S. P. Borriello and R. J. Carman, Association of iota-like toxin and Clostridium spiroforme with both spontaneous and antibiotic-associated diarrhea and colitis in rabbits, J. Clin. Microbiol, vol.17, pp.414-418, 1983.

J. L. Mcdonel, D. , and E. , Toxins of Clostridium perfringens types A, Pharmacology of Bacterial Toxins, pp.477-517, 1986.

J. L. Mckillip, Prevalence and expression of enterotoxins in Bacillus cereus and other Bacillus spp., a literature review, Antonie van Leeuwenhoek, vol.77, issue.4, pp.393-399, 2000.
DOI : 10.1023/A:1002706906154

J. G. Songer, Clostridial enteric diseases of domestic animals, Clin. Microbiol. Rev, vol.9, pp.216-234, 1996.

B. Stoddart, M. H. Wilcox, and . Clostridium-difficile, Clostridium difficile, Current Opinion in Infectious Diseases, vol.15, issue.5, pp.513-518, 2002.
DOI : 10.1097/00001432-200210000-00010

K. Aktories, C. Schwan, P. Papatheodorou, and A. Lang, Bidirectional attack on the actin cytoskeleton. Bacterial protein toxins causing polymerization or depolymerization of actin, Toxicon, vol.60, issue.4, pp.572-581, 2012.
DOI : 10.1016/j.toxicon.2012.04.338

I. Ohishi, M. Iwasaki, and G. Sakaguchi, Purification and characterization of two components of botulinum C2 toxin, Infect. Immun, vol.30, pp.668-673, 1980.

S. Perelle, M. Gibert, P. Bourlioux, G. Corthier, and M. R. Popoff, Production of a complete binary toxin (actin-specific ADP-ribosyltransferase) by Clostridium difficile CD196, Infect. Immun, vol.65, pp.1402-1407, 1997.

B. G. Stiles and T. Wilkins, Purification and characterization of Clostridium perfringens iota toxin: Dependence on two nonlinked proteins for biological activity, Infect. Immun, vol.54, pp.683-688, 1986.

S. Yonogi, S. Matsuda, T. Kawai, T. Yoda, T. Harada et al., BEC, a Novel Enterotoxin of Clostridium perfringens Found in Human Clinical Isolates from Acute Gastroenteritis Outbreaks, Infection and Immunity, vol.82, issue.6, pp.2390-2399, 2014.
DOI : 10.1128/IAI.01759-14

M. R. Popoff, F. W. Milward, B. Bancillon, and P. Boquet, Purification of the Clostridium spiroforme binary toxin and activity of the toxin on HEp-2 cells, Infect. Immun, vol.57, pp.2462-2469, 1989.

S. Han, J. A. Craig, C. D. Putnam, N. B. Carozzi, and J. A. Tainer, Evolution and mechanism from structures of an ADP-ribosylating toxin and NAD complex, Nature Struct. Biol, vol.6, pp.932-936, 1999.

S. Perelle, M. Gibert, P. Boquet, and M. R. Popoff, Characterization of Clostridium perfringens iota toxin genes and expression in Escherichia coli, Infect. Immun, pp.61-5147, 1993.

M. Gibert, S. Perelle, G. Daube, and M. R. Popoff, Clostridium spiroforme Toxin Genes are Related to C. perfringens Iota Toxin Genes but have a Different Genomic Localization, Systematic and Applied Microbiology, vol.20, issue.3, pp.337-347, 1997.
DOI : 10.1016/S0723-2020(97)80001-X

URL : http://orbi.ulg.ac.be/bitstream/2268/6879/1/Gibert_Cspiroforme_Cperfringens_1997.pdf

K. Kimura, T. Kubota, I. Ohishi, E. Isogai, H. Isogai et al., The gene for component-II of botulinum C2 toxin, Veterinary Microbiology, vol.62, issue.1, pp.27-34, 1998.
DOI : 10.1016/S0378-1135(98)00195-3

Y. Sakaguchi, T. Hayashi, Y. Yamamoto, K. Nakayama, K. Zhang et al., Molecular Analysis of an Extrachromosomal Element Containing the C2 Toxin Gene Discovered in Clostridium botulinum Type C, Journal of Bacteriology, vol.191, issue.10, pp.3282-3291, 2009.
DOI : 10.1128/JB.01797-08

URL : http://jb.asm.org/content/191/10/3282.full.pdf

N. Fujii, T. Kubota, S. Shirakawa, K. Kimura, I. Ohishi et al., Characterization of Component-I Gene of Botulinum C2 Toxin and PCR Detection of Its Gene in Clostridial Species, Biochemical and Biophysical Research Communications, vol.220, issue.2, pp.353-359, 1996.
DOI : 10.1006/bbrc.1996.0409

D. Blöcker, H. Barth, E. Maier, R. Benz, J. Barbieri et al., The C Terminus of Component C2II of Clostridium botulinum C2 Toxin Is Essential for Receptor Binding, Infection and Immunity, vol.68, issue.8, pp.4566-4573, 2000.
DOI : 10.1128/IAI.68.8.4566-4573.2000

P. Li, Rapid detection of vip1-type genes from Bacillus cereus and characterization of a novel vip binary toxin gene, FEMS Microbiol. Lett, vol.325, pp.30-36, 2011.

G. Warren, M. Koziel, M. A. Mullins, . Nye, . Carr et al., Novel pesticidal proteins and strains. World Intellectual Property Organization, 1996.

M. Gibert, L. Petit, S. Raffestin, A. Okabe, and M. R. Popoff, Clostridium perfringens Iota-Toxin Requires Activation of Both Binding and Enzymatic Components for Cytopathic Activity, Infection and Immunity, vol.68, issue.7, pp.3848-3853, 2000.
DOI : 10.1128/IAI.68.7.3848-3853.2000

URL : http://iai.asm.org/content/68/7/3848.full.pdf

S. Perelle, S. Scalzo, S. Kochi, M. Mock, and M. R. Popoff, Immunological and functional comparison between Clostridium perfringens iota toxin, C. spiroforme toxin, and anthrax toxins, FEMS Microbiology Letters, vol.269, issue.1, pp.117-121, 1997.
DOI : 10.1099/00221287-139-10-2459

URL : https://academic.oup.com/femsle/article-pdf/146/1/117/19101495/146-1-117.pdf

M. R. Popoff, Molecular Biology of Actin-ADP-Ribosylating Toxins, Handbook of Experimental Pharmacology, pp.275-306, 2000.
DOI : 10.1007/978-3-662-05971-5_13

S. Nakamura, T. Serikawa, K. Yamakawa, S. Nishida, S. Kozaki et al., Toxin, Microbiology and Immunology, vol.46, issue.10, pp.591-596, 1978.
DOI : 10.1111/j.1348-0421.1977.tb00274.x

C. Oakley and G. Warrack, Routine typing of Clostridium welchii, Journal of Hygiene, vol.18, issue.01, pp.102-107, 1953.
DOI : 10.1002/path.1700600317

URL : http://europepmc.org/articles/pmc2217693?pdf=render

P. Walker, I. Batty, and J. Egerton, The typing of C. perfringens and the veterinary background. Papua New Guinea Med, J, vol.22, pp.50-56, 1979.

M. R. Sarker, U. Singh, and B. A. Mcclane, An update on Clostridium perfringens enterotoxin, J. Nat. Toxins, vol.9, pp.251-266, 2000.

L. Niilo, Measurement of biological activities of purified and crude enterotoxin of Clostridium perfringens, Infect. Immun, vol.12, pp.440-442, 1975.

