J. Q. Luo, X. Liu, P. Frankel, T. Rotunda, M. Ramos et al., Functional association between Arf and RalA in active phospholipase D complex, Proc. Natl. Acad. Sci, pp.3632-3637, 1998.
DOI : 10.1074/jbc.270.24.14399

URL : http://www.pnas.org/content/95/7/3632.full.pdf

W. S. Choi, Y. M. Kim, C. Combs, M. A. Frohman, and M. A. Beaven, Phospholipases D1 and D2 Regulate Different Phases of Exocytosis in Mast Cells, The Journal of Immunology, vol.168, issue.11, pp.5682-5689, 2002.
DOI : 10.4049/jimmunol.168.11.5682

URL : http://www.jimmunol.org/content/jimmunol/168/11/5682.full.pdf

Y. Humeau, N. Vitale, S. Chasserot-golaz, J. L. Dupont, G. Du et al., A role for phospholipase D1 in neurotransmitter release, Proc. Natl. Acad. Sci. (USA) 2001, pp.15300-15305
DOI : 10.1038/9149

URL : http://www.pnas.org/content/98/26/15300.full.pdf

Y. Humeau, F. Doussau, M. R. Popoff, F. Benfenati, and B. Poulain, synapses, The Journal of Physiology, vol.64, issue.3, pp.983-1004, 2007.
DOI : 10.1146/annurev.physiol.64.092501.114547

N. Vitale, A. S. Caumont, S. Chasserot-golaz, G. Du, S. Wu et al., Phospholipase D1: a key factor for the exocytotic machinery in neuroendocrine cells, The EMBO Journal, vol.20, issue.10, pp.2424-2434, 2001.
DOI : 10.1093/emboj/20.10.2424

URL : http://emboj.embopress.org/content/embojnl/20/10/2424.full.pdf

L. V. Chernomordik and M. M. Kozlov, Protein-Lipid Interplay in Fusion and Fission of Biological Membranes, Annual Review of Biochemistry, vol.72, issue.1, pp.175-207, 2003.
DOI : 10.1146/annurev.biochem.72.121801.161504

H. Bigalke and L. F. Shoer, Clostridial Neurotoxins, Bacterial Protein Toxins, pp.407-443, 2000.
DOI : 10.1007/978-3-662-05971-5_18

J. Herreros, G. Lalli, C. Montecucco, and G. Schiavo, Pathophysiological properties of clostridial neurotoxins In The Comprehensive Sourcebook of Bacterial Protein Toxins, pp.202-228, 1999.

Y. Humeau, F. Doussau, N. J. Grant, and B. Poulain, How botulinum and tetanus neurotoxins block neurotransmitter release**This paper is dedicated to the memory of Heiner Niemann., Biochimie, vol.82, issue.5, pp.427-446, 2000.
DOI : 10.1016/S0300-9084(00)00216-9

F. A. Meunier, J. Herreros, G. Schiavo, B. Poulain, and J. Molgo, Molecular Mechanism of Action of Botulinal Neurotoxins and the Synaptic Remodeling They Induce In Vivo at the Skeletal Neuromuscular Junction, Handbook of Neurotoxicology, pp.305-347, 2002.
DOI : 10.1385/1-59259-132-9:305

URL : https://hal.archives-ouvertes.fr/hal-00194091

F. A. Meunier, G. Schiavo, and J. Molgo, Botulinum neurotoxins: from paralysis to recovery of functional neuromuscular transmission, Journal of Physiology-Paris, vol.96, issue.1-2, pp.105-113, 2002.
DOI : 10.1016/S0928-4257(01)00086-9

URL : https://hal.archives-ouvertes.fr/hal-00193833

B. Poulain, M. R. Popoff, and J. Molgo, How do the Botulinum Neurotoxins block neurotransmitter release: from botulism to the molecular mechanism of action, The Botulinum J., vol.1, issue.1, pp.14-87, 2008.
DOI : 10.1504/TBJ.2008.018951

URL : https://hal.archives-ouvertes.fr/hal-00303601

G. Schiavo, M. Matteoli, and C. Montecucco, Neurotoxins Affecting Neuroexocytosis, Physiological Reviews, vol.267, issue.2, pp.717-766, 2000.
DOI : 10.1007/BF00498693

