, Spectrum 100 in vivo imaging system (PerkinElmer) was used to facilitate noninvasive longitudinal monitoring of P. aeruginosa infection in live individual animals in real time, performed as previously described, p.50

, Systemic infection of Galleria mellonella larvae. A PAK-lumi culture was grown to an OD 600 of 0

, After appropriate dilution, 10 l of inoculum, containing about 30 cells of P. aeruginosa PAK-lumi, was delivered into the larva hemolymph behind the last proleg. A phage suspension , consisting of 10 l containing the 6-phage cocktail at 1,500 or 4,500 PFU, was delivered behind the last proleg on the opposite site at 1 h p.i. For prophylaxis experiments, the larvae were infected with the phages 1 h before they were infected with the bacteria. All experiments used 15 or 20 larvae. A positive-control group (larvae infected and treated with physiological solution) and two negative-control groups (one group injected with physiological solution only and one group injected with the phage suspension only to assess the toxicity of the phage cocktail) were also included. The larvae were placed into petri dishes and incubated at 37°C in the dark. The survival of the larvae was followed hourly after 16 h p.i.; the larvae were recorded as dead when they did not move in response to touch. Phage treatment of larvae infected with clinical P. aeruginosa strains was performed after determination of the lethal dose of bacteria of each strain, equal to 110 and 30 CFU/larva for the AA43 and PaPh5 strains, respectively. At 1 h after injection of the bacteria into the larvae, a fixed dose of phage cocktail (4,500 PFU/larva) was injected. Statistical analysis. Statistical analysis was performed using Student's t test or two-way analysis of variance, LD broth at 37°C with shaking, pelleted, and diluted to an OD of 1 in physiological solution, equivalent to 1 10 9 CFU/mlANOVA) with the Tukey test or the chi-square test with the Yates correction. P values for Kaplan-Meier curves were calculated by the Mantel-Cox test. Statistical analysis was done using Graph- Pad software

, Accession number(s) The GenBank accession numbers for the phages are MF490236 for vB_PaeP_ PYO2, MF490238 for vB_PaeP_DEV, MF490241 for vB_PaeM_E215, MF490240 for vB_PaeM_E217, MF490237 for vB_PaeP_E220, and MF490239 for vB_PaeS_S218. SUPPLEMENTAL MATERIAL Supplemental material for this article may be found at https

R. 1. Loc-carrillo, C. Abedon, and S. , Pros and cons of phage therapy, Bacteriophage, vol.14, issue.2, pp.111-114, 2011.
DOI : 10.4161/bact.1.2.15680

D. Roach and L. Debarbieux, Phage therapy: awakening a sleeping giant, Emerging Topics in Life Sciences, vol.1, issue.1, pp.93-103, 2017.
DOI : 10.1042/ETLS20170002

D. 'herelle and F. , On an invisible microbe antagonistic to dysenteric bacilli, C R Acad Sci, vol.165, pp.373-375, 2017.

S. Chibani-chennoufi, A. Bruttin, H. Brüssow, M. Dillmann, and H. Bru, Phage-Host Interaction: an Ecological Perspective, Journal of Bacteriology, vol.186, issue.12, pp.3677-3686, 2004.
DOI : 10.1128/JB.186.12.3677-3686.2004

A. Bruttin, H. Brüssow, and H. Bru, Human Volunteers Receiving Escherichia coli Phage T4 Orally: a Safety Test of Phage Therapy, Antimicrobial Agents and Chemotherapy, vol.49, issue.7, pp.2874-2878, 2005.
DOI : 10.1128/AAC.49.7.2874-2878.2005

N. Dufour, L. Debarbieux, M. Fromentin, and J. Ricard, Treatment of Highly Virulent Extraintestinal Pathogenic Escherichia coli Pneumonia With Bacteriophages*, Critical Care Medicine, vol.43, issue.6, pp.190-198, 2015.
DOI : 10.1097/CCM.0000000000000968

URL : https://hal.archives-ouvertes.fr/pasteur-01539037

M. Chattopadhyay, R. Chakraborty, H. Grossart, G. Reddy, and M. Jagannadham, Antibiotic Resistance of Bacteria, BioMed Research International, vol.2015, pp.1-2, 2015.
DOI : 10.1155/2015/501658