G. Daube, P. Simon, B. Limbourg, C. Manteca, J. Mainil et al., Hybridization of 2659 Clostridium perfringens isolates with gene probes for seven toxins (?, ?, ?, ?, ?, µ and enterotoxin) and for sialidase, Am. J. Vet. Res, vol.57, pp.496-501, 1996.

P. Fach and M. R. Popoff, Detection of enterotoxigenic Clostridium perfringens in food and fecal samples with a duplex PCR and the slide agglutination test, Appl. Environ. Microbiol, vol.63, pp.4232-4236, 1997.

R. R. Meer and J. G. Songer, Multiplex polymerase chain reaction assay for genotyping Clostridium perfringens, Am. J. Vet. Res, vol.58, pp.702-705, 1997.

F. A. Uzal, J. J. Plumb, L. L. Blackall, and W. Kelly, PCR detection of Clostridium perfringens producing different toxins in faeces of goats, Letters in Applied Microbiology, vol.25, issue.5, pp.339-344, 1997.
DOI : 10.1046/j.1472-765X.1997.00247.x

URL : http://onlinelibrary.wiley.com/doi/10.1046/j.1472-765X.1997.00247.x/pdf

T. Bosworth, On a New Type of Toxin Produced by Clostridium Welchii, Journal of Comparative Pathology and Therapeutics, vol.53, pp.245-255, 1943.
DOI : 10.1016/S0368-1742(43)80024-2

B. G. Stiles and T. D. Wilkins, Clostridium perfringens iota toxin: Synergism between two proteins, Toxicon, vol.24, issue.8, pp.767-773, 1986.
DOI : 10.1016/0041-0101(86)90101-7

J. Sakurai and K. Kobayashi, Iota Toxin: Biological Activities Induced by Cooperation of Two Nonlinked Components, Microbiology and Immunology, vol.24, issue.4, pp.249-253, 1995.
DOI : 10.1016/0041-0101(86)90101-7

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1348-0421.1995.tb02197.x/pdf

L. L. Simpson, B. G. Stiles, H. H. Zepeda, and T. D. Wilkins, Molecular basis for the pathological actions of Clostridium perfringens iota toxin, Infect. Immun, vol.55, pp.118-122, 1987.

B. Schering, M. Barmann, G. S. Chhatwal, U. Geipel, and K. Aktories, ADP-ribosylation of skeletal muscle and non-muscle actin by Clostridium perfringens iota toxin, European Journal of Biochemistry, vol.247, issue.1-2, pp.225-229, 1988.
DOI : 10.1042/bj2470363

J. Vandekerckhove and B. Schering, iota toxin ADP-ribosylates skeletal muscle actin in Arg-177, FEBS Letters, vol.75, issue.1-2, pp.48-52, 1987.
DOI : 10.1073/pnas.75.3.1106

URL : http://onlinelibrary.wiley.com/doi/10.1016/0014-5793(87)81129-8/pdf

D. Blöcker, J. Behelke, K. Aktories, and H. Barth, Cellular Uptake of the Clostridium perfringens Binary Iota-Toxin, Infection and Immunity, vol.69, issue.5, pp.2980-2987, 2001.
DOI : 10.1128/IAI.69.5.2980-2987.2001

J. F. Richard, G. Mainguy, M. Gibert, J. C. Marvaud, B. G. Stiles et al., Transcytosis of iota-toxin across polarized CaCo-2 cells, Molecular Microbiology, vol.57, issue.4, pp.907-917, 2002.
DOI : 10.1128/IAI.68.6.3475-3484.2000

URL : http://onlinelibrary.wiley.com/doi/10.1046/j.1365-2958.2002.02806.x/pdf

B. G. Stiles, M. L. Hale, J. C. Marvaud, and M. R. Popoff, Clostridium perfringens Iota Toxin: Binding Studies and Characterization of Cell Surface Receptor by Fluorescence-Activated Cytometry, Infection and Immunity, vol.68, issue.6, pp.3475-3484, 2000.
DOI : 10.1128/IAI.68.6.3475-3484.2000

URL : http://iai.asm.org/content/68/6/3475.full.pdf

P. Papatheodorou, J. E. Carette, G. W. Bell, C. Schwan, G. Guttenberg et al., Lipolysis-stimulated lipoprotein receptor (LSR) is the host receptor for the binary toxin Clostridium difficile transferase (CDT), Proc. Natl. Acad. Sci. USA 2011, pp.16422-16427
DOI : 10.1128/IAI.69.5.2980-2987.2001

R. J. Carman, T. D. Wilkins, G. Van-tran-nhieu, and S. Pauillac, CD44 promotes intoxication by the clostridial iota-family toxins, PLoS One, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01764029

S. J. Billington, E. U. Wieckowski, M. R. Sarker, D. Bueschel, J. G. Songer et al., Clostridium perfringens type E animal enteritis isolates with highly conserved, silent enterotoxin gene sequences, Infect. Immun, vol.66, pp.4531-4536, 1998.

B. Hart and P. Hooper, ENTEROTOXAMEMIA OF CALVES DUE TO CLOSTRIDIUM WELCHII TYPE E, Australian Veterinary Journal, vol.2, issue.9, pp.360-363, 1967.
DOI : 10.1016/S0368-1742(43)80024-2

H. E. Ross, M. E. Warren, and J. M. Barnes, Clostridium welchii Iota Toxin: Its Activation by Trypsin, Journal of General Microbiology, vol.3, issue.1, pp.148-152, 1949.
DOI : 10.1099/00221287-3-1-148

O. Knapp, R. Benz, M. Gibert, J. C. Marvaud, and M. R. Popoff, Iota-Toxin with Lipid Bilayer Membranes, Journal of Biological Chemistry, vol.7, issue.8, pp.6143-6152, 2002.
DOI : 10.1038/385833a0

M. Nagahama, K. Nagayasu, K. Kobayashi, and J. Sakurai, Binding Component of Clostridium perfringens Iota-Toxin Induces Endocytosis in Vero Cells, Infection and Immunity, vol.70, issue.4, pp.1909-1914, 2002.
DOI : 10.1128/IAI.70.4.1909-1914.2002

B. G. Stiles, M. L. Hale, J. C. Marvaud, and M. R. Popoff, Clostridium perfringens iota toxin: characterization of the cell-associated iota b complex, Biochemical Journal, vol.367, issue.3, pp.801-808, 2002.
DOI : 10.1042/bj20020566

L. L. Simpson, The binary toxin produced by Clostridium botulinum enters cells by receptor-mediated endocytosis to exert its pharmacologic effects, J. Pharmacol. Exp. Ther, vol.251, pp.1223-1228, 1989.

J. Minami, S. Katayama, O. Matsushita, C. Matsushita, and A. Okabe, Activates the Precursor of Epsilon-Toxin by Releasing Its N- and C-Terminal Peptides, Microbiology and Immunology, vol.40, issue.7, pp.527-535, 1997.
DOI : 10.1038/icb.1943.5

K. Sandvig, The Shiga toxins: properties and action on cells, The Comprehensive Sourcebook of Bacterial Protein Toxins, pp.310-322, 2006.
DOI : 10.1016/B978-012088445-2/50022-6

O. Garred, E. Dubinina, A. Polessakaya, S. Olsnes, J. Koslov et al., Role of the Disulfide Bond in Shiga Toxin A-chain for Toxin Entry into Cells, Journal of Biological Chemistry, vol.254, issue.17, pp.11414-11419, 1997.
DOI : 10.1073/pnas.86.18.6992

O. Garred, B. Van-deurs, and K. Sandvig, Furin-induced Cleavage and Activation of Shiga Toxin, Journal of Biological Chemistry, vol.268, issue.18, pp.10817-10821, 1995.
DOI : 10.1111/j.1365-2958.1993.tb00913.x

URL : http://www.jbc.org/content/270/18/10817.full.pdf

T. R. Hirst and J. M. Souza, Vibrio cholerae and Escherichia coli thermolabile enterotoxin In The Comprehensive Sourcebook of Bacterial Protein Toxins, pp.270-290, 2006.