K. K. Hill, T. J. Smith, C. H. Helma, L. O. Ticknor, B. T. Foley et al., Genetic Diversity among Botulinum Neurotoxin-Producing Clostridial Strains, Journal of Bacteriology, vol.189, issue.3, pp.818-832, 2007.
DOI : 10.1128/JB.01180-06

URL : http://jb.asm.org/content/189/3/818.full.pdf

T. J. Smith, K. K. Hill, B. T. Foley, J. C. Detter, A. C. Munk et al., Analysis of the Neurotoxin Complex Genes in Clostridium botulinum A1-A4 and B1 Strains: BoNT/A3, /Ba4 and /B1 Clusters Are Located within Plasmids, Analysis of the neurotoxin complex genes in clostridium botulinum A1-A4 and B1 strains: BoNT/A3, p.1271, 2007.
DOI : 10.1371/journal.pone.0001271.t003

URL : https://doi.org/10.1371/journal.pone.0001271

S. Mahrhold, A. Rummel, H. Bigalke, B. Davletov, and T. Binz, The synaptic vesicle protein 2C mediates the uptake of botulinum neurotoxin A into phrenic nerves, FEBS Letters, vol.279, issue.8, pp.2011-2014, 2006.
DOI : 10.1074/jbc.M407502200

T. Nishiki, Y. Kamata, Y. Nemoto, A. Omori, T. Ito et al., Identification of protein receptor for Clostridium botulinum type B neurotoxin in rat brain synaptosomes

A. Rummel, K. Hafner, S. Mahrhold, N. Darashchonak, M. Holt et al., Botulinum neurotoxins C, E and F bind gangliosides via a conserved binding site prior to stimulation-dependent uptake with botulinum neurotoxin F utilising the three isoforms of SV2 as second receptor, Journal of Neurochemistry, vol.21, issue.6, pp.1942-1954, 2009.
DOI : 10.1042/bj2680123

A. Rummel, T. Karnath, T. Henke, and H. Bigalke, Synaptotagmins I and II Act as Nerve Cell Receptors for Botulinum Neurotoxin G, Journal of Biological Chemistry, vol.12, issue.29, pp.30865-30870, 2004.
DOI : 10.1091/mbc.12.10.2947

URL : http://www.jbc.org/content/279/29/30865.full.pdf

J. Herreros, T. Ng, and G. Schiavo, Lipid Rafts Act as Specialized Domains for Tetanus Toxin Binding and Internalization into Neurons, Molecular Biology of the Cell, vol.154, issue.10, pp.2947-2960, 2001.
DOI : 10.1111/j.1432-1033.1986.tb09412.x

URL : http://www.molbiolcell.org/content/12/10/2947.full.pdf

P. Munro, H. Kojima, J. L. Dupont, J. L. Bossu, B. Poulain et al., High Sensitivity of Mouse Neuronal Cells to Tetanus Toxin Requires a GPI-Anchored Protein, Biochemical and Biophysical Research Communications, vol.289, issue.2
DOI : 10.1006/bbrc.2001.6031

A. Rummel, S. Bade, J. Alves, H. Bigalke, and T. Binz, Two Carbohydrate Binding Sites in the HCC-domain of Tetanus Neurotoxin are Required for Toxicity, Journal of Molecular Biology, vol.326, issue.3, pp.835-847, 2003.
DOI : 10.1016/S0022-2836(02)01403-1

A. Rummel, T. Eichner, T. Weil, T. Karnath, A. Gutcaits et al., Identification of the protein receptor binding site of botulinum neurotoxins B and G proves the double-receptor concept, Proc. Natl. Acad. Sci, pp.359-364, 2007.
DOI : 10.1007/PL00004951

A. Rummel, S. Mahrhold, H. Bigalke, and T. Binz, The HCC-domain of botulinum neurotoxins A and B exhibits a singular ganglioside binding site displaying serotype specific carbohydrate interaction, Molecular Microbiology, vol.277, issue.3, pp.631-643, 2004.
DOI : 10.1042/bj2360845