S. Labrie, J. Samson, and S. Moineau, Bacteriophage resistance mechanisms, Nature Reviews Microbiology, vol.153, issue.5, pp.317-327, 2010.
DOI : 10.1007/s00438-004-1048-y

E. Denou, A. Bruttin, C. Barretto, C. Ngom-bru, H. Brüssow et al., T4 phages against Escherichia coli diarrhea: Potential and problems, Virology, vol.388, issue.1, pp.21-30, 2009.
DOI : 10.1016/j.virol.2009.03.009

F. Cao, X. Wang, L. Wang, Z. Li, C. J. Wang et al.,

Y. Xu, Evaluation of the efficacy of a bacteriophage in the treatment of pneumonia induced by multidrug resistance Klebsiella pneumoniae in mice, Biomed Res Int, vol.2015, p.752930, 2015.

Y. Wang, Z. Mi, W. Niu, X. An, X. Yuan et al., -mediated pneumonia, Future Microbiology, vol.10, issue.1, pp.631-641, 2016.
DOI : 10.1128/JVI.01340-15

K. Fukuda, W. Ishida, J. Uchiyama, M. Rashel, S. Kato et al., Pseudomonas aeruginosa Keratitis in Mice: Effects of Topical Bacteriophage KPP12 Administration, PLoS ONE, vol.7, issue.10, p.47742, 2012.
DOI : 10.1371/journal.pone.0047742.s003

L. Debarbieux, D. Leduc, D. Maura, E. Morello, A. Criscuolo et al., Lung Infections, The Journal of Infectious Diseases, vol.201, issue.7, pp.1096-1104, 2010.
DOI : 10.1086/651135

URL : https://hal.archives-ouvertes.fr/pasteur-01425464

D. Alemayehu, P. Casey, and O. Mcauliffe, Bacteriophages ??MR299-2 and ??NH-4 Can Eliminate Pseudomonas aeruginosa in the Murine Lung and on Cystic Fibrosis Lung Airway Cells, mBio, vol.3, issue.2, pp.29-1200029, 2012.
DOI : 10.1128/mBio.00029-12

D. Roach, C. Leung, M. Henry, E. Morello, D. Singh et al., Synergy between the Host Immune System and Bacteriophage Is Essential for Successful Phage Therapy against an Acute Respiratory Pathogen, Cell Host & Microbe, vol.22, issue.1, pp.38-47, 2017.
DOI : 10.1016/j.chom.2017.06.018

URL : https://hal.archives-ouvertes.fr/pasteur-01827320

T. Olszak, P. Zarnowiec, W. Kaca, K. Danis-wlodarczyk, D. Augustyniak et al., In vitro and in vivo antibacterial activity of environmental bacteriophages against Pseudomonas aeruginosa strains from cystic fibrosis patients, Applied Microbiology and Biotechnology, vol.129, issue.14, pp.6021-6033, 2015.
DOI : 10.1039/b408169b

J. Gill and P. Hyman, Phage Choice, Isolation, and Preparation for Phage Therapy, Current Pharmaceutical Biotechnology, vol.11, issue.1, pp.2-14, 2010.
DOI : 10.2174/138920110790725311

J. Pirnay, D. Vos, D. Verbeken, G. Merabishvili, M. Chanishvili et al., The Phage Therapy Paradigm: Pr??t-??-Porter or Sur-mesure?, Pharmaceutical Research, vol.2, issue.4, pp.934-937, 2011.
DOI : 10.1038/nrmicro822

R. Leplae, G. Lima-mendez, and A. Toussaint, ACLAME: A CLAssification of Mobile genetic Elements, update 2010, Nucleic Acids Research, vol.142, issue.suppl_1, pp.57-61, 2010.
DOI : 10.1073/pnas.96.8.4285

B. Holloway, V. Krishnapillai, and A. Morgan, Chromosomal genetics of Pseudomonas, Microbiol Rev, vol.43, pp.73-102, 1979.