I. Majoul, D. Ferrari, and H. Soling, Reduction of protein disulfide bonds in an oxidizing environment, FEBS Letters, vol.401, issue.2-3, pp.104-108, 1997.
DOI : 10.1016/S0014-5793(96)01447-0

URL : http://onlinelibrary.wiley.com/doi/10.1016/S0014-5793(96)01447-0/pdf

J. Sakurai, Clostridium perfringens iota-toxin b induces rapid cell necrosis, Infect. Immun, vol.79, pp.4353-4360, 2011.

M. L. Hale, J. C. Marvaud, M. R. Popoff, and B. G. Stiles, Detergent-Resistant Membrane Microdomains Facilitate Ib Oligomer Formation and Biological Activity of Clostridium perfringens Iota-Toxin, Infection and Immunity, vol.72, issue.4, pp.2186-2193, 2004.
DOI : 10.1128/IAI.72.4.2186-2193.2004

URL : http://iai.asm.org/content/72/4/2186.full.pdf

M. Nagahama, A. Yamaguchi, T. Hagiyama, N. Ohkubo, K. Kobayashi et al., Binding and Internalization of Clostridium perfringens Iota-Toxin in Lipid Rafts, Infection and Immunity, vol.72, issue.6, pp.3267-3275, 2004.
DOI : 10.1128/IAI.72.6.3267-3275.2004

S. P. Borriello, H. A. Davies, and R. J. Carman, Cellular morphology of Clostridium spiroforme, Veterinary Microbiology, vol.11, issue.1-2, pp.191-195, 1986.
DOI : 10.1016/0378-1135(86)90020-9

R. J. Carman and S. P. Borriello, Observations on an association between Clostridium spiroforme and Clostridium perfringens type E iota enterotoxaemia in rabbits, Eur. J. Chemother. Antibiot, vol.2, pp.143-144, 1982.

R. J. Carman and S. P. Borriello, Infectious nature of Clostridium spiroforme-mediated rabbit enterotoxaemia, Veterinary Microbiology, vol.9, issue.5, pp.497-502, 1984.
DOI : 10.1016/0378-1135(84)90070-1

R. J. Carman and R. H. Evans, Experimental and spontaneous clostridial enteropathies of laboratory and free living lagomorphs, Lab. Anim. Sci, vol.34, pp.443-452, 1984.

R. J. Carman, S. Perelle, and M. R. Popoff, Binary Toxins from Clostridium spiroforme and Clostridium perfringens, The Clostridia, pp.359-367, 1997.
DOI : 10.1016/B978-012595020-6/50022-X

R. J. Carman and T. D. Wilkins, In vitro susceptibility of rabbit strains of Cloostridium spirofome to antimicrobial agents, Veterinary Microbiology, vol.28, issue.4, pp.391-397, 1991.
DOI : 10.1016/0378-1135(91)90074-P

J. E. Peeters, R. Geeroms, R. J. Carman, and T. D. Wilkins, Significance of Clostridium spiroforme in the enteritis-complex of commercial rabbits, Veterinary Microbiology, vol.12, issue.1, pp.25-31, 1986.
DOI : 10.1016/0378-1135(86)90038-6

W. P. Yonushonis, M. J. Roy, R. J. Carman, and R. E. Sims, Diagnosis of spontaneous Clostridium spiroforme iota enterotoxemia in a barrier rabbit breeding colony, Lab. Anim. Sci, vol.37, pp.69-71, 1987.

C. Kaneuchi, T. Miyazato, T. Shinjo, and T. Mitsuoka, Taxonomic Study of Helically Coiled, Sporeforming Anaerobes Isolated from the Intestines of Humans and Other Animals: Clostridium cocleatum sp. nov. and Clostridium spiroforme sp. nov., International Journal of Systematic Bacteriology, vol.29, issue.1, pp.1-12, 1979.
DOI : 10.1099/00207713-29-1-1

M. R. Popoff and P. Boquet, Clostridium spiroforme toxin is a binary toxin which ADP-ribosylates cellular actin, Biochemical and Biophysical Research Communications, vol.152, issue.3, pp.1361-1368, 1988.
DOI : 10.1016/S0006-291X(88)80435-2

M. T. Butt, R. E. Papendick, L. G. Carbone, and F. W. Quimby, A cytotoxicity assay for Clostridium spiroforme enterotoxin in cecal fluid of rabbits, Lab. Anim. Sci, vol.44, pp.52-54, 1994.

P. Eaton and D. S. Fernie, iota toxin in a hysterectomy-derived rabbit colony, Laboratory Animals, vol.14, issue.4, pp.347-351, 1980.
DOI : 10.1258/002367780781071049

URL : http://journals.sagepub.com/doi/pdf/10.1258/002367780781071049

L. Katz, J. T. Lamont, J. S. Trier, E. B. Sonnenblick, S. W. Rothman et al., Experimental clindamycin associated colitis in rabbits. Evidence for toxin-mediated mucosal damage, Gastroenterology, vol.74, pp.246-252, 1978.

J. T. Lamont, E. B. Sonnenblick, and S. Rothman, Role of clostridial toxin in the pathogenesis of clindamycin colitis in rabbits, Gastroenterology, vol.76, pp.356-361, 1979.

I. Drigo, C. Bacchin, M. Cocchi, L. Bano, and F. Agnoletti, Development of PCR protocols for specific identification of Clostridium spiroforme and detection of sas and sbs genes, Veterinary Microbiology, vol.131, issue.3-4, pp.414-418, 2008.
DOI : 10.1016/j.vetmic.2008.04.013

T. M. Ellis, A. R. Gregory, and G. Logue, Evaluation of a toxoid for protection of rabbits against enteroxaemia experimentally induced by trypsin-activated supernatant of Clostridium spiroforme, Veterinary Microbiology, vol.28, issue.1, pp.93-102, 1991.
DOI : 10.1016/0378-1135(91)90101-K

F. Agnoletti, T. Ferro, A. Guolo, B. Marcon, M. Cocchi et al., A survey of Clostridium spiroforme antimicrobial susceptibility in rabbit breeding, Veterinary Microbiology, vol.136, issue.1-2, pp.188-191, 2009.
DOI : 10.1016/j.vetmic.2008.10.020

URL : https://hal.archives-ouvertes.fr/hal-00532526/document

I. C. Hall and E. O-'toole, INTESTINAL FLORA IN NEW-BORN INFANTS, American Journal of Diseases of Children, vol.49, issue.2, pp.390-402, 1935.
DOI : 10.1001/archpedi.1935.01970020105010

R. L. Jump, Clostridium difficile infection in older adults, Aging Health, vol.2013, issue.9, pp.403-414

M. He, M. Sebaihia, T. D. Lawley, R. A. Stabler, L. F. Dawson et al., Evolutinary dynamics of Clostridium difficile over short and long time scales, Proc. Natl. Acad. Sci. USA 2010, pp.7527-7532

A. Beaudoin, E. H. Frost, and R. Gilca, Host and pathogen factors for Clostridium difficile infection and colonization, N. Eng. J. Med, vol.365, pp.1693-1703, 2011.

