R. Kopan, Notch signaling. Cold Spring Harbor perspectives in biology, p.3, 2012.

R. Kushwah, B. Guezguez, J. Lee, C. Hopkins, and M. Bhatia, Pleiotropic roles of Notch signaling in normal, malignant, and developmental hematopoiesis in the human, EMBO reports, vol.15, issue.11, pp.1128-1166, 2014.
DOI : 10.15252/embr.201438842

B. Housden, A. Fu, A. Krejci, F. Bernard, B. Fischer et al., Transcriptional Dynamics Elicited by a Short Pulse of Notch Activation Involves Feed-Forward Regulation by E(spl)/Hes Genes, PLoS Genetics, vol.33, issue.1, p.23300480
DOI : 10.1371/journal.pgen.1003162.s010

URL : https://doi.org/10.1371/journal.pgen.1003162

A. Krejci, F. Bernard, B. Housden, S. Collins, and S. Bray, Direct Response to Notch Activation: Signaling Crosstalk and Incoherent Logic, Science Signaling, vol.2, issue.55, 2009.
DOI : 10.1126/scisignal.2000140

K. Hori, A. Sen, and S. Artavanis-tsakonas, Notch signaling at a glance, Journal of Cell Science, vol.126, issue.10, pp.2135-2175, 2013.
DOI : 10.1242/jcs.127308

URL : http://jcs.biologists.org/content/joces/126/10/2135.full.pdf

R. Kopan and M. Ilagan, The Canonical Notch Signaling Pathway: Unfolding the Activation Mechanism, Cell, vol.137, issue.2, pp.216-249, 2009.
DOI : 10.1016/j.cell.2009.03.045

URL : https://doi.org/10.1016/j.cell.2009.03.045

A. Bailey and J. Posakony, Suppressor of hairless directly activates transcription of enhancer of split complex genes in response to Notch receptor activity., Genes & Development, vol.9, issue.21, pp.2609-2631, 1995.
DOI : 10.1101/gad.9.21.2609

E. Knust, H. Schrons, F. Grawe, and J. Campos-ortega, Seven genes of the Enhancer of split complex of Drosophila melanogaster encode helix-loop-helix proteins, Genetics, vol.132, issue.2, pp.505-523, 1992.

M. Lecourtois and F. Schweisguth, The neurogenic suppressor of hairless DNA-binding protein mediates the transcriptional activation of the enhancer of split complex genes triggered by Notch signaling., Genes & Development, vol.9, issue.21, pp.2598-608, 1995.
DOI : 10.1101/gad.9.21.2598

N. Giagtzoglou, P. Alifragis, K. Koumbanakis, and C. Delidakis, Two modes of recruitment of E(spl) repressors onto target genes, Development, vol.130, issue.2, pp.259-7006, 2002.
DOI : 10.1242/dev.00206

URL : http://dev.biologists.org/content/develop/130/2/259.full.pdf

J. De-celis, J. De-celis, P. Ligoxygakis, A. Preiss, C. Delidakis et al., Functional relationships between Notch, Su(H) and the bHLH genes of the E(spl) complex: the E(spl) genes mediate only a subset of Notch activities during imaginal development, Development, vol.122, issue.9, pp.2719-2747, 1996.

A. Djiane, A. Krejci, F. Bernard, S. Fexova, K. Millen et al., Dissecting the mechanisms of Notch induced hyperplasia, The EMBO Journal, vol.117, issue.1, pp.60-71, 2013.
DOI : 10.1242/dev.006445

URL : http://emboj.embopress.org/content/embojnl/32/1/60.full.pdf

C. Delidakis, A. Preiss, and D. Hartley, Artavanistsakonas S. 2 Genetically and Molecularly Distinct Functions Involved in Early Neurogenesis Reside within the Enhancer of Split Locus of Drosophila-Melanogaster, Genetics, vol.129, issue.3, pp.803-826, 1991.

