S. Abraham, R. Paknikar, S. Bhumbra, D. Luan, R. Garg et al., The Groucho-associated Phosphatase PPM1B Displaces Pax Transactivation Domain Interacting Protein (PTIP) to Switch the Transcription Factor Pax2 from a Transcriptional Activator to a Repressor, Journal of Biological Chemistry, vol.122, issue.11, pp.7185-7194, 2015.
DOI : 10.1042/BJ20121113

N. Aburai, M. Yoshida, M. Ohnishi, and K. Kimura, Phosphorylation of p38 in HL60 Cells, Bioscience, Biotechnology, and Biochemistry, vol.74, issue.3, pp.548-552, 2010.
DOI : 10.1271/bbb.90735

C. Archambaud, E. Gouin, J. Pizarro-cerda, P. Cossart, and O. Dussurget, Translation elongation factor EF-Tu is a target for Stp, a serine-threonine phosphatase involved in virulence of Listeria monocytogenes, Molecular Microbiology, vol.20, issue.Part 3, pp.383-396, 2005.
DOI : 10.1128/jb.174.3.947-952.1992

G. Blander and L. Guarente, The Sir2 Family of Protein Deacetylases, Annual Review of Biochemistry, vol.73, issue.1, 2004.
DOI : 10.1146/annurev.biochem.73.011303.073651

, Annu. Rev. Biochem, vol.73, pp.417-435

Y. Cha, M. Han, H. Cha, J. Zoldan, A. Burkart et al., Metabolic control of primed human pluripotent stem cell fate and function by the miR-200c???SIRT2 axis, Nature Cell Biology, vol.19, issue.5, pp.445-456, 2017.
DOI : 10.1016/j.stem.2009.05.005

W. Chen, J. Wu, L. Li, Z. Zhang, J. Ren et al., Ppm1b negatively regulates necroptosis through dephosphorylating Rip3, Nature Cell Biology, vol.332, issue.4, pp.434-444, 2015.
DOI : 10.1128/IAI.73.6.3219-3227.2005

URL : http://europepmc.org/articles/pmc4523090?pdf=render

A. Chi, C. Huttenhower, L. Y. Geer, J. J. Coon, J. E. Syka et al., , 2007.

, Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry, Proc. Natl. Acad

. Sci and . Usa, , pp.2193-2198

P. Cossart, Illuminating the landscape of host-pathogen interactions with the bacterium Listeria monocytogenes, Proc. Natl. Acad. Sci. USA, pp.19484-19491, 2011.
DOI : 10.1016/j.smim.2010.02.002

J. Cox and M. Mann, MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification, Nature Biotechnology, vol.7, issue.12, pp.1367-1372, 2008.
DOI : 10.1038/nprot.2007.261

J. Cox, N. Neuhauser, A. Michalski, R. A. Scheltema, J. V. Olsen et al., Andromeda: A Peptide Search Engine Integrated into the MaxQuant Environment, Journal of Proteome Research, vol.10, issue.4, pp.1794-1805, 2011.
DOI : 10.1021/pr101065j

R. M. De-oliveira, J. Sarkander, A. G. Kazantsev, and T. F. Outeiro, , 2012.

, SIRT2 as a therapeutic target for age-related disorders, Front. Pharmacol, vol.3, p.82

H. A. Eskandarian, F. Impens, M. Nahori, G. Soubigou, J. Coppé-e et al., A Role for SIRT2-Dependent Histone H3K18 Deacetylation in Bacterial Infection, Science, vol.13, issue.8, 2013.
DOI : 10.1038/nprot.2011.355

URL : https://hal.archives-ouvertes.fr/pasteur-00853764

F. Flick, L. Uscher, and B. , Regulation of Sirtuin Function by Posttranslational Modifications, Frontiers in Pharmacology, vol.3, p.29, 2012.
DOI : 10.3389/fphar.2012.00029

URL : https://www.frontiersin.org/articles/10.3389/fphar.2012.00029/pdf

P. Gomes, F. Outeiro, T. , C. , and C. , Emerging Role of Sirtuin 2 in the Regulation of Mammalian Metabolism, Trends in Pharmacological Sciences, vol.36, issue.11, pp.756-768, 2015.
DOI : 10.1016/j.tips.2015.08.001