R. Voelker, Increased <emph type="ital">Clostridium difficile</emph> Virulence Demands New Treatment Approach, JAMA, vol.303, issue.20, pp.2017-2019, 2010.
DOI : 10.1001/jama.2010.647

S. Tschudin-sutter, A. F. Widmer, and T. M. Perl, Clostridium difficile, Current Opinion in Infectious Diseases, vol.25, issue.4, pp.405-411, 2012.
DOI : 10.1097/QCO.0b013e32835533a2

A. M. Seekatz, J. Aas, C. E. Gessert, T. A. Rubin, D. M. Saman et al., Recovery of the Gut Microbiome following Fecal Microbiota Transplantation, mBio, vol.5, issue.3, pp.893-00914, 2014.
DOI : 10.1128/mBio.00893-14

URL : http://mbio.asm.org/content/5/3/e00893-14.full.pdf

N. Shah, H. Shaaban, R. Spira, J. Slim, and J. Boghossian, Intravenous immunoglobulin in the treatment of severe Clostridium difficile colitis, J. Glob. Infect. Dis. 2014, vol.6, pp.82-85

D. N. Gerding, S. Johnson, M. Rupnik, and K. Aktories, Clostridium difficile binary toxin CDT. Mechanism, epidemiology, and potential clinical importance, Gut Microbes, vol.5, pp.1-13, 2014.

B. Elliott, R. Reed, B. J. Chang, and T. Riley, Bacteremia with a large clostridial toxin-negative, binary toxin-positive strain of Clostridium difficile, Anaerobe, vol.15, issue.6, pp.249-251, 2009.
DOI : 10.1016/j.anaerobe.2009.08.006

S. Johnson, Binary toxin-producing, large clostridial toxin-negative Clostridium difficile strains are enterotoxic but do not cause disease in hamsters, J. Infect. Dis, vol.193, pp.1143-1150, 2006.

F. Barbut, B. Gariazzo, L. Bonne, V. Lalande, B. Burghoffer et al., Conclusion., Infection Control & Hospital Epidemiology, vol.37, issue.02, pp.131-139, 2000.
DOI : 10.1099/jmm.0.45610-0

S. Bacci, K. Molbak, M. K. Kjeldsen, and K. E. Olsen, Infection, Emerging Infectious Diseases, vol.17, issue.6, pp.976-982, 2011.
DOI : 10.3201/eid/1706.101483

E. C. Keessen, W. Gaastra, and L. J. Lipman, Clostridium difficile infection in humans and animals, differences and similarities, Veterinary Microbiology, vol.153, issue.3-4, pp.205-217, 2011.
DOI : 10.1016/j.vetmic.2011.03.020

D. R. Knight and T. Riley, ABSTRACT, Applied and Environmental Microbiology, vol.79, issue.18, pp.5689-5692, 2013.
DOI : 10.1128/AEM.01888-13

M. P. Hensgens, E. C. Keessen, M. M. Squire, T. V. Riley, M. G. Koene et al., Clostridium difficile infection in the community: a zoonotic disease?, Clinical Microbiology and Infection, vol.18, issue.7, pp.635-645, 2012.
DOI : 10.1111/j.1469-0691.2012.03853.x

L. H. Gould and B. Limbago, in Food and Domestic Animals: A New Foodborne Pathogen?, Clinical Infectious Diseases, vol.51, issue.5, pp.577-582, 2010.
DOI : 10.1086/655692

URL : https://academic.oup.com/cid/article-pdf/51/5/577/956455/51-5-577.pdf

D. S. Metcalf, M. C. Costa, W. M. Dew, and J. S. Weese, Clostridium difficile in vegetables, Canada, Letters in Applied Microbiology, vol.2, issue.5, pp.600-602, 2010.
DOI : 10.1111/j.1472-765X.2010.02933.x

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1472-765X.2010.02933.x/pdf

M. D. Hardin and H. M. Scott, Clostridium difficile in retail meat and processing plants in Texas, J. Vet. Diagn. Invest, vol.23, pp.807-811, 2014.

V. Romano, V. Pasquale, K. Krovacek, F. Mauri, A. Demarta et al., ABSTRACT, Applied and Environmental Microbiology, vol.78, issue.18, pp.6643-6646, 2012.
DOI : 10.1128/AEM.01379-12

C. Xu, J. S. Weese, C. Flemming, J. Odumeru, and K. Warriner, during wastewater treatment and incidence in Southern Ontario watersheds, Journal of Applied Microbiology, vol.16, issue.3, pp.891-904, 2014.
DOI : 10.1016/j.anaerobe.2010.06.001

URL : http://onlinelibrary.wiley.com/doi/10.1111/jam.12575/pdf

R. J. Carman, A. L. Stevens, M. W. Lyerly, M. F. Hiltonsmith, B. G. Stiles et al., Clostridium difficile binary toxin (CDT) and diarrhea, Anaerobe, vol.17, issue.4, pp.161-165, 2011.
DOI : 10.1016/j.anaerobe.2011.02.005

M. R. Popoff, E. J. Rubin, D. M. Gill, and P. Boquet, Actin-specific ADP-ribosyltransferase produced by a Clostridium difficile strain, Infect. Immun, vol.56, pp.2299-2306, 1988.

I. Gülke, G. Pfeifer, J. Liese, M. Fritz, F. Hofmann et al., Characterization of the Enzymatic Component of the ADP-Ribosyltransferase Toxin CDTa from Clostridium difficile, Infection and Immunity, vol.69, issue.10, pp.6004-6011, 2001.
DOI : 10.1128/IAI.69.10.6004-6011.2001

M. Braun, C. Herholz, R. Straub, B. Choisat, J. Frey et al., isolates from Equidae, FEMS Microbiology Letters, vol.8, issue.1, pp.29-33, 2000.
DOI : 10.1016/S0378-1097(97)00143-2

B. Geric, S. Johnson, D. N. Gerding, M. Grabnar, and M. Rupnik, Frequency of Binary Toxin Genes among Clostridium difficile Strains That Do Not Produce Large Clostridial Toxins, Journal of Clinical Microbiology, vol.41, issue.11, pp.5227-5232, 2003.
DOI : 10.1128/JCM.41.11.5227-5232.2003

URL : http://jcm.asm.org/content/41/11/5227.full.pdf

S. Stubbs, M. Rupnik, M. Gibert, J. Brazier, B. Duerden et al., Production of actin-specific ADP-ribosyltransferase (binary toxin) by strains of Clostridium difficile, FEMS Microbiology Letters, vol.112, issue.suppl. 4, pp.307-312, 2000.
DOI : 10.1093/clinids/16.Supplement_4.S228

URL : https://academic.oup.com/femsle/article-pdf/186/2/307/19116072/186-2-307.pdf

S. Paltansing, R. J. Van-den-berg, R. A. Guseinova, C. E. Visser, R. R. Van-der-vorm et al., Characteristics and incidence of Clostridium difficile-associated disease in The Netherlands, 2005, Clinical Microbiology and Infection, vol.13, issue.11, pp.1058-1064, 2005.
DOI : 10.1111/j.1469-0691.2007.01793.x

A. Rafila, A. Indra, G. A. Popescu, G. Wewalka, F. Allerberger et al., Occurrence of Clostridium difficile infections due to PCR ribotype 027 in Bucharest, Romania, The Journal of Infection in Developing Countries, vol.8, issue.06, pp.694-698, 2014.
DOI : 10.3855/jidc.4435

P. Spigaglia and P. Mastrantonio, Comparative analysis of Clostridium difficile clinical isolates belonging to different genetic lineages and time periods, Journal of Medical Microbiology, vol.53, issue.11, pp.1129-1136, 2004.
DOI : 10.1099/jmm.0.45682-0

URL : http://jmm.microbiologyresearch.org/deliver/fulltext/jmm/53/11/JMM5311.1129.pdf?itemId=/content/journal/jmm/10.1099/jmm.0.45682-0&mimeType=pdf&isFastTrackArticle=

P. P. Devriese, On the Discovery of Clostridium botulinum, Journal of the History of the Neurosciences, vol.8, issue.1, pp.43-50, 1999.
DOI : 10.1076/jhin.8.1.43.1774

L. L. Simpson, The origin, structure, and pharmacological activity of botulinum toxin, Pharmacol. Rev, vol.33, pp.155-187, 1981.