URL : http://onlinelibrary.wiley.com/doi/10.1046/j.1365-2958.2003.03872.x/pdf

C. Chen, Z. Fu, J. J. Kim, J. T. Barbieri, and M. R. Baldwin, Gangliosides as High Affinity Receptors for Tetanus Neurotoxin, Journal of Biological Chemistry, vol.12, issue.39, pp.26569-26577, 2009.
DOI : 10.1016/j.neuron.2006.08.018

URL : http://www.jbc.org/content/284/39/26569.full.pdf

K. Tsukamoto, Y. Kozai, H. Ihara, T. Kohda, M. Mukamoto et al., Identification of the receptor-binding sites in the carboxyl-terminal half of the heavy chain of botulinum neurotoxin types C and D, Microbial Pathogenesis, vol.44, issue.6, pp.484-493, 2008.
DOI : 10.1016/j.micpath.2007.12.003

L. Muraro, S. Tosatto, L. Motterlini, O. Rossetto, and C. Montecucco, The N-terminal half of the receptor domain of botulinum neurotoxin A binds to microdomains of the plasma membrane, Biochemical and Biophysical Research Communications, vol.380, issue.1
DOI : 10.1016/j.bbrc.2009.01.037

A. S. Burgen, F. Dickens, and L. J. Zatman, The action of botulinum toxin on the neuro-muscular junction, The Journal of Physiology, vol.109, issue.1-2, pp.10-24, 1949.
DOI : 10.1113/jphysiol.1949.sp004364

J. D. Tompkins and R. L. Parsons, Exocytotic release of ATP and activation of P2X receptors in dissociated guinea pig stellate neurons, American Journal of Physiology-Cell Physiology, vol.291, issue.5, pp.1062-1071, 2006.
DOI : 10.1016/S0006-8993(01)02845-1

L. M. Smyth, L. T. Breen, and V. N. Mutafova-yambolieva, Nicotinamide adenine dinucleotide is released from sympathetic nerve terminals via a botulinum neurotoxin A-mediated mechanism in canine mesenteric artery, American Journal of Physiology-Heart and Circulatory Physiology, vol.290, issue.5, pp.1818-1825, 2006.
DOI : 10.1113/jphysiol.1996.sp021723

URL : http://ajpheart.physiology.org/content/ajpheart/290/5/H1818.full.pdf

L. T. Breen, L. M. Smyth, and I. A. Yamboliev, Mutafova-Yambolieva, V.N. beta-NAD is a novel nucleotide released on stimulation of nerve terminals in human urinary bladder detrusor muscle

M. J. Welch, J. R. Purkiss, and K. A. Foster, Sensitivity of embryonic rat dorsal root ganglia neurons to Clostridium botulinum neurotoxins, Toxicon, vol.38, issue.2, pp.245-258, 2000.
DOI : 10.1016/S0041-0101(99)00153-1

M. J. Duggan, C. P. Quinn, J. A. Chaddock, J. R. Purkiss, F. C. Alexander et al., Lectin, Journal of Biological Chemistry, vol.122, issue.38, pp.34846-34852, 2002.
DOI : 10.1083/jcb.147.6.1249

P. L. Durham, R. Cady, and R. Cady, Regulation of Calcitonin Gene-Related Peptide Secretion From Trigeminal Nerve Cells by Botulinum Toxin Type A: Implications for Migraine Therapy, Headache: The Journal of Head and Face Pain, vol.19, issue.suppl 1
DOI : 10.1023/A:1006928317312

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1526-4610.2004.04007.x/pdf

D. E. Rapp, K. W. Turk, G. T. Bales, and S. P. Cook, Botulinum Toxin Type A Inhibits Calcitonin Gene-Related Peptide Release From Isolated Rat Bladder, The Journal of Urology, vol.175, issue.3, pp.1138-1142, 2006.
DOI : 10.1016/S0022-5347(05)00322-8

S. M. Hassan, F. G. Jennekens, G. Wieneke, and H. Veldman, Calcitonin gene-related peptide-like immunoreactivity, in botulinum toxin-paralysed rat muscles, Neuromuscular Disorders, vol.4, issue.5-6, pp.489-496, 1994.
DOI : 10.1016/0960-8966(94)90089-2

