O. Savolainen, M. Lascoux, and J. Merilä, Ecological genomics of local adaptation, Nature Reviews Genetics, vol.62, issue.11, pp.807-820, 2013.
DOI : 10.1111/jeb.12168

J. Trivedi, Fungus causing white-nose syndrome in bats accumulates genetic variability in north america with no sign of recombination, pp.271-288, 2017.

L. H. Taylor, S. M. Latham, and M. E. Woolhouse, Risk factors for human disease emergence, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.356, issue.1411, pp.983-989, 2001.
DOI : 10.1098/rstb.2001.0888

URL : http://europepmc.org/articles/pmc1088493?pdf=render

G. D. Brown, Hidden Killers: Human Fungal Infections, Science Translational Medicine, vol.14, issue.2, pp.165-178, 2012.
DOI : 10.1258/0956462981922728

R. J. Bennett and A. Johnson, Completion of a parasexual cycle in Candida albicans by induced chromosome loss in tetraploid strains, The EMBO Journal, vol.22, issue.10, pp.2505-2515, 2003.
DOI : 10.1093/emboj/cdg235

A. Doi,

A. Forche, The Parasexual Cycle in Candida albicans Provides an Alternative Pathway to Meiosis for the Formation of Recombinant Strains, PLoS Biology, vol.169, issue.5, p.110, 2008.
DOI : 10.1371/journal.pbio.0060110.st006

M. Bougnoux, Mating is rare within as well as between clades of the human pathogen Candida albicans, Fungal Genetics and Biology, vol.45, issue.3, pp.221-231, 2008.
DOI : 10.1016/j.fgb.2007.10.008

D. R. Soll and C. Pujol, clades, FEMS Immunology & Medical Microbiology, vol.71, issue.1, pp.1-7, 2003.
DOI : 10.1093/clinids/24.2.235

E. Blignaut, C. Pujol, S. Lockhart, S. Joly, and D. Soll, Ca3 Fingerprinting of Candida albicans Isolates from Human Immunodeficiency Virus-Positive and Healthy Individuals Reveals a New Clade in South Africa, Journal of Clinical Microbiology, vol.40, issue.3, pp.826-836, 2002.
DOI : 10.1128/JCM.40.3.826-836.2002

J. Schmid, Evidence for a general-purpose genotype in Candida albicans , highly prevalent in multiple geographical regions, patient types and types of infection, Microbiology, vol.80, issue.9, pp.2405-2413, 1999.
DOI : 10.1073/pnas.80.6.1751

T. J. Lott, R. E. Fundyga, R. J. Kuykendall, and J. Arnold, The human commensal yeast, Candida albicans, has an ancient origin, Fungal Genetics and Biology, vol.42, issue.5, pp.444-451, 2005.
DOI : 10.1016/j.fgb.2005.01.012

F. C. Odds, Molecular Phylogenetics of Candida albicans, Eukaryotic Cell, vol.6, issue.6, pp.1041-1052, 2007.
DOI : 10.1128/EC.00041-07

J. H. Shin, Genetic Diversity among Korean Candida albicans Bloodstream Isolates: Assessment by Multilocus Sequence Typing and Restriction Endonuclease Analysis of Genomic DNA by Use of BssHII, Journal of Clinical Microbiology, vol.49, issue.7, pp.2572-2577, 2011.
DOI : 10.1128/JCM.02153-10

URL : https://hal.archives-ouvertes.fr/pasteur-01524601

C. Pujol, M. Pfaller, and D. Soll, Ca3 Fingerprinting of Candida albicans Bloodstream Isolates from the United States, Canada, South America, and Europe Reveals a European Clade, Journal of Clinical Microbiology, vol.40, issue.8, pp.2729-2740, 2002.
DOI : 10.1128/JCM.40.8.2729-2740.2002

M. Bougnoux, S. Morand, and C. Enfert, Usefulness of Multilocus Sequence Typing for Characterization of Clinical Isolates of Candida albicans, Journal of Clinical Microbiology, vol.40, issue.4, pp.1290-1297, 2002.
DOI : 10.1128/JCM.40.4.1290-1297.2002

F. C. Odds, Future Microbiology, vol.8, issue.1, pp.67-79, 2010.
DOI : 10.1128/EC.00320-08

M. P. Hirakawa, Genome Research, vol.25, issue.3, pp.413-425, 2015.
DOI : 10.1101/gr.174623.114

D. Abbey, M. Hickman, D. Gresham, and J. Berman, Strains, G3: Genes|Genomes|Genetics, vol.1, issue.7, pp.523-530, 2011.
DOI : 10.1534/g3.111.000885

T. Jones, The diploid genome sequence of Candida albicans, Proc. Natl Acad. Sci. USA, pp.7329-7334, 2004.
DOI : 10.1128/jb.175.20.6637-6651.1993

A. Selmecki, A. Forche, and J. Berman, Aneuploidy and Isochromosome Formation in Drug-Resistant Candida albicans, Science, vol.313, issue.5785, pp.367-370, 2006.
DOI : 10.1126/science.1128242

S. R. Lockhart, Candida albicans, white-opaque switchers are homozygous for mating type, Genetics, vol.162, pp.737-745, 2002.