L. Ermert, H. Bruckner, D. Walmrath, F. Grimminger, K. Aktories et al., Role of endothelial cytoskeleton in high-permeability edema due to botulinum C2 toxin in perfused rabbit lungs, American Journal of Physiology-Lung Cellular and Molecular Physiology, vol.268, issue.5, pp.753-761, 1995.
DOI : 10.1152/ajplung.1995.268.5.L753

M. Iwasaki, I. Ohishi, and G. Sakaguchi, Evidence that botulinum C2 toxin has two dissimilar components, Infect. Immun, vol.29, pp.390-394, 1980.

W. I. Jensen and R. M. Duncan, THE SUSCEPTIBILITY OF THE MALLARD DUCK (ANAS PLATYRHYNCHOS) TO CLOSTRIDIUM BOTULINUM C2 TOXIN, Japanese Journal of Medical Science and Biology, vol.33, issue.2, pp.81-86, 1980.
DOI : 10.7883/yoken1952.33.81

H. Kurazono, M. Hosokawa, H. Matsuda, and G. Sakaguchi, Fluid accumulation in the ligated intestinal loop and histopathological changes of the intestinal mucosa caused by Clostridium botulinum C2 toxin in the pheasant and chicken, Res. Vet. Sci, vol.42, pp.349-353, 1987.

I. Ohishi, Response of mouse intestinal loop to botulinum C2 toxin: Enterotoxic activity induced by cooperation of nonlinked protein components, Infect. Immun, vol.40, pp.691-695, 1983.

I. Ohishi, Lethal and vascular permeability activities of botulinum C2 toxin induced by separate injections of the two toxin components, Infect. Immun, vol.40, pp.336-339, 1983.

I. Ohishi, M. Iwasaki, and G. Sakaguchi, Vascular permeability activity of botulinum C2 toxin elicited by cooperation of two dissimilar protein components, Infect. Immun, pp.31-890, 1980.

I. Ohishi and G. Sakaguchi, Oral toxicities of Clostridium botulinum type C and D toxins of different molecular sizes, Infect. Immun, vol.28, pp.303-309, 1980.

L. L. Simpson, A comparison of the pharmacological properties of Clostridium botulinum type C1 and C2 toxins, J. Pharmacol. Exp. Ther, vol.223, pp.695-701, 1982.

K. Yamakawa, S. Nishida, and S. Nakamura, C2 toxicity in extract of Clostridium botulinum type C spores, Infect. Immun, vol.41, pp.858-860, 1983.

W. R. Frieben and C. L. Duncan, Homology between Enterotoxin Protein and Spore Structural Protein in Clostridium perfringens Type A, European Journal of Biochemistry, vol.5, issue.2, pp.393-401, 1973.
DOI : 10.1042/bj1300505

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1432-1033.1973.tb03137.x/pdf

H. Barth, D. Blöcker, J. Behlke, W. Bergsma-schutter, A. Brisson et al., C2 Toxin Requires Oligomerization and Acidification, Journal of Biological Chemistry, vol.266, issue.25, pp.18704-18711, 2000.
DOI : 10.1038/385833a0

URL : http://www.jbc.org/content/275/25/18704.full.pdf

A. Schmid, R. Benz, I. Just, and K. Aktories, Interaction of Clostridium botulinum C2 toxin with lipid bilayer membranes: Formation of cation-selective channels and inhibition of channel function by chloroquine and peptides, J. Biol. Chem, vol.269, pp.16706-16711, 1994.

M. Miyake and I. Ohishi, Response of tissue-cultured cynomolgus monkey kidney cells to botulinum C2 toxin, Microbial Pathogenesis, vol.3, issue.4, pp.279-286, 1987.
DOI : 10.1016/0882-4010(87)90061-1

I. Ohishi and A. Yanagimoto, Visualizations of binding and internalization of two nonlinked protein components of botulinum C2 toxin in tissue culture cells, Infect. Immun, vol.60, pp.4648-4655, 1992.

I. Ohishi and Y. Hama, Toxin, Microbiology and Immunology, vol.244, issue.3, pp.221-229, 1992.
DOI : 10.1038/195281a0

I. Ohishi and Y. Okada, Heterogeneities of Two Components of C2 Toxin Produced by Clostridium botulinum Types C and D, Microbiology, vol.132, issue.1, pp.125-131, 1986.
DOI : 10.1099/00221287-132-1-125

L. L. Simpson, Molecular basis for the pharmacological actions of Clostridium botulinum type C2 toxin, J. Pharmacol. Exp. Ther, vol.230, pp.665-669, 1984.

K. Aktories, M. Bä-rmann, I. Ohishi, S. Tsuyama, K. H. Jakobs et al., Botulinum C2 toxin ADP-ribosylates actin, Nature, vol.85, issue.6077, pp.390-392, 1986.
DOI : 10.1038/322390a0

I. Ohishi and S. Tsuyama, ADP-ribosylation of nonmuscle actin with component I of C2 toxin, Biochemical and Biophysical Research Communications, vol.136, issue.2, pp.802-806, 1986.
DOI : 10.1016/0006-291X(86)90511-5

K. Aktories, T. Ankenbauer, B. Schering, and K. H. Jakobs, ADP-ribosylation of platelet actin by botulinum C2 toxin, European Journal of Biochemistry, vol.259, issue.1, pp.155-162, 1986.
DOI : 10.1016/0014-5793(78)80303-2

M. Jucovic, F. S. Walters, G. W. Warren, N. V. Palekar, and J. S. Chen, From enzyme to zymogen: engineering Vip2, an ADP-ribosyltransferase from Bacillus cereus, for conditional toxicity, Protein Engineering Design and Selection, vol.74, issue.2, pp.631-638, 2008.
DOI : 10.1128/AEM.02165-07

URL : https://academic.oup.com/peds/article-pdf/21/10/631/4320254/gzn038.pdf

J. Fang, X. Xu, P. Wang, J. Z. Zhao, A. M. Shelton et al., Characterization of Chimeric Bacillus thuringiensis Vip3 Toxins, Applied and Environmental Microbiology, vol.73, issue.3, pp.956-961, 2007.
DOI : 10.1128/AEM.02079-06

URL : http://aem.asm.org/content/73/3/956.full.pdf

N. Michelet, P. E. Granum, and J. Mahillon, Bacillus cereus enterotoxins, bi-and tricomponent cytolysins, and other hemolysins, The Comprehensive Sourcebook of Bacterial Protein Toxins, pp.779-790, 2006.
DOI : 10.1016/b978-012088445-2/50051-2

L. Margulis, J. Z. Jorgensen, S. Dolan, R. Kolchinsky, F. A. Rainey et al., The Arthromitus stage of Bacillus cereus: Intestinal symbionts of animals, Proc. Natl. Acad. Sci, pp.1236-1241, 1998.
DOI : 10.1007/BF00290979

