V. Tremaroli and F. Backhed, Functional interactions between the gut microbiota and host metabolism, Nature, vol.44, issue.7415, pp.242-251, 2012.
DOI : 10.1017/S0007114510003363

URL : http://www.nature.com/nature/journal/v489/n7415/pdf/nature11552.pdf

K. Fujimura and S. Lynch, Microbiota in Allergy and Asthma and the Emerging Relationship with the Gut Microbiome, Cell Host & Microbe, vol.17, issue.5, pp.592-602, 2015.
DOI : 10.1016/j.chom.2015.04.007

URL : https://doi.org/10.1016/j.chom.2015.04.007

A. Gallo, G. Passaro, A. Gasbarrini, R. Landolfi, and M. Montalto, Modulation of microbiota as treatment for intestinal inflammatory disorders: An uptodate, World Journal of Gastroenterology, vol.22, issue.32, pp.7186-253, 2016.
DOI : 10.1007/s00535-011-0410-1

URL : http://doi.org/10.3748/wjg.v22.i32.7186

T. Sampson, J. Debelius, T. Thron, S. Janssen, G. Shastri et al., Gut Microbiota, p.255

, Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson's Disease, Cell, vol.256, issue.5, pp.1469-80, 2016.

P. Scanlan and P. Rainey, Bacteria-Bacteriophage Coevolution in the Human Gut: Implications for Microbial 258 Diversity and Functionality Antagonistic coevolution between a bacterium and a bacteriophage, Trends Microbiol, p.260, 2017.

, Proc Biol Sci, vol.269, issue.7, pp.931-937, 2002.

S. Gandon, A. Buckling, E. Decaestecker, and T. Day, Host-parasite coevolution and patterns of adaptation across time and space, Journal of Evolutionary Biology, vol.32, issue.6, pp.1861-1867, 2008.
DOI : 10.7208/chicago/9780226797670.001.0001

B. Koskella and M. Brockhurst, Bacteria???phage coevolution as a driver of ecological and evolutionary processes in microbial communities, FEMS Microbiology Reviews, vol.80, issue.5, pp.916-947, 2014.
DOI : 10.1016/j.mib.2013.08.008

P. Gomez, S. Paterson, D. Meester, L. Liu, X. Lenzi et al., Local adaptation of a 266 bacterium is as important as its presence in structuring a natural microbial community, Nat Commun, vol.267, issue.268, pp.201612453-201612463

H. Enav, S. Kirzner, D. Lindell, Y. Mandel-gutfreund, and O. Beja, Adaptation to sub-optimal hosts is a 269 driver of viral diversification in the ocean, p.11, 2018.

M. Middelboe, K. Holmfeldt, L. Riemann, O. Nybroe, and J. Haaber, : implications for phage resistance and physiological properties, Environmental Microbiology, vol.9, issue.8, pp.1971-82, 2009.
DOI : 10.1007/978-94-011-6918-9_4

M. Mirzaei and C. Maurice, M??nage ?? trois in the human gut: interactions between host, bacteria and phages, Nature Reviews Microbiology, vol.102, issue.7, pp.397-408, 2017.
DOI : 10.1073/pnas.0504062102

P. Manrique, B. Bolduc, S. Walk, J. Van-der-oost, W. De-vos et al., Healthy human gut phageome, Proceedings of the National Academy of Sciences, vol.5, issue.37, pp.10400-10405, 2016.
DOI : 10.1371/journal.pone.0035053

J. Norman, S. Handley, M. Baldridge, L. Droit, C. Liu et al., Disease-Specific Alterations in the Enteric Virome in Inflammatory Bowel Disease, Cell, vol.160, issue.3, pp.447-60, 2015.
DOI : 10.1016/j.cell.2015.01.002

S. Kieser, S. Sarker, B. Berger, S. Sultana, M. Chisti et al., Antibiotic Treatment Leads 280 to Fecal <em>Escherichia coli</em> and Coliphage Expansion in Severely Malnourished Diarrhea 281 Patients. Cellular and Molecular Gastroenterology and Hepatology, p.16

S. Ott, G. Waetzig, A. Rehman, J. Moltzau-anderson, R. Bharti et al., , p.283

, Sterile Fecal Filtrate Transfer for Treating Patients With Clostridium difficile Infection. 284 Gastroenterology, p.17, 2016.

T. Zuo, S. Wong, K. Lam, R. Lui, K. Cheung et al., Bacteriophage transfer during faecal 286 microbiota transplantation in Clostridium difficile infection is associated with treatment outcome. 287 Gut, p.18, 2017.