P. V. Hornbeck, B. Zhang, B. Murray, J. M. Kornhauser, V. Latham et al., PhosphoSitePlus, 2014: mutations, PTMs and recalibrations, Nucleic Acids Research, vol.22, issue.D1, pp.512-520, 2015.
DOI : 10.1093/bioinformatics/btl151

URL : https://academic.oup.com/nar/article-pdf/43/D1/D512/17437800/gku1267.pdf

N. Imaoka, M. Hiratsuka, M. Osaki, H. Kamitani, A. Kambe et al., Prognostic significance of sirtuin 2 protein nuclear localization in glioma: An immunohistochemical study, Oncology Reports, vol.28, issue.3, pp.923-930, 2012.
DOI : 10.3892/or.2012.1872

T. Inoue, M. Hiratsuka, M. Osaki, H. Yamada, I. Kishimoto et al., SIRT2, a tubulin deacetylase, acts to block the entry to chromosome condensation in response to mitotic stress, Oncogene, vol.37, issue.7, pp.945-957, 2007.
DOI : 10.1038/ng1538

H. Jing, L. , and H. , Sirtuins in Epigenetic Regulation, Chemical Reviews, vol.115, issue.6, pp.2350-2375, 2015.
DOI : 10.1021/cr500457h

K. Kusuda, T. Kobayashi, S. Ikeda, M. Ohnishi, N. Chida et al., Mutational analysis of the domain structure of mouse protein phosphatase 2C??, Biochemical Journal, vol.332, issue.1, pp.243-250, 1998.
DOI : 10.1042/bj3320243

T. Lammers and S. Lavi, Role of Type 2C Protein Phosphatases in Growth Regulation and in Cellular Stress Signaling, Critical Reviews in Biochemistry and Molecular Biology, vol.6, issue.6, pp.437-461, 2007.
DOI : 10.1074/jbc.M203969200

Z. Li, G. Liu, L. Sun, Y. Teng, X. Guo et al., PPM1A Regulates Antiviral Signaling by Antagonizing TBK1-Mediated STING Phosphorylation and Aggregation, PLOS Pathogens, vol.8, issue.3, 2015.
DOI : 10.1371/journal.ppat.1004783.s015

URL : https://journals.plos.org/plospathogens/article/file?id=10.1371/journal.ppat.1004783&type=printable

X. Lin, X. Duan, Y. Y. Liang, Y. Su, K. H. Wrighton et al., PPM1A Functions as a Smad Phosphatase to Terminate TGF?? Signaling, Cell, vol.125, issue.5, pp.915-928, 2006.
DOI : 10.1016/j.cell.2006.03.044

X. Lu, H. An, R. Jin, M. Zou, Y. Guo et al., PPM1A is a RelA phosphatase with tumor suppressor-like activity, Oncogene, vol.153, issue.22, pp.2918-2927, 2014.
DOI : 10.1007/s10585-006-9011-4

URL : http://europepmc.org/articles/pmc3897569?pdf=render

A. Manuyakorn, R. Paulus, J. Farrell, N. A. Dawson, S. Tze et al., Cellular Histone Modification Patterns Predict Prognosis and Treatment Response in Resectable Pancreatic Adenocarcinoma: Results From RTOG 9704, Journal of Clinical Oncology, vol.28, issue.8, pp.1358-1365, 2010.
DOI : 10.1200/JCO.2009.24.5639

M. Martin, R. Kettmann, and F. Dequiedt, Class IIa histone deacetylases: regulating the regulators, Oncogene, vol.15, issue.37, pp.5450-5467, 2007.
DOI : 10.1073/pnas.250494697

S. Michan and D. Sinclair, Sirtuins in mammals: insights into their biological function, Biochemical Journal, vol.404, issue.1, pp.1-13, 2007.
DOI : 10.1042/BJ20070140

P. Mulligan, F. Yang, D. Stefano, L. Ji, J. Y. Ouyang et al., A SIRT1-LSD1 Corepressor Complex Regulates Notch Target Gene Expression and Development, Molecular Cell, vol.42, issue.5, pp.689-699, 2011.
DOI : 10.1016/j.molcel.2011.04.020