C. Schleberger, H. Hochmann, H. Barth, K. Aktories, and G. Schulz, Structure and Action of the Binary C2 Toxin from Clostridium botulinum, Journal of Molecular Biology, vol.364, issue.4, pp.705-715, 2006.
DOI : 10.1016/j.jmb.2006.09.002

H. Tsuge, M. Nagahama, H. Nishimura, J. Hisatsune, Y. Sakaguchi et al., Crystal Structure and Site-directed Mutagenesis of Enzymatic Components from Clostridium perfringens Iota-toxin, Journal of Molecular Biology, vol.325, issue.3, pp.471-483, 2003.
DOI : 10.1016/S0022-2836(02)01247-0

E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt et al., UCSF Chimera?A visualization system for exploratory research and analysis, Journal of Computational Chemistry, vol.373, issue.13, pp.1605-1612, 2004.
DOI : 10.1002/jcc.20084

URL : http://www.cgl.ucsf.edu/home/tef/pubs/chimera.pdf

H. Barth, R. Roebling, M. Fritz, and K. Aktories, C2 Toxin as a Protein Delivery System, Journal of Biological Chemistry, vol.268, issue.7, pp.5074-5081, 2002.
DOI : 10.1128/IAI.69.10.6532-6536.2001

URL : http://www.jbc.org/content/277/7/5074.full.pdf

P. E. Stein, A. Boodhoo, G. D. Armstrong, S. A. Cockle, M. H. Klein et al., The crystal structure of pertussis toxin, Structure, vol.2, issue.1, pp.45-57, 1994.
DOI : 10.1016/S0969-2126(00)00007-1

S. Choe, M. J. Bennett, G. Fujii, P. M. Curmi, K. A. Kantardjieff et al., The crystal structure of diphtheria toxin, Nature, vol.357, issue.6375, pp.216-222, 1992.
DOI : 10.1038/357216a0

T. K. Sixma, S. E. Pronk, K. H. Kalk, E. S. Wartna, B. A. Van-zanten et al., Crystal structure of a cholera toxin-related heat-labile enterotoxin from E. coli, Nature, vol.351, issue.6325, pp.371-377, 1991.
DOI : 10.1038/351371a0

M. Li, F. Dyda, I. Benhar, I. Pastan, and D. R. Davies, Crystal structure of the catalytic domain of Pseudomonas exotoxin A complexed with a nicotinamide adenine dinucleotide analog: implications for the activation process and for ADP ribosylation., Proc. Natl. Acad. Sci. USA 1995, pp.6902-6906
DOI : 10.1073/pnas.93.14.6902

J. Van-damme, M. Jung, F. Hofmann, I. Just, J. Vandekerckhove et al., iota toxin, FEBS Letters, vol.80, issue.3, pp.291-295, 1996.
DOI : 10.1093/nar/18.12.3636

H. Barth, J. C. Preiss, F. Hofmann, and K. Aktories, Characterization of the catalytic site of the ADP-ribosyltransferase Clostridium botulinum C2 toxin by site-directed mutagenesis

J. C. Marvaud, T. Smith, M. L. Hale, M. R. Popoff, L. A. Smith et al., Clostridium perfringens Iota-Toxin: Mapping of Receptor Binding and Ia Docking Domains on Ib, Infection and Immunity, vol.69, issue.4, pp.2435-2441, 2001.
DOI : 10.1128/IAI.69.4.2435-2441.2001

URL : http://iai.asm.org/content/69/4/2435.full.pdf

G. Fritz, P. Schroeder, and K. Aktories, Isolation and characterization of a Clostridium botulinum C2 toxin-resistant cell line: Evidence for possible involvement of the cellular C2II receptor in growth regulation, Infect. Immun, vol.63, pp.2334-2340, 1995.

B. G. Stiles, D. Blöcker, M. L. Hale, M. A. Guetthoff, and H. Barth, Clostridium botulinum C2 toxin: binding studies with fluorescence-activated cytometry, Toxicon, vol.40, issue.8, pp.1135-1140, 2002.
DOI : 10.1016/S0041-0101(02)00113-7

J. Sakurai, M. Nagahama, M. Oda, H. Tsuge, and K. Kobayashi, Clostridium perfringens Iota-Toxin: Structure and Function, Toxins, vol.581, issue.2, pp.208-228, 2009.
DOI : 10.1016/j.febslet.2007.02.041

URL : http://www.mdpi.com/2072-6651/1/2/208/pdf

K. Kobayashi, M. Nagahama, N. Ohkubo, T. Kojima, H. Shirai et al., Role of Ca2+-binding motif in cytotoxicity induced by Clostridium perfringens iota-toxin, Microbial Pathogenesis, vol.44, issue.4, pp.265-270, 2008.
DOI : 10.1016/j.micpath.2007.10.010

H. Tsuge, M. Nagahama, M. Oda, S. Iwamoto, H. Utsunomiya et al., Structural basis of actin recognition and arginine ADP-ribosylation by Clostridium perfringens iota toxin, Proc. Natl. Acad. Sci, pp.7399-7404, 2008.
DOI : 10.1073/pnas.0801215105

URL : http://www.pnas.org/content/105/21/7399.full.pdf

M. Nagahama, A. Kihara, T. Miyawaki, M. Mukai, Y. Sakaguchi et al., Characterization of the Enzymatic Component of Clostridium perfringens Iota-Toxin, Journal of Bacteriology, vol.182, issue.8, pp.2096-2103, 2000.
DOI : 10.1128/JB.182.8.2096-2103.2000

S. F. Carroll and R. J. Collier, NAD binding site of diphtheria toxin: identification of a residue within the nicotinamide subsite by photochemical modification with NAD., Proc. Natl. Acad. Sci, pp.3307-3311, 1984.
DOI : 10.1073/pnas.81.11.3307

M. Jung, I. Just, J. Van-damme, J. Vandekerckhove, and K. Aktories, NAD-binding site of the C3-like ADP-ribosyltransferase from Clostridium limosum, J. Biol. Chem, vol.268, pp.23215-23218, 1993.

J. Sakurai, M. Nagahama, J. Hisatsune, N. Katunuma, and H. Tsuge, Clostridium perfringens ??-toxin, ADP-ribosyltransferase: structure and mechanism of action, Advances in Enzyme Regulation, vol.43, issue.1, pp.361-377, 2003.
DOI : 10.1016/S0065-2571(02)00044-4

T. Takada, K. Iida, and J. Moss, Conservation of a Common Motif in Enzymes Catalyzing ADP-ribose Transfer, Journal of Biological Chemistry, vol.262, issue.2, pp.541-544, 1995.
DOI : 10.1016/0006-291X(87)90921-1

H. H. Chowdhury, M. R. Popoff, and R. Zorec, toxin enhances the secretory activity of rat melanotrophs, The Journal of Physiology, vol.480, issue.2, pp.389-395, 1999.
DOI : 10.1113/jphysiol.1994.sp020382

J. C. Marvaud, B. G. Stiles, A. Chenal, D. Gillet, M. Gibert et al., Iota Toxin, Journal of Biological Chemistry, vol.63, issue.46, pp.43659-43666, 2002.
DOI : 10.1111/j.1432-1033.1990.tb19448.x

K. Aktories, Clostridium difficile binary toxin CDT induces clustering of the lipolysis-stimulated lipoprotein receptor into lipid rafts, pp.244-257, 2013.