A. Nagel, D. Maier, S. Krauss, M. Mezger, and A. Preiss, genesis, vol.119, issue.2, pp.105-1402, 2004.
DOI : 10.1016/S0092-8674(00)80620-0

H. Schrons, E. Knust, and J. Campos-ortega, The Enhancer of split complex and adjacent genes in the 96F region of Drosophila melanogaster are required for segregation of neural and epidermal progenitor cells, Genetics, vol.132, issue.2, pp.481-503, 1992.

E. Wurmbach and A. Preiss, complex, Hereditas, vol.80, issue.(9), pp.159-68, 2014.
DOI : 10.1016/S0925-4773(98)00212-3

O. Birkholz, C. Rickert, C. Berger, R. Urbach, and G. Technau, Neuroblast pattern and identity in the Drosophila tail region and role of doublesex in the survival of sex-specific precursors, Development, vol.140, issue.8, pp.1830-1872, 2013.
DOI : 10.1242/dev.090043

A. Schmid, A. Chiba, and C. Doe, Clonal analysis of Drosophila embryonic neuroblasts: neural cell types, axon projections and muscle targets, Development, vol.126, issue.21, pp.4653-89, 1999.

H. Schmidt, C. Rickert, T. Bossing, O. Vef, J. Urban et al., The Embryonic Central Nervous System Lineages ofDrosophila melanogaster, Developmental Biology, vol.189, issue.2, pp.186-204, 1997.
DOI : 10.1006/dbio.1997.8660

R. Urbach, R. Schnabel, and G. Technau, The pattern of neuroblast formation, mitotic domains and proneural gene expression during early brain development in Drosophila, Development, vol.130, issue.16, pp.3589-606, 2003.
DOI : 10.1242/dev.00528

C. Doe, Neural stem cells: balancing self-renewal with differentiation, Development, vol.135, issue.9, pp.1575-87, 2008.
DOI : 10.1242/dev.014977

URL : http://dev.biologists.org/content/develop/135/9/1575.full.pdf

J. Boone and C. Doe, type II neuroblast lineages containing transit amplifying ganglion mother cells, Developmental Neurobiology, vol.135, issue.9, pp.1185-95, 2008.
DOI : 10.1002/dneu.20648

URL : http://onlinelibrary.wiley.com/doi/10.1002/dneu.20648/pdf

M. Baumgardt, D. Karlsson, B. Salmani, C. Bivik, R. Macdonald et al., Global Programmed Switch in Neural Daughter Cell Proliferation Mode Triggered by a Temporal Gene Cascade, Developmental Cell, vol.30, issue.2, pp.192-208, 2014.
DOI : 10.1016/j.devcel.2014.06.021

URL : https://doi.org/10.1016/j.devcel.2014.06.021

C. Doe, Molecular markers for identified neuroblasts and ganglion mother cells in the Drosophila central nervous system, Development, vol.116, issue.4, pp.855-63, 1992.

C. Doe and G. Technau, Identification and cell lineage of individual neural precursors in the Drosophila CNS, Trends in Neurosciences, vol.16, issue.12, pp.510-514, 1993.
DOI : 10.1016/0166-2236(93)90195-R

M. Baumgardt, D. Karlsson, J. Terriente, F. Diaz-benjumea, and S. Thor, Neuronal Subtype Specification within a Lineage by Opposing Temporal Feed-Forward Loops, Cell, vol.139, issue.5, pp.969-82, 2009.
DOI : 10.1016/j.cell.2009.10.032

URL : https://doi.org/10.1016/j.cell.2009.10.032

C. Ulvklo, R. Macdonald, C. Bivik, M. Baumgardt, D. Karlsson et al., Control of neuronal cell fate and number by integration of distinct daughter cell proliferation modes with temporal progression, Development, vol.139, issue.4, pp.678-89, 2012.
DOI : 10.1242/dev.074500

I. Miguel-aliaga, D. Allan, and S. Thor, Independent roles of the dachshund and eyes absent genes in BMP signaling, axon pathfinding and neuronal specification, Development, vol.131, issue.23, pp.5837-5885, 2004.
DOI : 10.1242/dev.01447

S. Higashijima, E. Shishido, M. Matsuzaki, and K. Saigo, eagle, a member of the steroid receptor gene superfamily , is expressed in a subset of neuroblasts and regulates the fate of their putative progeny in the Drosophila CNS, Development, vol.122, issue.2, pp.527-3602, 1996.