A. Reyes, L. Blanton, S. Cao, G. Zhao, M. Manary et al., Gut DNA viromes of Malawian twins discordant for severe acute malnutrition, Proceedings of the National Academy of Sciences, vol.27, issue.3, pp.11941-11947, 2011.
DOI : 10.1128/AEM.00062-07

J. Weitz, T. Poisot, J. Meyer, C. Flores, S. Valverde et al., Phage???bacteria infection networks, Trends in Microbiology, vol.21, issue.2, pp.82-91, 2013.
DOI : 10.1016/j.tim.2012.11.003

A. Hershey and M. Chase, INDEPENDENT FUNCTIONS OF VIRAL PROTEIN AND NUCLEIC ACID IN GROWTH OF BACTERIOPHAGE, The Journal of General Physiology, vol.36, issue.1, pp.39-56, 1952.
DOI : 10.1085/jgp.36.1.39

S. Brenner, F. Jacob, and M. Meselson, An Unstable Intermediate Carrying Information from Genes to Ribosomes for Protein Synthesis, Nature, vol.46, issue.4776, pp.576-81, 1961.
DOI : 10.1016/0042-6822(58)90101-6

J. Cairns, G. Stent, and J. Watson, Phage and the Origins of Molecular Biology, p.24, 2007.

D. Sordi, L. Khanna, V. Debarbieux, and L. , The Gut Microbiota Facilitates Drifts in the Genetic Diversity and Infectivity of Bacterial Viruses, Cell Host & Microbe, vol.22, issue.6, pp.801-809, 2017.
DOI : 10.1016/j.chom.2017.10.010

URL : https://hal.archives-ouvertes.fr/pasteur-01827316

T. Suzuki and M. Nachman, Spatial Heterogeneity of Gut Microbial Composition along the 303 Gastrointestinal Tract in Natural Populations of House Mice, PLoS One, vol.11, pp.163720-304, 2016.

M. Wang, S. Ahrne, B. Jeppsson, G. Molin, H. Brickner et al., Comparison of bacterial diversity along the human 305 intestinal tract by direct cloning and sequencing of 16S rRNA genes Mechanisms that control bacterial 308 populations in continuous-flow culture models of mouse large intestinal flora, FEMS Microbiol Ecol Infect Immun, vol.306, issue.310, pp.219-31676, 1983.

F. Pereira, D. Berry, A. Hall, P. Scanlan, A. Morgan et al., Microbial nutrient niches in the gut Host-parasite coevolutionary arms races give 312 way to fluctuating selection, The genome and 314 proteome of a virulent Escherichia coli O157:H7 bacteriophage closely resembling Salmonella phage, pp.1366-78, 2011.

O. Felix, Virol J, vol.6, issue.316, pp.41-72, 2009.

H. Hudson, A. Lindberg, and B. Stocker, Lipopolysaccharide Core Defects in Salmonella typhimurium Mutants Which Are Resistant to Felix O Phage but Retain Smooth Character, Journal of General Microbiology, vol.109, issue.1, pp.97-112, 1978.
DOI : 10.1099/00221287-109-1-97

K. Seed, Y. M. Shapiro, B. Hilaire, I. Charles, R. Teng et al., Evolutionary consequences 320 of intra-patient phage predation on microbial populations Effectiveness of phages in treating experimental Escherichia coli 322 diarrhoea in calves, piglets and lambs, Elife J Gen Microbiol, vol.3, issue.323, pp.2659-75, 1983.

F. Oechslin, P. Piccardi, S. Mancini, J. Gabard, P. Moreillon et al.,

, Interaction Between Phage Therapy and Antibiotics Clears Pseudomonas Aeruginosa Infection in 325 Endocarditis and Reduces Virulence, The Journal of Infectious Diseases, vol.215, issue.326, pp.703-715, 2017.

J. Barroso-batista, A. Sousa, M. Lourenco, M. Bergman, D. Sobral et al., The first 327 steps of adaptation of Escherichia coli to the gut are dominated by soft sweeps, PLoS Genet, vol.328, pp.10-1004182, 2014.

M. Lourenco, R. Ramiro, D. Guleresi, J. Barroso-batista, K. Xavier et al., Mutational, vol.330

, Hotspot and Strong Selection Contribute to the Order of Mutations Selected for during Escherichia 331 coli Adaptation to the Gut, Luria SE, Delbruck M. Mutations of Bacteria from Virus Sensitivity to Virus Resistance. 333, pp.1006420-332, 1943.