F. A. Meunier, C. Colasante, L. Faille, M. Gastard, and J. Molgo, Upregulation of calcitonin generelated peptide at mouse motor nerve terminals poisoned with botulinum type-A toxin
DOI : 10.1007/bf02346386

C. Sala, J. S. Andreose, G. Fumagalli, and T. Lomo, Calcitonin gene-related peptide: possible role in formation and maintenance of neuromuscular junctions, The Journal of Neuroscience, vol.15, issue.1, pp.520-528, 1995.
DOI : 10.1523/JNEUROSCI.15-01-00520.1995

O. Tarabal, J. Caldero, J. Ribera, A. Sorribas, R. Lopez et al., Regulation of Motoneuronal Calcitonin Gene-related Peptide (CGRP) During Axonal Growth and Neuromuscular Synaptic Plasticity Induced by Botulinum Toxin in Rats, European Journal of Neuroscience, vol.202, issue.4, pp.829-836, 1996.
DOI : 10.1113/jphysiol.1969.sp008830

C. Swartling, H. Naver, I. Pihl-lundin, E. Hagforsen, and A. Vahlquist, Sweat gland morphology and periglandular innervation in essential palmar hyperhidrosis before and after treatment with intradermal botulinum toxin, Journal of the American Academy of Dermatology, vol.51, issue.5, pp.739-745, 2004.
DOI : 10.1016/j.jaad.2004.07.030

J. L. Morris, P. Jobling, and I. L. Gibbins, Botulinum neurotoxin A attenuates release of norepinephrine but not NPY from vasoconstrictor neurons, American Journal of Physiology-Heart and Circulatory Physiology, vol.14, issue.6, pp.2627-2635, 2002.
DOI : 10.1146/annurev.ph.50.030188.003025

URL : http://ajpheart.physiology.org/content/ajpheart/283/6/H2627.full.pdf

O. M. Jones, A. F. Brading, and N. J. Mortensen, Mechanism of action of botulinum toxin on the internal anal sphincter, British Journal of Surgery, vol.91, issue.2, pp.224-228, 2004.
DOI : 10.1002/bjs.4394

J. D. Moffatt, T. M. Cocks, and C. P. Page, Role of the epithelium and acetylcholine in mediating the contraction to 5-hydroxytryptamine in the mouse isolated trachea, British Journal of Pharmacology, vol.14, issue.7, pp.1159-1166, 2004.
DOI : 10.1006/pupt.2001.0313

C. Verderio, D. Pozzi, E. Pravettoni, F. Inverardi, U. Schenk et al., SNAP-25 Modulation of Calcium Dynamics Underlies Differences in GABAergic and Glutamatergic Responsiveness to Depolarization, Neuron, vol.41, issue.4, pp.599-610, 2004.
DOI : 10.1016/S0896-6273(04)00077-7

URL : https://doi.org/10.1016/s0896-6273(04)00077-7

R. Penner, E. Neher, and F. Dreyer, Intracellularly injected tetanus toxin inhibits exocytosis in bovine adrenal chromaffin cells, Nature, vol.258, issue.6092, pp.76-78, 1986.
DOI : 10.1007/978-3-642-71399-6_2

G. Ahnert-hilger, M. F. Bader, S. Bhakdi, and M. Gratzl, Introduction of Macromolecules into Bovine Adrenal Medullary Chromaffin Cells and Rat Pheochromocytoma Cells (PC12) by Permeabilization with Streptolysin O: Inhibitory Effect of Tetanus Toxin on Catecholamine Secretion, Journal of Neurochemistry, vol.258, issue.6, pp.1751-1758, 1989.
DOI : 10.1002/jnr.490180308

G. Ahnert-hilger, U. Weller, M. E. Dauzenroth, E. Habermann, and M. Gratzl, The tetanus toxin light chain inhibits exocytosis, FEBS Letters, vol.85, issue.2, pp.245-248, 1989.
DOI : 10.1073/pnas.85.11.4090

URL : http://onlinelibrary.wiley.com/doi/10.1016/0014-5793(89)80478-8/pdf

A. Abdipranoto, G. J. Liu, E. L. Werry, and M. R. Bennett, Mechanisms of secretion of ATP from cortical astrocytes triggered by uridine triphosphate, NeuroReport, vol.14, issue.17, pp.2177-2181, 2003.
DOI : 10.1097/00001756-200312020-00009