R. Lehmann, F. Jimenez, U. Dietrich, and J. Campos-ortega, On the phenotype and development of mutants of early neurogenesis in Drosophila melanogaster. Roux's, Arch Dev Biol, vol.192, pp.62-74, 1983.

D. Poulson, Chromosomal Deficiencies and the Embryonic Development of Drosophila Melanogaster, Proceedings of the National Academy of Sciences, vol.23, issue.3, pp.133-140, 1937.
DOI : 10.1073/pnas.23.3.133

URL : http://doi.org/10.1073/pnas.23.3.133

D. Pan and G. Rubin, Kuzbanian Controls Proteolytic Processing of Notch and Mediates Lateral Inhibition during Drosophila and Vertebrate Neurogenesis, Cell, vol.90, issue.2, pp.271-80, 1997.
DOI : 10.1016/S0092-8674(00)80335-9

URL : https://doi.org/10.1016/s0092-8674(00)80335-9

M. Lundell, H. Lee, E. Perez, and L. Chadwell, The regulation of apoptosis by Numb/Notch signaling in the serotonin lineage of Drosophila, Development, vol.130, issue.17, pp.4109-4130, 2003.
DOI : 10.1242/dev.00593

J. Culi and J. Modolell, Proneural gene self-stimulation in neural precursors: an essential mechanism for sense organ development that is regulated by Notch??signaling, Genes & Development, vol.12, issue.13, pp.2036-4703, 1998.
DOI : 10.1101/gad.12.13.2036

URL : http://genesdev.cshlp.org/content/12/13/2036.full.pdf

B. Kramatschek and J. Campos-ortega, Neuroectodermal transcription of the Drosophila neurogenic genes E(spl) and HLH-m5 is regulated by proneural genes, Development, vol.120, issue.4, pp.815-841, 1994.

C. Bivik, S. Bahrampour, C. Ulvklo, P. Nilsson, A. Angel et al., FMRFamide Neuropeptide Cells, Genetics, vol.200, issue.4, pp.1229-1273, 2015.
DOI : 10.1534/genetics.115.178483

I. Rebay and R. Fehon, Artavanis-Tsakonas S. Specific truncations of Drosophila Notch define dominant activated and dominant negative forms of the receptor, Cell. Epub, vol.7430, issue.207, pp.319-348, 1993.

E. Lai, B. Tam, and G. Rubin, Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs, Genes & Development, vol.19, issue.9, pp.1067-80, 2005.
DOI : 10.1101/gad.1291905

URL : http://genesdev.cshlp.org/content/19/9/1067.full.pdf

B. Kahali, A. Bose, U. Karandikar, C. Bishop, and A. Bidwai, ) in Drosophila, genesis, vol.127, issue.7, pp.456-68, 2009.
DOI : 10.1074/jbc.M005996200

U. Karandikar, R. Trott, J. Yin, C. Bishop, and A. Bidwai, Drosophila CK2 regulates eye morphogenesis via phosphorylation of E(spl)M8. Mechanisms of development, pp.273-86, 2004.
DOI : 10.1016/j.mod.2004.01.008

URL : https://doi.org/10.1016/j.mod.2004.01.008

R. Trott, M. Kalive, U. Karandikar, R. Rummer, C. Bishop et al., Identification and characterization of proteins that interact with Drosophila melanogaster protein kinase CK2. Molecular and cellular biochemistry, pp.91-806, 2001.
DOI : 10.1007/978-1-4615-1723-8_11