M. Henry, R. Lavigne, and L. Debarbieux, ABSTRACT, Antimicrobial Agents and Chemotherapy, vol.57, issue.12, pp.5961-5968, 2013.
DOI : 10.1128/AAC.01596-13

URL : https://hal.archives-ouvertes.fr/hal-00709833

M. Henry, L. Bobay, A. Chevallereau, E. Saussereau, P. Ceyssens et al., The Search for Therapeutic Bacteriophages Uncovers One New Subfamily and Two New Genera of Pseudomonas-Infecting Myoviridae, PLOS ONE, vol.51, issue.1, 2015.
DOI : 10.1371/journal.pone.0117163.s008

URL : https://hal.archives-ouvertes.fr/hal-01233568

L. Goodridge, Designing Phage Therapeutics, Current Pharmaceutical Biotechnology, vol.11, issue.1, pp.15-27, 2010.
DOI : 10.2174/138920110790725348

A. Hall, D. Vos, D. Friman, V. Pirnay, J. Buckling et al., ABSTRACT, Applied and Environmental Microbiology, vol.78, issue.16, pp.5646-565200757, 2012.
DOI : 10.1128/AEM.00757-12

A. Lacqua, O. Wanner, T. Colangelo, M. Martinotti, and P. Landini, Emergence of Biofilm-Forming Subpopulations upon Exposure of Escherichia coli to Environmental Bacteriophages, Applied and Environmental Microbiology, vol.72, issue.1, pp.956-959, 2006.
DOI : 10.1128/AEM.72.1.956-959.2006

D. Lin, B. Koskella, and H. Lin, Phage therapy: An alternative to antibiotics in the age of multi-drug resistance, World Journal of Gastrointestinal Pharmacology and Therapeutics, vol.8, issue.3, pp.162-173, 2017.
DOI : 10.1016/j.tig.2016.01.005

S. Abedon, S. Kuhl, B. Blasdel, and E. Kutter, Phage treatment of human infections, Bacteriophage, vol.7, issue.2, pp.66-85, 2011.
DOI : 10.1016/S0041-1345(03)00525-6

B. Chan, S. Abedon, and C. Loc-carrillo, Phage cocktails and the future of phage therapy, Future Microbiology, vol.19, issue.6, pp.769-783, 2013.
DOI : 10.1038/nrmicro2937

C. Cooper, M. Mirzaei, and A. Nilsson, Adapting Drug Approval Pathways for Bacteriophage-Based Therapeutics, Frontiers in Microbiology, vol.25, issue.180, 2016.
DOI : 10.3109/08941939.2012.664099

S. Jennes, M. Merabishvili, P. Soentjens, K. Pang, T. Rose et al., Use of bacteriophages in the treatment of colistin-only-sensitive Pseudomonas aeruginosa septicaemia in a patient with acute kidney injury???a case report, Critical Care, vol.363, issue.1, p.129, 2017.
DOI : 10.1093/femsle/fnv242

R. Schooley, B. Biswas, J. Gill, A. Hernandez-morales, J. Lancaster et al., ABSTRACT, Antimicrobial Agents and Chemotherapy, vol.61, issue.10, pp.954-1700954, 2017.
DOI : 10.1128/AAC.00954-17

A. Hizi and E. Herzig, dUTPase: the frequently overlooked enzyme encoded by many retroviruses, Retrovirology, vol.124, issue.480, p.70, 2015.
DOI : 10.1111/j.0022-202X.2004.23504.x

H. Warner, R. Thompson, T. Mozer, and B. Duncan, The properties of a bacteriophage T5 mutant unable to induce deoxyuridine 5=- triphosphate nucleotidohydrolase. Synthesis of uracil-containing T5 deoxyribonucleic acid, J Biol Chem, vol.254, pp.7534-7539, 1979.

D. Rakhuba, E. Kolomiets, E. Dey, and G. Novik, Bacteriophage receptors , mechanisms of phage adsorption and penetration into host cell, 2010.