A. Araque, N. Li, R. T. Doyle, and P. G. Haydon, SNARE Protein-Dependent Glutamate Release from Astrocytes, The Journal of Neuroscience, vol.20, issue.2, pp.666-673, 2000.
DOI : 10.1523/JNEUROSCI.20-02-00666.2000

C. Verderio, S. Coco, O. Rossetto, C. Montecucco, and M. Matteoli, Internalization and Proteolytic Action of Botulinum Toxins in CNS Neurons and Astrocytes, Journal of Neurochemistry, vol.271, issue.1, pp.372-379, 1999.
DOI : 10.1074/jbc.271.13.7694

URL : http://onlinelibrary.wiley.com/doi/10.1046/j.1471-4159.1999.0730372.x/pdf

R. Regazzi, K. Sadoul, P. Meda, R. B. Kelly, P. A. Halban et al., Mutational analysis of VAMP domains implicated in Ca 2+ -induced insulin exocytosis, EMBO J, vol.15, pp.6951-6959, 1996.

J. A. Rosado, P. C. Redondo, G. M. Salido, S. O. Sage, and J. A. Pariente, entry in mouse pancreatic acinar cells, American Journal of Physiology-Cell Physiology, vol.288, issue.1, pp.214-221, 2005.
DOI : 10.1016/S0092-8674(00)81233-7

P. C. Redondo, A. G. Harper, G. M. Salido, J. A. Pariente, S. O. Sage et al., entry in human platelets, The Journal of Physiology, vol.85, issue.1, pp.99-109, 2004.
DOI : 10.1016/S0092-8674(00)81233-7

T. Semba and M. Kano, Glycine in the Spinal Cord of Cats with Local Tetanus Rigidity, Science, vol.164, issue.3879, pp.571-572, 1969.
DOI : 10.1126/science.164.3879.571

L. C. Williamson, S. C. Fitzgerald, and E. A. Neale, Differential Effects of Tetanus Toxin on Inhibitory and Excitatory Neurotransmitter Release from Mammalian Spinal Cord Cells in Culture, Journal of Neurochemistry, vol.475, issue.6
DOI : 10.1038/newbio244157a0

E. Habermann, Inhibition by tetanus and botulinum A toxin of the release of [3H]noradrenaline and [3H]GABA from rat brain homogenate, Experientia, vol.129, issue.3, pp.224-226, 1988.
DOI : 10.1007/978-3-642-71399-6_2

G. L. Collingridge and J. Davies, REVERSIBLE EFFECTS OF TETANUS TOXIN ON STRIATAL-EVOKED RESPONSES AND [3H]-??-AMINOBUTYRIC ACID RELEASE IN THE RAT SUBSTANTIA NIGRA, British Journal of Pharmacology, vol.16, issue.Suppl. 3, pp.403-411, 1982.
DOI : 10.1111/j.1471-4159.1969.tb05971.x

G. L. Collingridge, P. A. Thompson, J. Davies, and J. Mellanby, In Vitro Effect of Tetanus Toxin on GAB A Release from Rat Hippocampal Slices, Journal of Neurochemistry, vol.18, issue.4, pp.1039-1041, 1981.
DOI : 10.1016/0006-8993(79)90827-8

U. Albus and E. Habermann, Tetanus toxin inhibits the evoked outflow of an inhibitory (GABA) and an excitatory (d-aspartate) amino acid from particulate brain cortex, Toxicon, vol.21, issue.1, pp.97-110, 1983.
DOI : 10.1016/0041-0101(83)90053-3

B. R. Pearce, A. L. Gard, and G. Dutton, H]GABA Release from Developing Cell Cultures of the Rat Cerebellum, Journal of Neurochemistry, vol.256, issue.3, pp.887-890, 1983.
DOI : 10.1016/0165-0270(81)90061-3

G. Bagetta and G. Nistico, Glutamate transmission is involved in the mechanisms of neuronal degeneration produced by intrahippocampal tetanus toxin in rats, Toxicology Letters, vol.64, issue.65, pp.64-65, 1992.
DOI : 10.1016/0378-4274(92)90218-9