A. Forche, Stress Alters Rates and Types of Loss of Heterozygosity in Candida albicans, mBio, vol.2, issue.4, pp.129-140, 2011.
DOI : 10.1128/mBio.00129-11

O. P. Judson and B. B. Normark, Ancient asexual scandals, Trends in Ecology & Evolution, vol.11, issue.2, pp.41-46, 1996.
DOI : 10.1016/0169-5347(96)81040-8

T. C. Bruen, H. Philippe, and D. Bryant, A Simple and Robust Statistical Test for Detecting the Presence of Recombination, Genetics, vol.172, issue.4, pp.2665-2681, 2006.
DOI : 10.1534/genetics.105.048975

L. Skotte, T. S. Korneliussen, and A. Albrechtsen, Estimating Individual Admixture Proportions from Next Generation Sequencing Data, Genetics, vol.195, issue.3, pp.693-702, 2013.
DOI : 10.1534/genetics.113.154138

R. J. Bennett, The parasexual lifestyle of Candida albicans, Current Opinion in Microbiology, vol.28, pp.10-17, 2015.
DOI : 10.1016/j.mib.2015.06.017

L. Carreté, Patterns of Genomic Variation in the Opportunistic Pathogen Candida glabrata Suggest the Existence of Mating and a Secondary Association with Humans, Current Biology, vol.28, issue.1, pp.15-27, 2018.
DOI : 10.1016/j.cub.2017.11.027

N. Zhang, Genetics, vol.200, issue.4, pp.1117-1132, 2015.
DOI : 10.1534/genetics.115.177170

C. M. Hull, R. M. Raisner, and A. Johnson, Evidence for Mating of the "Asexual" Yeast Candida albicans in a Mammalian Host, Science, vol.289, issue.5477, pp.307-310, 2000.
DOI : 10.1126/science.289.5477.307

B. B. Magee and P. Magee, Induction of Mating in Candida albicans by Construction of MTLa and MTLalpha Strains, Science, vol.289, issue.5477, pp.310-313, 2000.
DOI : 10.1126/science.289.5477.310

C. Pujol, The Closely Related Species Candida albicans and Candida dubliniensis Can Mate, Eukaryotic Cell, vol.3, issue.4, pp.1015-1027, 2004.
DOI : 10.1128/EC.3.4.1015-1027.2004

M. Legrand, Homozygosity at the MTL locus in clinical strains of Candida albicans: karyotypic rearrangements and tetraploid formation???, Molecular Microbiology, vol.8, issue.5, pp.1451-1462, 2004.
DOI : 10.1046/j.1365-294X.1999.00523.x

H. Tietz, M. Hopp, A. Schmalreck, W. Sterry, and V. Czaika, Candida africana sp. nov., a new human pathogen or a variant of Candida albicans? Mycoses 44, pp.437-445, 2001.

R. Alonso-vargas, , from a patient with vaginitis, Medical Mycology, vol.14, issue.1, pp.167-170, 2008.
DOI : 10.1016/S1130-1406(06)70051-1

A. M. Borman, Epidemiology, Antifungal Susceptibility, and Pathogenicity of Candida africana Isolates from the United Kingdom, Journal of Clinical Microbiology, vol.51, issue.3, pp.967-972, 2013.
DOI : 10.1128/JCM.02816-12

A. Chowdhary, Whole Genome-Based Amplified Fragment Length Polymorphism Analysis Reveals Genetic Diversity in Candida africana, Frontiers in Microbiology, vol.180, issue.199, p.556, 2017.
DOI : 10.1007/s11046-015-9924-z

URL : https://www.frontiersin.org/articles/10.3389/fmicb.2017.00556/pdf

Y. Shan, S. Fan, X. Liu, and J. Li, Prevalence of Candida albicans-closely related yeasts, Candida africana and Candida dubliniensis, in vulvovaginal candidiasis, Medical Mycology, vol.47, issue.6, pp.636-640, 2014.
DOI : 10.3109/13693780802669574

URL : https://academic.oup.com/mmy/article-pdf/52/6/636/2786745/myu003.pdf

C. Sharma, S. Muralidhar, J. Xu, J. F. Meis, and A. Chowdhary, from patients with vulvovaginal candidiasis in New Delhi, India, Mycoses, vol.47, issue.9, pp.544-552, 2014.
DOI : 10.1111/j.1439-0507.2004.00970.x

Y. Li, C. Su, X. Mao, F. Cao, and J. Chen, Roles of Candida albicans Sfl1 in Hyphal Development, Eukaryotic Cell, vol.6, issue.11, pp.2112-2121, 2007.
DOI : 10.1128/EC.00199-07

L. Issi, Genetics, vol.205, issue.2, pp.559-576, 2017.
DOI : 10.1534/genetics.116.195024

F. Balloux, L. Lehmann, and T. De-meeûs, The population genetics of clonal and partially clonal diploids, Genetics, vol.164, pp.1635-1644, 2003.