URL : https://doi.org/10.1016/j.molcel.2011.04.020

F. Nahhas, S. C. Dryden, J. Abrams, and M. A. Tainsky, Mutations in SIRT2 deacetylase which regulate enzymatic activity but not its interaction with HDAC6 and tubulin, Molecular and Cellular Biochemistry, vol.25, issue.Pt 1, pp.221-230, 2007.
DOI : 10.1093/jb/mvh084

B. J. North and E. Verdin, Sirtuins : Sir2-related NAD-dependent protein deacetylases, Genome Biology, vol.5, issue.5, p.224, 2004.
DOI : 10.1186/gb-2004-5-5-224

B. J. North and E. Verdin, Interphase Nucleo-Cytoplasmic Shuttling and Localization of SIRT2 during Mitosis, PLoS ONE, vol.7, issue.8, p.784, 2007.
DOI : 10.1371/journal.pone.0000784.g006

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0000784&type=printable

B. J. North and E. Verdin, Mitotic Regulation of SIRT2 by Cyclin-dependent Kinase 1-dependent Phosphorylation, Journal of Biological Chemistry, vol.36, issue.27, pp.19546-19555, 2007.
DOI : 10.1128/MCB.25.11.4541-4551.2005

B. J. North, B. L. Marshall, M. T. Borra, J. M. Denu, and E. Verdin, , 2003.

, The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase, Mol. Cell, vol.11, pp.437-444

S. Prajapati, U. Verma, Y. Yamamoto, Y. T. Kwak, and R. B. Gaynor, , 2004.

, Protein phosphatase 2Cbeta association with the IkappaB kinase complex is involved in regulating NF-kappaB activity, J. Biol. Chem, vol.279, pp.1739-1746

K. M. Rothgiesser, S. Erener, S. Waibel, B. L?-uscher, and M. O. Hottiger, SIRT2 regulates NF-??B-dependent gene expression through deacetylation of p65 Lys310, Journal of Cell Science, vol.123, issue.24, pp.4251-4258, 2010.
DOI : 10.1242/jcs.073783

K. Schaaf, S. R. Smith, A. Duverger, F. Wagner, F. Wolschendorf et al., Mycobacterium tuberculosis exploits the PPM1A signaling pathway to block host macrophage apoptosis. Sci, 2017.

D. B. Seligson, S. Horvath, M. A. Mcbrian, V. Mah, H. Yu et al., Global Levels of Histone Modifications Predict Prognosis in Different Cancers, The American Journal of Pathology, vol.174, issue.5, pp.1619-1628, 2009.
DOI : 10.2353/ajpath.2009.080874

I. Tasdelen, O. Van-beekum, O. Gorbenko, V. Fleskens, N. J. Van-den-broek et al., The serine/threonine phosphatase PPM1B (PP2C??) selectively modulates PPAR?? activity, Biochemical Journal, vol.13, issue.1, pp.45-53, 2013.
DOI : 10.1074/jbc.272.36.22464

L. J. Terry, E. B. Shows, and S. R. Wente, Crossing the Nuclear Envelope: Hierarchical Regulation of Nucleocytoplasmic Transport, Science, vol.257, issue.4, pp.1412-1416, 2007.
DOI : 10.1006/jmbi.1996.0206

A. Vaquero, M. B. Scher, D. H. Lee, A. Sutton, H. L. Cheng et al., SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis, Genes & Development, vol.20, issue.10, pp.1256-1261, 2006.
DOI : 10.1101/gad.1412706

L. Xu and J. Massagué, Nucleocytoplasmic shuttling of signal transducers, Nature Reviews Molecular Cell Biology, vol.10, issue.3, pp.209-219, 2004.
DOI : 10.1006/scdb.1999.0302

Y. Y. Yien and J. J. Bieker, Functional Interactions between Erythroid Kruppel-like Factor (EKLF/KLF1) and Protein Phosphatase PPM1B/PP2C??, Journal of Biological Chemistry, vol.31, issue.19, pp.15193-15204, 2012.
DOI : 10.1038/emboj.2011.450

URL : http://www.jbc.org/content/287/19/15193.full.pdf

S. O. Yoon, S. Shin, Y. Liu, B. A. Ballif, M. S. Woo et al., Ran-Binding Protein 3 Phosphorylation Links the Ras and PI3-Kinase Pathways to Nucleocytoplasmic Transport, Molecular Cell, vol.29, issue.3, pp.362-375, 2008.
DOI : 10.1016/j.molcel.2007.12.024