M. Hamon, H. Bierne, and P. Cossart, Listeria monocytogenes: a multifaceted model, Nature Reviews Microbiology, vol.73, issue.6, pp.423-434, 2006.
DOI : 10.1128/IAI.73.10.6199-6209.2005

D. A. Portnoy, V. Auerbuch, and I. J. Glomski, infection, The Journal of Cell Biology, vol.158, issue.3, pp.409-414, 2002.
DOI : 10.1074/jbc.M006407200

A. Lebreton, F. Stavru, and P. Cossart, Organelle targeting during bacterial infection: insights from Listeria, Trends in Cell Biology, vol.25, issue.6, pp.330-338, 2015.
DOI : 10.1016/j.tcb.2015.01.003

URL : https://hal.archives-ouvertes.fr/pasteur-01162370

N. Rolhion and P. Cossart, has led to new concepts in biology, Future Microbiology, vol.153, issue.7, pp.621-638, 2017.
DOI : 10.1016/j.micinf.2016.10.009

URL : https://hal.archives-ouvertes.fr/pasteur-01574990

P. Cossart and A. Lebreton, FEBS Letters, vol.335, issue.15, pp.2437-2445, 2014.
DOI : 10.1016/j.crvi.2012.07.005

O. Disson and M. Lecuit, In??vitro and in??vivo models to study human listeriosis: mind the gap, Microbes and Infection, vol.15, issue.14-15, pp.971-980, 2013.
DOI : 10.1016/j.micinf.2013.09.012

D. Orazio and S. E. , Animal models for oral transmission of Listeria monocytogenes, Front. Cell. Infect. Microbiol, vol.4, p.15, 2014.

P. Cossart, Illuminating the landscape of host-pathogen interactions with the bacterium Listeria monocytogenes, Proc. Natl. Acad. Sci. USA, pp.19484-19491, 2011.
DOI : 10.1016/j.smim.2010.02.002

C. L. Birmingham, V. Canadien, and J. H. Brumell, Listeriolysin O allows Listeria monocytogenes replication in macrophage vacuoles, Nature, vol.99, issue.7176, pp.350-354, 2008.
DOI : 10.4161/auto.4450

S. Helaine and D. W. Holden, Heterogeneity of intracellular replication of bacterial pathogens, Current Opinion in Microbiology, vol.16, issue.2, pp.184-191, 2013.
DOI : 10.1016/j.mib.2012.12.004

L. G. Tilney and D. A. Portnoy, Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes, The Journal of Cell Biology, vol.109, issue.4, pp.1597-1608, 1989.
DOI : 10.1083/jcb.109.4.1597

D. Balestrino, M. A. Hamon, and A. Toledo-arana, Single-Cell Techniques Using Chromosomally Tagged Fluorescent Bacteria To Study Listeria monocytogenes Infection Processes, Applied and Environmental Microbiology, vol.76, issue.11, pp.3625-3636, 2010.
DOI : 10.1128/AEM.02612-09

URL : https://hal.archives-ouvertes.fr/hal-01901824

M. Desvaux and M. H. Ebraud, : inside out bacterial virulence, FEMS Microbiology Reviews, vol.30, issue.5, pp.774-805, 2006.
DOI : 10.1073/pnas.96.11.6456

A. Camejo, F. Carvalho, and D. Cabanes, to promote its cell infection cycle, Virulence, vol.2, issue.5, pp.379-394, 2011.
DOI : 10.4161/viru.2.5.17703

S. Renier, P. Micheau, and M. Desvaux, Subcellular Localization of Extracytoplasmic Proteins in Monoderm Bacteria: Rational Secretomics-Based Strategy for Genomic and Proteomic Analyses, PLoS ONE, vol.7, issue.8, p.42982, 2012.
DOI : 10.1371/journal.pone.0042982.s008

H. Bierne and P. Cossart, Listeria monocytogenes Surface Proteins: from Genome Predictions to Function, Microbiology and Molecular Biology Reviews, vol.71, issue.2, pp.377-397, 2007.
DOI : 10.1128/MMBR.00039-06