M. Fivaz, L. Abrami, Y. Tsitrin, and F. G. Van-der-goot, Not as simple as just punching a hole, Toxicon, vol.39, issue.11, pp.1637-1645, 2001.
DOI : 10.1016/S0041-0101(01)00151-9

F. Lafont, G. Van-tran-nhieu, K. Hanada, P. Sansonetti, and F. G. Van-der-goot, Initial steps of Shigella infection depend on the cholesterol/sphingolipid raft-mediated CD44-IpaB interaction, The EMBO Journal, vol.21, issue.17, pp.4449-4457, 2002.
DOI : 10.1093/emboj/cdf457

S. Miyata, J. Minami, E. Tamai, O. Matsushita, S. Shimamota et al., ??-Toxin Forms a Heptameric Pore within the Detergent-insoluble Microdomains of Madin-Darby Canine Kidney Cells and Rat Synaptosomes, Journal of Biological Chemistry, vol.335, issue.42, pp.39463-39468, 2002.
DOI : 10.1111/j.1574-695X.2001.tb00503.x

K. Simons and R. Ehehalt, Cholesterol, lipid rafts, and disease, Journal of Clinical Investigation, vol.110, issue.5, pp.597-603, 2002.
DOI : 10.1172/JCI16390DS1

URL : http://www.jci.org/articles/view/16390/files/pdf

M. Nagahama, T. Hagiyama, T. Kojima, K. Aoyanagi, C. Takahashi et al., Binding and Internalization of Clostridium botulinum C2 Toxin, Infection and Immunity, vol.77, issue.11, pp.5139-5148, 2009.
DOI : 10.1128/IAI.00638-09

URL : http://iai.asm.org/content/77/11/5139.full.pdf

M. Nagahama, M. Umezaki, R. Tashiro, M. Oda, K. Kobayashi et al., ABSTRACT, Infection and Immunity, vol.80, issue.10, pp.3410-3416, 2012.
DOI : 10.1128/IAI.00483-12

I. Ohishi and M. Miyake, Binding of the two components of C2 toxin to epithelial cells and brush borders of mouse intestine, Infect. Immun, vol.48, pp.769-775, 1985.

S. Sugii and S. Kozaki, Hemagglutinating and binding properties of botulinum C2 toxin, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1034, issue.2, pp.176-179, 1990.
DOI : 10.1016/0304-4165(90)90073-6

M. Eckhardt, H. Barth, D. Blöcker, and K. Aktories, C2 Toxin to Asparagine-linked Complex and Hybrid Carbohydrates, Journal of Biological Chemistry, vol.266, issue.4, pp.2328-2334, 2000.
DOI : 10.1146/annurev.ge.18.120184.002521

URL : http://www.jbc.org/content/275/4/2328.full.pdf

C. Bachmeyer, R. Benz, H. Barth, K. Aktories, M. Gibert et al., C2 toxin with lipid bilayer membranes and Vero cells: inhibition of channel function by chloroquine and related compounds in vitro and intoxification in vivo, The FASEB Journal, vol.15, issue.9, pp.1658-1660, 2001.
DOI : 10.1096/fj.00-0671fje

C. Bachmeyer, F. Orlik, H. Barth, K. Aktories, and R. Benz, Mechanism of C2-toxin Inhibition by Fluphenazine and Related Compounds: Investigation of their Binding Kinetics to the C2II-channel using the Current Noise Analysis, Journal of Molecular Biology, vol.333, issue.3, pp.527-540, 2003.
DOI : 10.1016/j.jmb.2003.08.044

D. Blöcker, K. Pohlamnn, G. Haug, C. Bachmeyer, R. Benz et al., C2 Toxin, Journal of Biological Chemistry, vol.10, issue.39, pp.37360-37367, 2003.
DOI : 10.1074/jbc.M303980200

H. Barth and B. G. Stiles, Binary Actin-ADP-Ribosylating Toxins and their Use as Molecular Trojan Horses for Drug Delivery into Eukaryotic Cells, Current Medicinal Chemistry, vol.15, issue.5, pp.459-469, 2008.
DOI : 10.2174/092986708783503195

I. Ohishi, M. Miyake, H. Ogura, and S. Nakamura, toxin on tissue-culture cells, FEMS Microbiology Letters, vol.10, issue.2-3, pp.281-284, 1984.
DOI : 10.1038/newbio243246a0

P. Papatheodorou, C. Wilczek, T. Nolke, G. Guttenberg, D. Hornuss et al., ABSTRACT, Infection and Immunity, vol.80, issue.4, pp.1418-1423, 2012.
DOI : 10.1128/IAI.06378-11

M. R. Popoff, H. J. Issaq, and B. G. Stiles, Quantitative profiling of the detergent-resistant membrane proteome of iota-b toxin induced Vero cells, J. Prot. Res, vol.4, pp.523-531, 2005.

K. Fagan-solis, D. K. Reaves, M. C. Rangel, M. R. Popoff, B. G. Stiles et al., Challenging the roles of CD44 and lipolysis stimulated lipoprotein receptor in conveying Clostridium perfringens iota toxin cytotoxicity in breast cancer, Molecular Cancer, vol.13, issue.1, pp.163-168, 2014.
DOI : 10.1186/1476-4598-13-163

URL : https://hal.archives-ouvertes.fr/pasteur-01021021

K. Sandvig and B. Van-deurs, Endocytosis, intracellular transport, and cytotoxic action of Shiga toxin and ricin, Physiological Reviews, vol.76, issue.4, pp.949-966, 1996.
DOI : 10.1152/physrev.1996.76.4.949

P. A. Orlandi, P. K. Curran, and P. H. Fishman, Brefeldin A blocks the response of cultured cells to cholera toxin. Implications for intracellular trafficking in toxin action, J. Biol. Chem, vol.8, pp.12010-12016, 1993.

P. Chardin and F. Mccormick, Brefeldin A, Cell, vol.97, issue.2, pp.153-155, 1999.
DOI : 10.1016/S0092-8674(00)80724-2

I. H. Madshus, H. Stenmark, K. Sandvig, and S. Olsnes, Entry of diphtheria toxin-protein A chimeras into cells, J. Biol. Chem, vol.266, pp.17446-17453, 1991.

A. M. Friedlander, Macrophages are sensitive to anthrax lethal toxin through an acid-dependent process, J. Biol. Chem, vol.261, pp.7123-7126, 1986.

J. Gruenberg and K. E. Howell, Membrane Traffic in Endocytosis: Insights from Cell-Free Assays, Annual Review of Cell Biology, vol.5, issue.1, pp.453-481, 1989.
DOI : 10.1146/annurev.cb.05.110189.002321

T. Sakai, S. Yamashina, and S. Ohnishi, Microtubule-Disrupting Drugs Blocked Delivery of Endocytosed Transferrin to the Cytocenter, but Did Not Affect Return of Transferrin to Plasma Membrane1, The Journal of Biochemistry, vol.109, issue.4, pp.528-533, 1991.
DOI : 10.1093/oxfordjournals.jbchem.a123415

A. Menard, K. D. Altendorf, D. D. Berves, M. Mock, and C. Montecucco, lethal toxin, FEBS Letters, vol.125, issue.2-3, pp.161-164, 1996.
DOI : 10.1083/jcb.125.3.573

G. Werner, H. Hagenmaier, H. Drautz, A. Baumgartner, and H. Zahner, Metabolic products of microorganisms. 224. Bafilomycins, a new group of macrolide antibiotics. Production, isolation, chemical structure and biological activity., The Journal of Antibiotics, vol.37, issue.2, pp.110-117, 1984.
DOI : 10.7164/antibiotics.37.110

J. M. Lord, D. C. Smith, and L. M. Roberts, Toxin entry: how bacterial proteins get into mammalian cells, Cellular Microbiology, vol.33, issue.2, pp.85-91, 1999.
DOI : 10.1021/bi00203a022