, Pol J Microbiol, vol.59, pp.145-155

N. Head and H. Yu, Cross-Sectional Analysis of Clinical and Environmental Isolates of Pseudomonas aeruginosa: Biofilm Formation, Virulence, and Genome Diversity, Infection and Immunity, vol.72, issue.1, pp.133-144, 2004.
DOI : 10.1128/IAI.72.1.133-144.2004

URL : http://iai.asm.org/content/72/1/133.full.pdf

N. Dufour, O. Clermont, L. Combe, B. Messika, J. Dion et al., clonal complex, Journal of Antimicrobial Chemotherapy, vol.2, issue.11, pp.3072-3080, 2016.
DOI : 10.1093/jac/dks261

URL : https://hal.archives-ouvertes.fr/pasteur-01539016

M. Merabishvili, J. Pirnay, D. Vos, and D. , Guidelines to Compose an Ideal Bacteriophage Cocktail, Methods Mol Biol, vol.7, issue.12, pp.99-110, 2018.
DOI : 10.3390/v7122958

F. Minandri, F. Imperi, E. Frangipani, C. Bonchi, D. Visaggio et al., Role of Iron Uptake Systems in Pseudomonas aeruginosa Virulence and Airway Infection, Infection and Immunity, vol.84, issue.8, pp.2324-233500098, 2016.
DOI : 10.1128/IAI.00098-16

URL : http://iai.asm.org/content/84/8/2324.full.pdf

M. Adams, , 1959.

A. Betts, M. Vasse, O. Kaltz, and M. Hochberg, Back to the future: evolving bacteriophages to increase their effectiveness against the pathogen Pseudomonas aeruginosa PAO1, Evol Appl, vol.6, pp.1054-1063, 2013.

P. Boulanger, Purification of Bacteriophages and SDS-PAGE Analysis of Phage Structural Proteins from Ghost Particles, Methods Mol Biol, vol.502, pp.227-238, 2009.
DOI : 10.1007/978-1-60327-565-1_13

D. Ghisotti, R. Chiaramonte, F. Forti, S. Zangrossi, G. Sironi et al., Genetic analysis of the immunity region of phage-plasmid P4, Molecular Microbiology, vol.9, issue.22, pp.3405-3413, 1992.
DOI : 10.1016/0378-1119(82)90015-4

A. Bolger, M. Lohse, and B. Usadel, Trimmomatic: a flexible trimmer for Illumina sequence data, Bioinformatics, vol.18, issue.15, pp.2114-2120, 2014.
DOI : 10.1101/gr.074492.107

A. Bankevich, S. Nurk, D. Antipov, A. Gurevich, M. Dvorkin et al., SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing, Journal of Computational Biology, vol.19, issue.5, pp.455-477, 2012.
DOI : 10.1089/cmb.2012.0021

A. Mcarthur, N. Waglechner, F. Nizam, A. Yan, M. Azad et al., ABSTRACT, Antimicrobial Agents and Chemotherapy, vol.57, issue.7, 2013.
DOI : 10.1128/AAC.00419-13

. Forti, Antimicrobial Agents and Chemotherapy

, Antimicrob Agents Chemother, vol.57, pp.3348-335700419

L. Chen, Y. J. , Y. J. Yao, Z. Sun, L. Shen et al., VFDB: a reference database for bacterial virulence factors, Nucleic Acids Research, vol.33, issue.Database issue, pp.325-328, 2005.
DOI : 10.1093/nar/gki008

S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman, Basic local alignment search tool, Journal of Molecular Biology, vol.215, issue.3, pp.403-410, 1990.
DOI : 10.1016/S0022-2836(05)80360-2

A. Kropinski, D. Prangishvili, and R. Lavigne, Environmental Microbiology, vol.188, issue.11, pp.2775-2777, 2009.
DOI : 10.1099/00221287-67-1-1

N. Andreu, A. Zelmer, T. Fletcher, P. Elkington, T. Ward et al., Optimisation of Bioluminescent Reporters for Use with Mycobacteria, PLoS ONE, vol.189, issue.1, 2010.
DOI : 10.1371/journal.pone.0010777.t005

A. Munder, F. Wölbeling, J. Klockgether, L. Wiehlmann, and B. Tümmler, in an acute murine airway infection model, Pathogens and Disease, vol.216, issue.1, pp.74-77, 2014.
DOI : 10.1016/j.imbio.2011.02.003

, Phage Therapy of Pseudomonas aeruginosa Antimicrobial Agents and Chemotherapy