L. L. Lenz and D. A. Portnoy, Identification of a second Listeria secA gene associated with protein secretion and the rough phenotype, Molecular Microbiology, vol.23, issue.4, pp.1043-1056, 2002.
DOI : 10.1128/jb.175.11.3491-3501.1993

S. Renier, C. Chambon, and M. Desvaux, Exoproteomic analysis of the SecA2-dependent secretion in Listeria monocytogenes EGD-e, Journal of Proteomics, vol.80, 2013.
DOI : 10.1016/j.jprot.2012.11.027

, J. Proteomics, vol.80, pp.183-195

E. Dumas, M. Desvaux, and M. H. Ebraud, Insight into the core and variant exoproteomes of Listeria monocytogenes species by comparative subproteomic analysis, PROTEOMICS, vol.1, issue.11, pp.3136-3155, 2009.
DOI : 10.1007/978-1-4684-7612-5_10

URL : https://hal.archives-ouvertes.fr/hal-00529968

A. Prokop, E. Gouin, and O. Dussurget, ABSTRACT, mBio, vol.8, issue.5, pp.1550-1567, 2017.
DOI : 10.1128/mBio.01550-17

A. Lebreton, G. Lakisic, and H. Bierne, A Bacterial Protein Targets the BAHD1 Chromatin Complex to Stimulate Type III Interferon Response, Science, vol.11, issue.6, pp.1319-1321, 2011.
DOI : 10.1111/j.1469-0691.2005.01146.x

URL : https://hal.archives-ouvertes.fr/cea-00819299

G. A. Dabiri, J. M. Sanger, and F. S. Southwick, Listeria monocytogenes moves rapidly through the host-cell cytoplasm by inducing directional actin assembly., Proc. Natl. Acad. Sci. USA, pp.6068-6072, 1990.
DOI : 10.1073/pnas.87.16.6068

URL : http://www.pnas.org/content/87/16/6068.full.pdf

M. D. Welch, A. Iwamatsu, and T. J. Mitchison, Actin polymerization is induced by Arp 2/3 protein complex at the surface of Listeria monocytogenes, Nature, vol.385, issue.6613, pp.265-269, 1997.
DOI : 10.1038/385265a0

E. Gouin, M. D. Welch, and P. Cossart, Actin-based motility of intracellular pathogens, Current Opinion in Microbiology, vol.8, issue.1, pp.35-45, 2005.
DOI : 10.1016/j.mib.2004.12.013

L. Travier, S. Guadagnini, and M. Lecuit, ActA Promotes Listeria monocytogenes Aggregation, Intestinal Colonization and Carriage, PLoS Pathogens, vol.56, issue.1, p.1003131, 2013.
DOI : 10.1371/journal.ppat.1003131.s005

URL : https://doi.org/10.1371/journal.ppat.1003131

L. Travier and M. Lecuit, Listeria monocytogenes ActA: a new function for a ???classic??? virulence factor, Current Opinion in Microbiology, vol.17, pp.53-60, 2014.
DOI : 10.1016/j.mib.2013.11.007

S. Kayal and A. Charbit, with multiple functions, FEMS Microbiology Reviews, vol.61, issue.4, pp.514-529, 2006.
DOI : 10.1111/j.1365-2958.2003.03931.x

P. Cossart, M. F. Vicente, and P. Berche, Listeriolysin O is essential for virulence of Listeria monocytogenes: direct evidence obtained by gene complementation, Infect. Immun, vol.57, pp.3629-3636, 1989.

P. Schnupf and D. A. Portnoy, Listeriolysin O: a phagosome-specific lysin, Microbes and Infection, vol.9, issue.10, pp.1176-1187, 2007.
DOI : 10.1016/j.micinf.2007.05.005

M. A. Hamon, D. Ribet, and P. Cossart, Listeriolysin O: the Swiss army knife of Listeria, Trends in Microbiology, vol.20, issue.8, pp.360-368, 2012.
DOI : 10.1016/j.tim.2012.04.006

M. A. Hamon, E. Batsch-e, and P. Cossart, Histone modifications induced by a family of bacterial toxins, Proc. Natl. Acad. Sci. USA, pp.13467-13472, 2007.
DOI : 10.1074/jbc.M610926200

