. M. Pitt, S. Blankley, K. Potempa, C. M. Graham, L. Moreira-teixeira et al., Analysis of Transcriptional Signatures in Response to Listeria monocytogenes Infection Reveals Temporal Changes That Result from Type I Interferon Signaling, PLOS ONE, vol.210, issue.12, p.150251, 2016.
DOI : 10.1371/journal.pone.0150251.s008

D. Ribet, V. Lallemand-breitenbach, O. Ferhi, M. A. Nahori, H. Varet et al., ABSTRACT, mBio, vol.8, issue.1, pp.2179-2195, 2017.
DOI : 10.1128/mBio.02179-16

D. Ribet, M. Hamon, E. Gouin, M. A. Nahori, F. Impens et al., Listeria monocytogenes impairs SUMOylation for efficient infection, Nature, vol.22, issue.7292, pp.1192-1195, 2010.
DOI : 10.1038/nature08963

URL : http://europepmc.org/articles/pmc3627292?pdf=render

A. Samba-louaka, F. Stavru, C. , and P. , ABSTRACT, Infection and Immunity, vol.80, issue.12, pp.4257-4263, 2012.
DOI : 10.1128/IAI.00614-12

F. Stavru, A. E. Palmer, C. Wang, R. J. Youle, C. et al., Atypical mitochondrial fission upon bacterial infection, Proceedings of the National Academy of Sciences, vol.173, issue.4, pp.16003-16008, 2013.
DOI : 10.1083/jcb.200601002

URL : http://www.pnas.org/content/110/40/16003.full.pdf

A. Samba-louaka, J. M. Pereira, M. A. Nahori, V. Villiers, L. Deriano et al., Listeria monocytogenes Dampens the DNA Damage Response, PLoS Pathogens, vol.156, issue.10, p.1004470, 2014.
DOI : 10.1371/journal.ppat.1004470.s006

URL : https://hal.archives-ouvertes.fr/pasteur-01078553

B. Xu, Y. Gao, S. Zhan, and W. Ge, Quantitative proteomic profiling for clarification of the crucial roles of lysosomes in microbial infections, Molecular Immunology, vol.87, pp.122-131, 2017.
DOI : 10.1016/j.molimm.2017.04.002

S. E. Ong, B. Blagoev, I. Kratchmarova, D. B. Kristensen, H. Steen et al., Stable Isotope Labeling by Amino Acids in Cell Culture, SILAC, as a Simple and Accurate Approach to Expression Proteomics, Molecular & Cellular Proteomics, vol.73, issue.5, pp.376-386, 2002.
DOI : 10.1083/jcb.142.3.873

URL : http://www.mcponline.org/content/1/5/376.full.pdf

S. E. Ong, I. Kratchmarova, and M. Mann, C-Substituted Arginine in Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC), Journal of Proteome Research, vol.2, issue.2, pp.173-181, 2003.
DOI : 10.1021/pr0255708

J. K. Malet, P. Cossart, R. , and D. , Alteration of epithelial cell lysosomal integrity induced by bacterial cholesterol-dependent cytolysins, Cellular Microbiology, vol.17, issue.Pt A, 2017.
DOI : 10.1038/cdd.2009.184

URL : https://hal.archives-ouvertes.fr/pasteur-01574071

I. J. Glomski, M. M. Gedde, A. W. Tsan, J. A. Swanson, and D. A. Portnoy, hemolysin has an acidic pH optimum to compartmentalize activity and prevent damage to infected host cells, The Journal of Cell Biology, vol.67, issue.6, pp.1029-1038, 2002.
DOI : 10.1073/pnas.051429498

URL : http://jcb.rupress.org/content/jcb/156/6/1029.full.pdf

J. Cox and M. Mann, MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification, Nature Biotechnology, vol.7, issue.12, pp.1367-1372, 2008.
DOI : 10.1038/nprot.2007.261

J. Cox, N. Neuhauser, A. Michalski, R. A. Scheltema, J. V. Olsen et al., Andromeda: A Peptide Search Engine Integrated into the MaxQuant Environment, Journal of Proteome Research, vol.10, issue.4, pp.1794-1805, 2011.
DOI : 10.1021/pr101065j

URL : https://doi.org/10.1021/pr101065j

J. Cox, M. Y. Hein, C. A. Luber, I. Paron, N. Nagaraj et al., Accurate Proteome-wide Label-free Quantification by Delayed Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ, Molecular & Cellular Proteomics, vol.10, issue.9, pp.2513-2526, 2014.
DOI : 10.1074/mcp.M111.011015

URL : http://www.mcponline.org/content/13/9/2513.full.pdf

W. Huang-da, B. T. Sherman, and R. A. Lempicki, Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists, Nucleic Acids Research, vol.8, issue.1, pp.1-13, 2009.
DOI : 10.1186/1471-2105-8-9