C. W. Birky, Heterozygosity, heteromorphy, and phylogenetic trees in asexual eukaryotes, Genetics, vol.144, pp.427-437, 1996.

M. Meloni, from the Canary Islands, Ecology and Evolution, vol.19, issue.6, pp.1569-1579, 2013.
DOI : 10.1111/j.1365-294X.2010.04609.x

A. Feri, Analysis of repair mechanisms following an induced doublestrand break uncovers recessive deleterious alleles in the Candida albicans diploid genome, pp.1109-01116, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01382826

A. P. Jackson, Comparative genomics of the fungal pathogens Candida dubliniensis and Candida albicans, Genome Research, vol.19, issue.12, pp.2231-2244, 2009.
DOI : 10.1101/gr.097501.109

M. M. Vilela, Pathogenicity and virulence of Candida dubliniensis: comparison with C. albicans, Medical Mycology, vol.40, issue.3, pp.249-257, 2002.
DOI : 10.1080/714031113

B. A. Mcmanus, Multilocus Sequence Typing Reveals that the Population Structure of Candida dubliniensis Is Significantly Less Divergent than That of Candida albicans, Journal of Clinical Microbiology, vol.46, issue.2, pp.652-664, 2008.
DOI : 10.1128/JCM.01574-07

W. R. Kirkpatrick, J. L. Lopez-ribot, R. K. Mcatee, and T. Patterson, Growth competition between Candida dubliniensis and Candida albicans under broth and biofilm growing conditions, J. Clin. Microbiol, vol.38, pp.902-904, 2000.

G. P. Moran, D. C. Coleman, and D. J. Sullivan, More Pathogenic?, International Journal of Microbiology, vol.36, issue.7, pp.1-7, 2012.
DOI : 10.4161/viru.2.1.15002

L. P. Pryszcz, T. Németh, A. Gácser, and T. Gabaldón, Genome Comparison of Candida orthopsilosis Clinical Strains Reveals the Existence of Hybrids between Two Distinct Subspecies, Genome Biology and Evolution, vol.2, issue.5, pp.1069-1078, 2014.
DOI : 10.1371/journal.pgen.1003894

L. P. Pryszcz, The Genomic Aftermath of Hybridization in the Opportunistic Pathogen Candida metapsilosis, PLOS Genetics, vol.11, issue.10, p.1005626, 2015.
DOI : 10.1371/journal.pgen.1005626.s022

M. S. Schröder, Multiple Origins of the Pathogenic Yeast Candida orthopsilosis by Separate Hybridizations between Two Parental Species, PLOS Genetics, vol.6, issue.11, p.1006404, 2016.
DOI : 10.1371/journal.pgen.1006404.s013

D. Muzzey, K. Schwartz, J. S. Weissman, and G. Sherlock, Assembly of a phased diploid Candida albicans genome facilitates allele-specific measurements and provides a simple model for repeat and indel structure, Genome Biology, vol.14, issue.9
DOI : 10.1101/gad.7.9.1737

, Genome Biol, vol.14, p.97, 2013.

M. S. Skrzypek, Genome Database (CGD): incorporation of Assembly 22, systematic identifiers and visualization of high throughput sequencing data, Nucleic Acids Research, vol.3, issue.D1, pp.592-596, 2017.
DOI : 10.1371/journal.ppat.1004365

H. Li and R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform, Bioinformatics, vol.9, issue.11, pp.1754-1760, 2009.
DOI : 10.1186/1471-2105-9-128

H. Li, The Sequence Alignment/Map format and SAMtools, Bioinformatics, vol.9, issue.11, pp.2078-2079, 2009.
DOI : 10.1146/annurev.genom.9.081307.164359

A. Mckenna, The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data, Genome Research, vol.20, issue.9, pp.1297-1303, 2010.
DOI : 10.1101/gr.107524.110

M. A. Depristo, A framework for variation discovery and genotyping using next-generation DNA sequencing data, Nature Genetics, vol.8, issue.5, p.491, 2011.
DOI : 10.1126/science.1177074