URL : http://www.pnas.org/content/104/33/13467.full.pdf

F. Stavru, A. E. Palmer, and P. Cossart, Atypical mitochondrial fission upon bacterial infection, Proc. Natl. Acad. Sci. USA, pp.16003-16008, 2013.
DOI : 10.1083/jcb.200601002

URL : http://www.pnas.org/content/110/40/16003.full.pdf

S. E. Mcquate, A. M. Young, and A. E. Palmer, effector proteins SseG and SteA, Cellular Microbiology, vol.157, issue.1, p.12641, 2017.
DOI : 10.1038/nmeth.1437

A. M. Young, M. Minson, and A. E. Palmer, Effector Proteins Reveals Distinctly Different Intracellular Niches in Different Cell Types, ACS Infectious Diseases, vol.3, issue.8, pp.575-584, 2017.
DOI : 10.1021/acsinfecdis.7b00052

S. B. Van-engelenburg and A. E. Palmer, Imaging type-III secretion reveals dynamics and spatial segregation of Salmonella effectors, Nature Methods, vol.23, issue.4, pp.325-330, 2010.
DOI : 10.1038/nmeth.1437

S. B. Van-engelenburg and A. E. Palmer, Quantification of Real-Time Salmonella Effector Type III Secretion Kinetics Reveals Differential Secretion Rates for SopE2 and SptP, Chemistry & Biology, vol.15, issue.6, pp.619-628, 2008.
DOI : 10.1016/j.chembiol.2008.04.014

S. B. Van-engelenburg, T. Nahreini, and A. E. Palmer, FACS-Based Selection of Tandem Tetracysteine Peptides with Improved ReAsH Brightness in Live Cells, ChemBioChem, vol.10, issue.4, pp.489-493, 2010.
DOI : 10.1002/cbic.200900689

J. A. Gawthorne, L. Audry, and A. J. Roe, ABSTRACT, Applied and Environmental Microbiology, vol.82, issue.9, pp.2700-2708, 2016.
DOI : 10.1128/AEM.03418-15

J. Enninga, J. Mounier, and G. Tran-van-nhieu, Secretion of type III effectors into host cells in real time, Nature Methods, vol.16, issue.12, pp.959-965, 2005.
DOI : 10.1038/nmeth804

A. M. Young and A. E. Palmer, Methods to Illuminate the Role of Salmonella Effector Proteins during Infection: A Review, Frontiers in Cellular and Infection Microbiology, vol.279, p.363, 2017.
DOI : 10.1126/science.279.5347.84

T. P. Moest and S. M. Eresse, Salmonella T3SSs: successful mission of the secret(ion) agents, Current Opinion in Microbiology, vol.16, issue.1, pp.38-44, 2013.
DOI : 10.1016/j.mib.2012.11.006

F. Engelbrecht, S. K. Chun, and Z. Sokolovic, Molecular Microbiology, vol.21, issue.4, pp.823-837, 1996.
DOI : 10.1046/j.1365-2958.1996.541414.x

A. De-las-heras, R. J. Cain, and J. A. Vázquez-boland, Regulation of Listeria virulence: PrfA master and commander, Current Opinion in Microbiology, vol.14, issue.2, pp.118-127, 2011.
DOI : 10.1016/j.mib.2011.01.005

T. Rajabian, B. Gavicherla, and K. Ireton, The bacterial virulence factor InlC perturbs apical cell junctions and promotes cell-to-cell spread of Listeria, Nature Cell Biology, vol.279, issue.10, pp.1212-1218, 2009.
DOI : 10.1046/j.1365-2958.2003.03639.x

A. Toledo-arana, O. Dussurget, and P. Cossart, The Listeria transcriptional landscape from saprophytism to virulence, Nature, vol.99, issue.7249, pp.950-956, 2009.
DOI : 10.1016/S1438-4221(00)80086-7

URL : https://hal.archives-ouvertes.fr/hal-01901828

E. Gouin, M. Adib-conquy, and P. Cossart, The Listeria monocytogenes InlC protein interferes with innate immune responses by targeting the IkappaB kinase subunit IKKalpha, Proc. Natl. Acad. Sci. USA, pp.17333-17338, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01901815