N. Jain, J. Thatte, T. Braciale, K. Ley, M. O-'connell et al., Local-pooled-error test for identifying differentially expressed genes with a small number of replicated microarrays, Bioinformatics, vol.19, issue.15, pp.1945-1951, 2003.
DOI : 10.1093/bioinformatics/btg264

URL : https://academic.oup.com/bioinformatics/article-pdf/19/15/1945/627089/btg264.pdf

F. Impens, L. Radoshevich, P. Cossart, R. , and D. , Mapping of SUMO sites and analysis of SUMOylation changes induced by external stimuli, Proceedings of the National Academy of Sciences, vol.6, issue.11, pp.12432-12437, 2014.
DOI : 10.1038/nmeth1109-786

URL : https://hal.archives-ouvertes.fr/pasteur-01104237

, Host Proteome Remodeling Induced by Listeriolysin O

M. R. Gonzalez, M. Bischofberger, B. Freche, S. Ho, R. G. Parton et al., Pore-forming toxins induce multiple cellular responses promoting survival, Cellular Microbiology, vol.13, issue.7, pp.1026-1043, 2011.
DOI : 10.1016/j.mib.2010.04.004

URL : https://infoscience.epfl.ch/record/171179/files/j.1462-5822.2011.01600.x_1.pdf

J. A. Carrero, B. Calderon, and E. R. Unanue, Listeriolysin O from Listeria monocytogenes Is a Lymphocyte Apoptogenic Molecule, The Journal of Immunology, vol.172, issue.8, pp.4866-4874, 2004.
DOI : 10.4049/jimmunol.172.8.4866

S. R. Dewamitta, T. Nomura, I. Kawamura, H. Hara, K. Tsuchiya et al., Listeriolysin O-Dependent Bacterial Entry into the Cytoplasm Is Required for Calpain Activation and Interleukin-1?? Secretion in Macrophages Infected with Listeria monocytogenes, Infection and Immunity, vol.78, issue.5, pp.1884-1894, 2010.
DOI : 10.1128/IAI.01143-09

K. Meixenberger, F. Pache, J. Eitel, B. Schmeck, S. Hippenstiel et al., Listeria monocytogenes-Infected Human Peripheral Blood Mononuclear Cells Produce IL-1??, Depending on Listeriolysin O and NLRP3, The Journal of Immunology, vol.184, issue.2, pp.922-930, 2010.
DOI : 10.4049/jimmunol.0901346

M. A. Hamon, C. , and P. , ABSTRACT, Infection and Immunity, vol.79, issue.7, pp.2839-2846, 2011.
DOI : 10.1128/IAI.01243-10

URL : https://hal.archives-ouvertes.fr/hal-02023524

S. K. Cassidy, J. A. Hagar, T. D. Kanneganti, L. Franchi, G. Nunez et al., Membrane damage during Listeria monocytogenes infection triggers a caspase-7 dependent cytoprotective response Plasticity of listeriolysin O pores and its regulation by pH and unique histidine, PLoS Pathog. Sci. Rep, vol.8, issue.5, p.9623, 2012.

K. N. Swatek and D. Komander, Ubiquitin modifications, Cell Research, vol.15, issue.4, pp.399-422, 2016.
DOI : 10.1074/jbc.M111.288449

URL : https://www.nature.com/articles/cr201639.pdf

T. Sanada, M. Kim, H. Mimuro, M. Suzuki, M. Ogawa et al., The Shigella flexneri effector OspI deamidates UBC13 to dampen the inflammatory response, Nature, vol.276, issue.7391, pp.623-626, 2012.
DOI : 10.1111/j.1365-2958.1995.tb02301.x

B. K. Dhakal and M. A. Mulvey, The UPEC Pore-Forming Toxin ??-Hemolysin Triggers Proteolysis of Host Proteins to Disrupt Cell Adhesion, Inflammatory, and Survival Pathways, Cell Host & Microbe, vol.11, issue.1, pp.58-69, 2012.
DOI : 10.1016/j.chom.2011.12.003

A. J. Olive, M. G. Haff, M. J. Emanuele, L. M. Sack, J. R. Barker et al., Chlamydia trachomatis-Induced Alterations in the Host Cell Proteome Are Required for Intracellular Growth, Cell Host & Microbe, vol.15, issue.1, pp.113-124, 2014.
DOI : 10.1016/j.chom.2013.12.009

J. A. Vizcaino, A. Csordas, N. Del-toro, J. A. Dianes, J. Griss et al., 2016 update of the PRIDE database and its related tools, Nucleic Acids Research, vol.44, issue.22, p.11033, 2016.
DOI : 10.1093/nar/gkw880