M. Kohwi and C. Doe, Temporal fate specification and neural progenitor competence during development, Nature Reviews Neuroscience, vol.339, issue.12, pp.823-861, 2013.
DOI : 10.1126/science.1231897

URL : http://europepmc.org/articles/pmc3951856?pdf=render

D. Karlsson, M. Baumgardt, and S. Thor, Segment-Specific Neuronal Subtype Specification by the Integration of Anteroposterior and Temporal Cues, PLoS Biology, vol.12, issue.5, p.20485487, 2010.
DOI : 10.1371/journal.pbio.1000368.s010

URL : https://doi.org/10.1371/journal.pbio.1000368

B. Housden, K. Millen, and S. Bray, Reporter Vectors Compatible with ??C31 Integrase Transgenesis Techniques and Their Use to Generate New Notch Reporter Fly Lines, G3: Genes|Genomes|Genetics, vol.2, issue.1, pp.79-82, 2012.
DOI : 10.1534/g3.111.001321

URL : http://www.g3journal.org/content/ggg/2/1/79.full.pdf

A. Krejci and S. Bray, Notch activation stimulates transient and selective binding of Su(H)/CSL to target enhancers, Genes & Development, vol.21, issue.11, pp.1322-705, 2007.
DOI : 10.1101/gad.424607

URL : http://genesdev.cshlp.org/content/21/11/1322.full.pdf

S. Choksi, T. Southall, T. Bossing, K. Edoff, E. De-wit et al., Prospero Acts as a Binary Switch between Self-Renewal and Differentiation in Drosophila??Neural??Stem Cells, Developmental Cell, vol.11, issue.6, pp.775-89, 2006.
DOI : 10.1016/j.devcel.2006.09.015

URL : https://doi.org/10.1016/j.devcel.2006.09.015

R. Karcavich and C. Doe, Drosophila neuroblast 7-3 cell lineage: A model system for studying programmed cell death, Notch/Numb signaling, and sequential specification of ganglion mother cell identity, The Journal of Comparative Neurology, vol.271, issue.3, pp.240-51, 2005.
DOI : 10.1002/cne.20371

J. Hirata, H. Nakagoshi, Y. Nabeshima, and F. Matsuzaki, Asymmetric segregation of the homeodomain protein Prospero duringDrosophila development, Nature, vol.377, issue.6550, pp.627-657, 1995.
DOI : 10.1038/377627a0

J. Knoblich, L. Jan, and Y. Jan, Asymmetric segregation of Numb and Prospero during cell division, Nature, vol.377, issue.6550, pp.624-631, 1995.
DOI : 10.1038/377624a0

E. Spana and C. Doe, The prospero transcription factor is asymmetrically localized to the cell cortex during neuroblast mitosis in Drosophila, Development, vol.121, issue.10, pp.3187-95, 1995.

L. Li and H. Vaessin, Pan-neural Prospero terminates cell proliferation during Drosophila neurogenesis, Genes & development, vol.14, issue.2, pp.147-51, 2000.

F. Liu and J. Posakony, Role of Architecture in the Function and Specificity of Two Notch-Regulated Transcriptional Enhancer Modules, PLoS Genetics, vol.271, issue.7, pp.1002796-22792075, 2012.
DOI : 10.1371/journal.pgen.1002796.s010

P. Ligoxygakis, S. Bray, Y. Apidianakis, and C. Delidakis, Ectopic expression of individual E(spl) genes has differential effects on different cell fate decisions and underscores the biphasic requirement for notch activity in wing margin establishment in Drosophila, Development, vol.12620, issue.10, pp.2205-2219, 1999.

I. Wech, S. Bray, C. Delidakis, and A. Preiss, Distinct expression patterns of different Enhancer of split bHLH genes during embryogenesis of Drosophila melanogaster. Development genes and evolution, pp.370-375, 1999.