L. Polle, L. A. Rigano, and W. D. Schubert, Structural Details of Human Tuba Recruitment by InlC of Listeria monocytogenes Elucidate Bacterial Cell-Cell Spreading, Structure, vol.22, issue.2, pp.304-314, 2014.
DOI : 10.1016/j.str.2013.10.017

A. K?-uhbacher, M. Emmenlauer, and J. Pizarro-cerdá, Genomewide siRNA screen identifies complementary signaling pathways involved in Listeria infection and reveals different actin nucleation mechanisms during Listeria cell invasion and actin comet tail formation, MBio, vol.6, pp.598-613, 2015.

A. K?-uhbacher, E. Gouin, and J. Pizarro-cerdá, Imaging InlC secretion to investigate cellular infection by the bacterial pathogen Listeria monocytogenes, J. Vis. Exp, vol.79, p.51043, 2013.

A. Samba-louaka, J. M. Pereira, and P. Cossart, Listeria monocytogenes Dampens the DNA Damage Response, PLoS Pathogens, vol.156, issue.10, p.1004470, 2014.
DOI : 10.1371/journal.ppat.1004470.s006

URL : https://hal.archives-ouvertes.fr/pasteur-01078553

P. Glaser, L. Frangeul, and P. Cossart, Comparative genomics of Listeria species, Science, vol.294, pp.849-852, 2001.

S. Feng, S. Sekine, and B. Huang, Improved split fluorescent proteins for endogenous protein labeling, Nature Communications, vol.3, issue.1, p.370, 2017.
DOI : 10.1126/science.1225829

Y. Nakamura, T. Gojobori, and T. Ikemura, Codon usage tabulated from international DNA sequence databases: status for the year 2000, Nucleic Acids Research, vol.28, issue.1, p.292, 2000.
DOI : 10.1093/nar/28.1.292

T. F. Clarke, P. L. Iv, and . Clark, Rare Codons Cluster, PLoS ONE, vol.276, issue.10, p.3412, 2008.
DOI : 10.1371/journal.pone.0003412.g004

E. Silva-herzog and C. S. Detweiler, Salmonella enterica Replication in Hemophagocytic Macrophages Requires Two Type Three Secretion Systems, Infection and Immunity, vol.78, issue.8, pp.3369-3377, 2010.
DOI : 10.1128/IAI.00292-10

L. A. Knodler, A. Bestor, and O. Steele-mortimer, Cloning Vectors and Fluorescent Proteins Can Significantly Inhibit Salmonella enterica Virulence in Both Epithelial Cells and Macrophages: Implications for Bacterial Pathogenesis Studies, Infection and Immunity, vol.73, issue.10, pp.7027-7031, 2005.
DOI : 10.1128/IAI.73.10.7027-7031.2005

D. Kamiyama, S. Sekine, and B. Huang, Versatile protein tagging in cells with split fluorescent protein, Nature Communications, vol.127, p.11046, 2016.
DOI : 10.1016/bs.mcb.2015.01.002

A. Tsirigotaki, J. De-geyter, and S. Karamanou, Protein export through the bacterial Sec pathway, Nature Reviews Microbiology, vol.6, issue.1, pp.21-36, 2017.
DOI : 10.1038/ncomms5103

M. Kunze and J. Berger, The similarity between N-terminal targeting signals for protein import into different organelles and its evolutionary relevance, Frontiers in Physiology, vol.106, issue.307, p.259, 2015.
DOI : 10.1073/pnas.0910754106

E. A. Specht, E. Braselmann, and A. E. Palmer, A Critical and Comparative Review of Fluorescent Tools for Live-Cell Imaging, Annual Review of Physiology, vol.79, issue.1, pp.93-117, 2017.
DOI : 10.1146/annurev-physiol-022516-034055

F. Yang, L. G. Moss, G. N. Phillips, and J. , The molecular structure of green fluorescent protein, Nature Biotechnology, vol.249, issue.10, pp.1246-1251, 1996.
DOI : 10.1016/S0968-0004(00)89080-5