S. Labrie, J. Samson, and S. Moineau, Bacteriophage resistance mechanisms, Nature Reviews Microbiology, vol.153, issue.5, pp.317-344, 2010.
DOI : 10.1007/s00438-004-1048-y

T. Goldfarb, H. Sberro, E. Weinstock, O. Cohen, S. Doron et al., BREX is a novel phage resistance system widespread in microbial genomes, The EMBO Journal, vol.34, issue.2, pp.169-83, 2015.
DOI : 10.15252/embj.201489455

URL : http://emboj.embopress.org/content/embojnl/34/2/169.full.pdf

S. Doron, S. Melamed, G. Ofir, A. Leavitt, A. Lopatina et al., Systematic discovery of 339 antiphage defense systems in the microbial pangenome, Science, vol.340, p.41, 2018.

D. Maura, M. Galtier, L. Bouguenec, C. Debarbieux, and L. , Virulent bacteriophages can target 341 O104:H4 enteroaggregative Escherichia coli in the mouse intestine, Antimicrob Agents Chemother, vol.342, issue.343, pp.6235-6277, 2012.
DOI : 10.1128/aac.00602-12

URL : http://aac.asm.org/content/56/12/6235.full.pdf

D. Maura and L. Debarbieux, On the interactions between virulent bacteriophages and bacteria in 344 the gut, Bacteriophage, vol.2, issue.345, pp.229-262, 2012.
DOI : 10.4161/bact.23557

URL : http://europepmc.org/articles/pmc3594211?pdf=render

D. Maura, E. Morello, L. Du-merle, P. Bomme, L. Bouguenec et al., Intestinal colonization by enteroaggregative Escherichia coli supports long-term bacteriophage replication in mice, Environmental Microbiology, vol.189, issue.8, pp.1844-54, 2012.
DOI : 10.1128/JB.00838-07

M. Galtier, D. Sordi, L. Sivignon, A. De-vallee, A. Maura et al., Bacteriophages, vol.349

, Targeting Adherent Invasive Escherichia coli Strains as a Promising New Treatment for Crohn's 350

. Disease, J Crohns Colitis, vol.11, issue.351, pp.840-847, 2017.

E. Denou, B. Berger, C. Barretto, J. Panoff, F. Arigoni et al., Gene Expression of Commensal Lactobacillus johnsonii Strain NCC533 during In Vitro Growth and in the Murine Gut, Journal of Bacteriology, vol.189, issue.22, pp.8109-8128, 2007.
DOI : 10.1128/JB.00991-07

D. Bryan, A. El-shibiny, Z. Hobbs, J. Porter, and E. Kutter,

E. Phase and . Coli, Life after Log from a Phage Perspective, Front Microbiol, vol.7, issue.356, pp.1391-1438, 2016.

M. Los and W. G. Pseudolysogeny, Pseudolysogeny, Adv Virus Res, vol.82, issue.357, pp.339-388, 2012.
DOI : 10.1016/B978-0-12-394621-8.00019-4

N. Yutin, K. Makarova, A. Gussow, M. Krupovic, A. Segall et al., Discovery of an expansive bacteriophage family that includes the most abundant viruses from the human gut, Nature Microbiology, vol.35, issue.1, pp.38-46, 2018.
DOI : 10.1093/nar/gkm265

URL : https://hal.archives-ouvertes.fr/pasteur-01977350

E. Saussereau, I. Vachier, R. Chiron, B. Godbert, I. Sermet et al., Effectiveness of bacteriophages in the sputum of cystic fibrosis patients, Clinical Microbiology and Infection, vol.20, issue.12, pp.983-90, 2014.
DOI : 10.1111/1469-0691.12712

URL : https://hal.archives-ouvertes.fr/pasteur-01539054

J. Barrick, D. Yu, S. Yoon, H. Jeong, T. Oh et al., Genome evolution and adaptation in a long-term experiment with Escherichia coli, Nature, vol.156, issue.103, pp.1243-1250, 2009.
DOI : 10.1111/j.0014-3820.2002.tb01446.x

URL : https://hal.archives-ouvertes.fr/hal-00435992

, 366 isolate from past, present and future time-points during coevolution in the mouse gut, p.391

, Bacterial lysis was tested by double-spot assay 49

, Figure 2: Model of bacteriophage-bacteria coevolution and differentiation in the gut

, green and orange) are differentially 395 susceptible to one bacteriophage (yellow) Under bacteriophage predation, sub-populations of 396 resistant bacteria can emerge (lighter colours) These either can become dominant, leading to 397 extinction of other subpopulations, or be maintained in equilibrium. Contextually, 398 bacteriophage sub-populations diverge (represented by different colours) by adapting to 399 changes in the coevolving bacteria or to new hosts (host-jump, black arrows) The 400 consequence (top) is the progressive differentiation of both antagonistic populations, From the bottom, three bacterial populations (blue