S. E. Bradford and J. Nadler, Aspartate release from rat hippocampal synaptosomes, Neuroscience, vol.128, issue.4, pp.751-765, 2004.
DOI : 10.1016/j.neuroscience.2004.06.065

W. Lu, H. Man, W. Ju, W. S. Trimble, J. F. Macdonald et al., Activation of Synaptic NMDA Receptors Induces Membrane Insertion of New AMPA Receptors and LTP in Cultured Hippocampal Neurons, Neuron, vol.29, issue.1, pp.243-254, 2001.
DOI : 10.1016/S0896-6273(01)00194-5

R. Lindlbauer, R. Mohrmann, H. Hatt, and K. Gottmann, Regulation of kinetic and pharmacological properties of synaptic NMDA receptors depends on presynaptic exocytosis in rat hippocampal neurones, The Journal of Physiology, vol.10, issue.2, pp.495-502, 1998.
DOI : 10.1016/0896-6273(93)90317-K

M. W. Fleck, G. Barrionuevo, and A. M. Palmer, Release of d,l-threo-??-hydroxyaspartate as a false transmitter from excitatory amino acid-releasing nerve terminals, Neurochemistry International, vol.39, issue.1, pp.75-81, 2001.
DOI : 10.1016/S0197-0186(00)00111-X

E. Habermann, H. Muller, and M. Hudel, Tetanus Toxin and Botulinum A and C Neurotoxins Inhibit Noradrenaline Release from Cultured Mouse Brain, Journal of Neurochemistry, vol.17, issue.2, pp.522-527, 1988.
DOI : 10.1016/0014-5793(86)81492-2

B. Figliomeni and A. Grasso, Tetanus toxin affects the K+-stimulated release of catecholamines from nerve growth factor-treated PC12 cells, Biochemical and Biophysical Research Communications, vol.128, issue.1, pp.249-256, 1985.
DOI : 10.1016/0006-291X(85)91671-7

M. K. Bansal, J. H. Phillips, and S. Van-heyningen, The inhibition by pertussis and tetanus toxins of evoked catecholamine release from intact and permeabilized bovine adrenal chromaffin cells, FEBS Letters, vol.79, issue.1-2
DOI : 10.1016/0092-8674(88)90433-3

URL : http://onlinelibrary.wiley.com/doi/10.1016/0014-5793(90)80533-O/pdf

B. Stecher, J. Hens, U. Weller, M. Gratzl, W. H. Gispen et al., Noradrenaline release from permeabilized synaptosomes is inhibited by the light chain of tetanus toxin, FEBS Letters, vol.177, issue.2-3, pp.192-194, 1992.
DOI : 10.1111/j.1432-1033.1988.tb14423.x

URL : https://epub.ub.uni-muenchen.de/7149/1/Gratzl_Manfred_7149.pdf

A. C. Ashton and J. Dolly, Microtubules and Microfilaments Participate in the Inhibition of Synaptosomal Noradrenaline Release by Tetanus Toxin, Journal of Neurochemistry, vol.68, issue.2, pp.649-658, 1997.
DOI : 10.1046/j.1471-4159.1997.68020649.x

URL : http://onlinelibrary.wiley.com/doi/10.1046/j.1471-4159.1997.68020649.x/pdf

K. Tuz and H. Pasantes-morales, -dependent exocytotic mechanism, European Journal of Neuroscience, vol.163, issue.7, pp.1636-1642, 2005.
DOI : 10.1111/j.1460-9568.2005.04344.x

P. Britton, P. S. Whitton, and N. G. Bowery, Effect of tetanus toxin on basal and evoked release of 5-hydroxytryptamine and dopamine in rat hippocampus in vivo, Brain Research, vol.673, issue.2, pp.331-334, 1995.
DOI : 10.1016/0006-8993(94)01458-T

P. S. Whitton, P. Britton, and N. G. Bowery, Tetanus toxin alters 5-hydroxytryptamine, dopamine, and their metabolites in rat hippocampus measured by in vivo microdialysis, Neuroscience Letters, vol.144, issue.1-2, pp.95-98, 1992.
DOI : 10.1016/0304-3940(92)90724-L