URL : http://onlinelibrary.wiley.com/doi/10.1046/j.1462-5822.1999.00015.x/pdf

G. Haug, J. Leemhuis, D. Tiemann, D. K. Meyer, K. Aktories et al., C2 Toxin into the Cytosol, Journal of Biological Chemistry, vol.269, issue.34, pp.32266-32274, 2003.
DOI : 10.1083/jcb.200210028

E. Kaiser, S. Pust, C. Kroll, and H. Barth, C2 toxin across membranes of acidified endosomes into the cytosol of mammalian cells, Cellular Microbiology, vol.54, issue.5, pp.780-795, 2009.
DOI : 10.1111/j.1365-2958.1997.tb02669.x

E. Kaiser, C. Kroll, K. Ernst, C. Schwan, M. Popoff et al., ABSTRACT, Infection and Immunity, vol.79, issue.10, pp.3913-3921, 2011.
DOI : 10.1128/IAI.05372-11

A. E. Lang, K. Ernst, H. Lee, P. Papatheodorou, C. Schwan et al., ???ADP-ribosyltransferases, Cellular Microbiology, vol.12, issue.4, pp.490-503, 2014.
DOI : 10.1111/j.1462-5822.2010.01480.x

E. Kaiser, N. Bohm, K. Ernst, S. Langer, C. Schwan et al., FK506-binding protein 51 interacts with Clostridium botulinum C2 toxin and FK506 inhibits membrane translocation of the toxin in mammalian cells, Cellular Microbiology, vol.104, issue.8, pp.1193-1205, 2012.
DOI : 10.1073/pnas.0707413104

URL : https://hal.archives-ouvertes.fr/pasteur-01762818

P. O. Falnes, S. Choe, I. H. Madhus, and B. Wilson, A.; Olsnes, S. Inhibition of membrane translocation of diphtheria toxin A-fragment by internal disulfide bridges, J. Biol. Chem, vol.296, pp.8402-8407, 1994.
URL : https://hal.archives-ouvertes.fr/hal-01183055

R. Ratts, H. Zeng, E. A. Berg, C. Blue, M. E. Mccomb et al., The cytosolic entry of diphtheria toxin catalytic domain requires a host cell cytosolic translocation factor complex, The Journal of Cell Biology, vol.265, issue.2, pp.1139-1150, 2003.
DOI : 10.1021/bi981436i

A. Kistner and E. Habermann, Reductive cleavage of tetanus toxin and botulinum neurotoxin A by the thioredoxin system from brain, Naunyn-Schmiedeberg's Archives of Pharmacology, vol.182, issue.2, pp.227-234, 1992.
DOI : 10.1007/BF00165741

K. H. Reuner, P. Presek, C. B. Boschek, and K. Aktories, Botulinum C2 toxin ADP-ribosylates actin and disorganizes the microfilament network in intact cells, Eur. J. Cell Biol, vol.43, pp.134-140, 1987.

S. Perelle, M. Domenighini, and M. R. Popoff, Evidence that Arg-295, Glu-378, and Glu-380 are active-site residues of the ADP-ribosyltransferase activity of iota toxin, FEBS Letters, vol.29, issue.2-3, pp.191-194, 1996.
DOI : 10.1016/0041-0101(91)90076-4

L. L. Simpson, B. G. Stiles, H. Zepeda, and T. D. Wilkins, Production by Clostridium spiroforme of an iota-like toxin that possesses mono(ADP-ribosyl)transferase activity: Identification of a novel class of ADP-ribosyltransferases, Infect. Immun, vol.57, pp.255-261, 1989.

E. H. Egelman, A tale of two polymers: new insights into helical filaments, Nature Reviews Molecular Cell Biology, vol.104, issue.8, pp.621-630, 2003.
DOI : 10.1016/0022-2836(76)90181-9

T. D. Pollard and J. A. Cooper, Actin, a Central Player in Cell Shape and Movement, Science, vol.460, issue.7258, pp.1208-1212, 2009.
DOI : 10.1038/nature08231

URL : http://europepmc.org/articles/pmc3677050?pdf=render

K. Aktories, K. H. Reuner, P. Presek, and M. Barmann, Botulinum C2 toxin treatment increases the G-actin pool in intact chicken cells: A model for the cytopathic action of actin-ADP-ribosylating toxins, Toxicon, vol.27, issue.9, pp.989-993, 1989.
DOI : 10.1016/0041-0101(89)90149-9

I. Just, M. Wille, C. Chaponnier, and K. Aktories, Gelsolin-actin complex is target for ADP-ribosylation by Clostridium botulinum C2 toxin in intact human neutrophils, European Journal of Pharmacology: Molecular Pharmacology, vol.246, issue.3, pp.293-297, 1993.
DOI : 10.1016/0922-4106(93)90045-B

I. Just, E. S. Hennessey, D. R. Drummond, K. Aktories, and J. C. Sparrow, iota toxin, Biochemical Journal, vol.291, issue.2, pp.409-412, 1993.
DOI : 10.1042/bj2910409

J. Vandekerckhove and B. Schering, Bä rmann, M.; Aktories, K. Botulinum C2 toxin ADP-ribosylates cytoplasmic ?/?-actin in arginine 177, J. Biol. Chem, vol.263, pp.696-700, 1988.

S. Mauss, C. Chaponnier, I. Just, K. Aktories, and G. Gabbiani, ADP-ribosylation of actin isoforms by Clostridium botulinum C2 toxin and Clostridium perfringens iota toxin, European Journal of Biochemistry, vol.11, issue.1, pp.237-241, 1990.
DOI : 10.1016/0014-5793(87)81129-8

R. Prekeris, M. W. Mayhew, J. B. Cooper, and D. M. Terrian, Identification and localization of an actin-binding motif that is unique to the epsilon isoform of protein kinase C and participates in the regulation of synaptic function, The Journal of Cell Biology, vol.132, issue.1, pp.77-90, 1996.
DOI : 10.1083/jcb.132.1.77

A. Wegner and K. Aktories, ADP-ribosylated actin caps the barbed ends of actin filaments, J. Biol. Chem, vol.263, pp.13739-13742, 1988.

C. Weigt, I. Just, A. Wegner, and K. Aktories, Nonmuscle actin ADP-ribosylated by botulinum C2 toxin caps actin filaments, FEBS Letters, vol.225, issue.1-2, pp.181-184, 1989.
DOI : 10.1016/0014-5793(87)81129-8

URL : http://onlinelibrary.wiley.com/doi/10.1016/0014-5793(89)80279-0/pdf

F. A. Al-mohanna, I. Ohishi, and M. B. Hallett, toxin potentiates activation of the neutrophil oxidase Further evidence of a role for actin polymerization, FEBS Letters, vol.100, issue.1, pp.40-44, 1987.
DOI : 10.1093/oxfordjournals.jbchem.a121728

C. Schwan, B. Stecher, T. Tzivelekidis, M. Van-ham, M. Rohde et al., Aktories, K. Clostridium difficile toxin CDT induces formation of microtubule-based protrusions and increases adherence of bacteria. PLoS Path, p.1000626, 2009.

C. Schwan, A. S. Kruppke, T. Nolke, L. Schumacher, F. Koch-nolte et al., Clostridium difficile toxin CDT hijacks microtubule organization and reroutes vesicle traffic to increase pathogen adherence, Proc. Natl. Acad. Sci. USA 2014, pp.2313-2318
DOI : 10.1073/pnas.1311589111

URL : http://www.pnas.org/content/111/6/2313.full.pdf