G. A. Van-der-auwera, From FastQ Data to High-Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline, Curr. Protoc. Bioinforma, vol.29, pp.11-21, 2013.
DOI : 10.1093/nar/29.1.308

A. Stamatakis, RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies, Bioinformatics, vol.57, issue.9, pp.1312-1313, 2014.
DOI : 10.1080/10635150802429642

R. Development and C. Team, R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2011.

E. Paradis, J. Claude, and K. Strimmer, APE: Analyses of Phylogenetics and Evolution in R language, Bioinformatics, vol.20, issue.2, pp.289-290, 2004.
DOI : 10.1093/bioinformatics/btg412

URL : https://hal.archives-ouvertes.fr/ird-01887318

T. S. Korneliussen, A. Albrechtsen, and R. Nielsen, ANGSD: Analysis of Next Generation Sequencing Data, BMC Bioinformatics, vol.449, issue.7164, p.356, 2014.
DOI : 10.1038/nature06258

P. Danecek, The variant call format and VCFtools, Bioinformatics, vol.11, issue.9, pp.2156-2158, 2011.
DOI : 10.1101/gr.107524.110

J. Reynolds, B. S. Weir, and C. Cockerham, Estimation of the coancestry coefficient: basis for a short-term genetic distance, Genetics, vol.105, pp.767-779, 1983.

|. Doi, 10.1038/s41467-018-04787-4 ARTICLE, NATURE COMMUNICATIONS NATURE COMMUNICATIONS |, vol.9, 2018.
URL : https://hal.archives-ouvertes.fr/in2p3-00652853

H. Wickham, ggplot2 -Elegant Graphics for Data Analysis, 2009.

S. Purcell, PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses, The American Journal of Human Genetics, vol.81, issue.3, pp.559-575, 2007.
DOI : 10.1086/519795

K. P. Schliep, phangorn: phylogenetic analysis in R, Bioinformatics, vol.18, issue.4, pp.592-593, 2011.
DOI : 10.1093/oxfordjournals.molbev.a003851

M. J. De-hoon, S. Imoto, J. Nolan, and S. Miyano, Open source clustering software, Bioinformatics, vol.20, issue.9, pp.1453-1454, 2004.
DOI : 10.1093/bioinformatics/bth078

A. J. Saldanha, Java Treeview--extensible visualization of microarray data, Bioinformatics, vol.20, issue.17, pp.3246-3248, 2004.
DOI : 10.1093/bioinformatics/bth349

G. Kritikos, A tool named Iris for versatile high-throughput phenotyping in microorganisms, Nature Microbiology, vol.57, issue.5, p.17014, 2017.
DOI : 10.1093/nar/gkr945

URL : http://europepmc.org/articles/pmc5464397?pdf=render

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nature Methods, vol.42, issue.7, pp.671-675, 2012.
DOI : 10.2144/000112257

URL : http://europepmc.org/articles/pmc5554542?pdf=render

J. W. Tukey, Comparing Individual Means in the Analysis of Variance, Biometrics, vol.5, issue.2, pp.99-114, 1949.
DOI : 10.2307/3001913

A. Untergasser, Primer3Plus, an enhanced web interface to Primer3, Nucleic Acids Research, vol.35, issue.Web Server, pp.71-74, 2007.
DOI : 10.1093/nar/gkm306

URL : https://academic.oup.com/nar/article-pdf/35/suppl_2/W71/9584689/gkm306.pdf

C. E. and J. , was supported by a Pasteur-Roux fellowship from Institut Pasteur. D.D. was the recipient of a PhD fellowship from Institut National de la Recherche Agronomique. E.P. was the recipient of a post-doctoral fellowship from the Wellcome Trust (WT088858MA). M.M.- H. and T.G. were supported by a grant from the Spanish Ministry of Economy and Competitiveness, the Genoscope (projet #15 AP2008/2009 SNP C. albicans) and the Swiss National Science Foundation BFU2015?67107 cofunded by the European Regional Development Fund (ERDF). were supported by a grant from the French and Korean Ministries for Foreign Affairs (PHC STAR 2011 25841YA). R.C.M. was supported by project MitoFun, funded by the European Research Council under the European Union's Seventh Framework Programme (FPERC Grant Agreement No. 614562 and by a Wolfson Research Merit Award from the Royal Society. R.C, 2007.

M. and K. V. , were funded by the Surgical Reconstruction and Microbiology Research Centre, which is supported by the National Institute of Health Research, UK. G.S. was supported by the NIH grants R01-HG003468 and RO1-DE015873. C.E. and T.G. are members of the CNRS GDRI 0814 iGenolevures consortium. High-throughput sequencing has been performed on the Genomics Platform, member of France Génomique consortium (ANR10-INBS-09-08) We thank Bernard Dujon and Tatiana Giraud for providing insights on an earlier version of this manuscript