E. Lai, Protein Degradation: Four E3s For The Notch Pathway, Current Biology, vol.12, issue.2, pp.74-831, 2002.
DOI : 10.1016/S0960-9822(01)00679-0

URL : https://doi.org/10.1016/s0960-9822(01)00679-0

Z. Wang, H. Inuzuka, H. Fukushima, L. Wan, D. Gao et al., Emerging roles of the FBW7 tumour suppressor in stem cell differentiation, EMBO reports, vol.1806, issue.1, pp.36-43, 2011.
DOI : 10.1158/0008-5472.CAN-10-0040

Z. Wang, Y. Li, D. Kong, A. Ahmad, S. Banerjee et al., Cross-talk between miRNA and Notch signaling pathways in tumor development and progression. Cancer letters, Epub, vol.292, issue.2, pp.141-149, 2009.
DOI : 10.1016/j.canlet.2009.11.012

URL : http://europepmc.org/articles/pmc2857527?pdf=render

R. Kageyama, Y. Niwa, H. Shimojo, T. Kobayashi, and T. Ohtsuka, Ultradian Oscillations in Notch Signaling Regulate Dynamic Biological Events, Current topics in developmental biology, vol.92, issue.10, pp.311-342, 2010.
DOI : 10.1016/S0070-2153(10)92010-3

B. Pfeuty, A computational model for the coordination of neural progenitor self-renewal and differentiation through Hes1 dynamics, Development, vol.142, issue.3, pp.477-85, 2015.
DOI : 10.1242/dev.112649

URL : https://hal.archives-ouvertes.fr/hal-01130252

J. Cooper, B. Till, and S. Henikoff, Fly-TILL: Reverse genetics using a living point mutation resource, Fly, vol.2, issue.6, pp.300-302, 2008.
DOI : 10.4161/fly.7366

URL : http://www.tandfonline.com/doi/pdf/10.4161/fly.7366?needAccess=true

S. Chanet, N. Vodovar, V. Mayau, and F. Schweisguth, Family Genes Reveals Both Functional Redundancy and a Nonessential Function in Lateral Inhibition in Drosophila, Genetics, vol.182, issue.4, pp.1101-1109, 2009.
DOI : 10.1534/genetics.109.105023

URL : http://www.genetics.org/content/genetics/182/4/1101.full.pdf

K. Venken, Y. He, R. Hoskins, and H. Bellen, P[acman]: A BAC Transgenic Platform for Targeted Insertion of Large DNA Fragments in D. melanogaster, Science, vol.314, issue.5806, pp.1747-5102, 2006.
DOI : 10.1126/science.1134426

J. Bischof, R. Maeda, M. Hediger, F. Karch, and K. Basler, An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases, Proceedings of the National Academy of Sciences of the United States of America, vol.10416, issue.903, pp.3312-3319, 2007.
DOI : 10.1073/pnas.0611511104

URL : http://www.pnas.org/content/104/9/3312.full.pdf

M. Vogel, D. Peric-hupkes, and B. Van-steensel, Detection of in vivo protein???DNA interactions using DamID in mammalian cells, Nature Protocols, vol.6, issue.6, pp.1467-7805, 2007.
DOI : 10.1093/bioinformatics/18.suppl_1.S96

D. Karolchik, G. Barber, J. Casper, H. Clawson, M. Cline et al., The UCSC Genome Browser Database, Nucleic Acids Research, vol.31, issue.1, p.24270787, 2014.
DOI : 10.1093/nar/gkg129

URL : https://academic.oup.com/nar/article-pdf/31/1/51/7128464/gkg129.pdf

T. Liu, L. Li, and H. Vaessin, Transcription of the Drosophila CKI gene dacapo is regulated by a modular array of cis-regulatory sequences. Mechanisms of development, pp.25-36, 2002.

C. Meyer, I. Kramer, R. Dittrich, S. Marzodko, J. Emmerich et al., Drosophila p27Dacapo expression during embryogenesis is controlled by a complex regulatory region independent of cell cycle progression, Development, vol.12925, issue.2, pp.319-347, 2002.

S. Yamamoto, W. Charng, N. Rana, S. Kakuda, M. Jaiswal et al., A Mutation in EGF Repeat-8 of Notch Discriminates Between Serrate/Jagged and Delta Family Ligands, Science, vol.122, issue.7, pp.1229-3201, 2012.
DOI : 10.1016/0925-4773(94)90081-7

URL : http://europepmc.org/articles/pmc3663443?pdf=render

T. Novotny, R. Eiselt, and J. Urban, Hunchback is required for the specification of the early sublineage of neuroblast 7?3 in the Drosophila central nervous system, Development, vol.129, issue.4, pp.1027-1063, 2002.

S. Lai and C. Doe, Author response, eLife, vol.135, issue.10, p.30, 2014.
DOI : 10.7554/eLife.03363.013

C. Peterson, G. Carney, B. Taylor, and K. White, reaper is required for neuroblast apoptosis during Drosophila development, Development, vol.129, issue.6, pp.1467-76, 2002.

A. Rogulja-ortmann, K. Luer, J. Seibert, C. Rickert, and G. Technau, Programmed cell death in the embryonic central nervous system of Drosophila melanogaster, Development, vol.134, issue.1, pp.105-121, 2007.
DOI : 10.1242/dev.02707

K. White, M. Grether, J. Abrams, L. Young, K. Farrell et al., Genetic control of programmed cell death in Drosophila, Science, vol.264, issue.5159, pp.677-83, 1994.
DOI : 10.1126/science.8171319

T. Tsuji, E. Hasegawa, and T. Isshiki, Neuroblast entry into quiescence is regulated intrinsically by the combined action of spatial Hox proteins and temporal identity factors, Development, vol.135, issue.23, pp.3859-69, 2008.
DOI : 10.1242/dev.025189

URL : http://dev.biologists.org/content/develop/135/23/3859.full.pdf

A. Ghysen and C. Dambly-chaudiere, Genesis of the Drosophila peripheral nervous system, Trends in Genetics, vol.5, issue.8, pp.251-256, 1989.
DOI : 10.1016/0168-9525(89)90097-8

Y. Jan and J. Ly, Genes required for specifying cell fates in Drosophila embryonic sensory nervous system, Trends in Neurosciences, vol.13, issue.12, pp.493-801, 1990.
DOI : 10.1016/0166-2236(90)90083-M

J. Skeath, At the nexus between pattern formation and cell-type specification: the generation of individual neuroblast fates in the Drosophila embryonic central nervous system, BioEssays, vol.11, issue.11, pp.922-953, 1999.
DOI : 10.1016/S0168-9525(00)89124-6

J. Skeath and S. Thor, Genetic control of Drosophila nerve cord development, Current Opinion in Neurobiology, vol.13, issue.1, pp.8-15, 2003.
DOI : 10.1016/S0959-4388(03)00007-2

L. Jones, H. Richardson, and R. Saint, Tissue-specific regulation of cyclin E transcription during Drosophila melanogaster embryogenesis, Development, vol.12710, issue.21, pp.4619-3012, 2000.

R. Kannan, C. Berger, S. Myneni, G. Technau, and L. Shashidhara, Abdominal-A mediated repression of Cyclin E expression during cell-fate specification in the Drosophila central nervous system. Mechanisms of development, 2009.

B. Edgar, D. Lehman, O. Farrell, and P. , Transcriptional regulation of string (cdc25): a link between developmental programming and the cell cycle, Development, vol.120, issue.111101, pp.3131-3174, 1994.

D. Lehman, B. Patterson, L. Johnston, T. Balzer, J. Britton et al., Cis-regulatory elements of the mitotic regulator, string/Cdc25, Development, vol.126, issue.9, pp.1793-80302, 1999.