M. Gobbi, F. Facchiano, E. Frittoli, A. Luini, and T. Mennini, Tetanus toxin inhibits depolarization-induced [3H]serotonin release from rat brain cortex synaptosomes, Neuroscience Letters, vol.151, issue.2, pp.205-208, 1993.
DOI : 10.1016/0304-3940(93)90021-C

J. Inserte, A. Najib, P. Pelliccioni, C. Gil, and J. Aguilera, Inhibition by tetanus toxin of sodiumdependent , high-affinity [3H]5-hydroxytryptamine uptake in rat synaptosomes, Biochem
DOI : 10.1016/s0006-2952(98)00281-0

C. Gil, A. Najib, and J. Aguilera, Serotonin transport is modulated differently by tetanus toxin and growth factors, Neurochemistry International, vol.42, issue.7, pp.535-542, 2003.
DOI : 10.1016/S0197-0186(02)00187-0

P. Pelliccioni, C. Gil, A. Najib, E. Sarri, F. Picatoste et al., Tetanus Toxin Modulates Serotonin Transport in Rat-Brain Neuronal Cultures, Journal of Molecular Neuroscience, vol.17, issue.3, pp.303-310, 2001.
DOI : 10.1385/JMN:17:3:303

A. Najib, P. Pelliccioni, C. Gil, and J. Aguilera, Serotonin transporter phosphorylation modulated by tetanus toxin, FEBS Letters, vol.285, issue.2, pp.136-142, 2000.
DOI : 10.1126/science.285.5428.763

URL : http://onlinelibrary.wiley.com/doi/10.1016/S0014-5793(00)02294-8/pdf

K. Sandberg, C. J. Berry, E. Eugster, and T. B. Rogers, A role for cGMP during tetanus toxin blockade of acetylcholine release in the rat pheochromocytoma (PC12) cell line, The Journal of Neuroscience, vol.9, issue.11, pp.3946-3954, 1989.
DOI : 10.1523/JNEUROSCI.09-11-03946.1989

K. Sandberg, C. J. Berry, and T. Rogers, Studies on the intoxication pathway of tetanus toxin in the rat pheochromocytoma (PC12) cell line. Binding, internalization, and inhibition of acetylcholine release, J. Biol. Chem, vol.264, pp.5679-5686, 1989.

G. Egea, X. Rabasseda, C. Solsona, J. Marsal, and B. Bizzini, Tetanus toxin blocks potassium-induced transmitter release and rearrangement of intramembrane particles at pure cholinergic synaptosomes, Toxicon, vol.28, issue.3, pp.311-318, 1990.
DOI : 10.1016/0041-0101(90)90066-G

H. Bigalke, W. Dimpfel, and E. Habermann, Suppression of 3H-acetylcholine release from primary nerve cell cultures by tetanus and botulinum-A toxin, Naunyn-Schmiedeberg's Archives of Pharmacology, vol.156, issue.2, pp.133-138, 1978.
DOI : 10.1007/BF00508058

S. Mochida, B. Poulain, U. Weller, E. Habermann, and L. Tauc, Light chain of tetanus toxin intracellularly inhibits acetylcholine release at neuro-neuronal synapses, and its internalization is mediated by heavy chain, FEBS Letters, vol.228, issue.1-2, pp.47-51, 1989.
DOI : 10.1016/0306-4522(87)90094-7

N. Kang, J. Xu, Q. Xu, M. Nedergaard, and J. Kang, Astrocytic Glutamate Release-Induced Transient Depolarization and Epileptiform Discharges in Hippocampal CA1 Pyramidal Neurons, Journal of Neurophysiology, vol.94, issue.6
DOI : 10.1126/science.7134978

URL : http://jn.physiology.org/content/jn/94/6/4121.full.pdf

T. Galli, T. Chilcote, O. Mundigl, T. Binz, H. Niemann et al., Tetanus toxin-mediated cleavage of cellubrevin impairs exocytosis of transferrin receptor-containing vesicles in CHO cells, The Journal of Cell Biology, vol.125, issue.5, pp.1015-1024, 1994.
DOI : 10.1083/jcb.125.5.1015

G. Lalli, S. Bohnert, K. Deinhardt, C. Verastegui, and G. Schiavo, The journey of tetanus and botulinum neurotoxins in neurons, Trends in Microbiology, vol.11, issue.9, pp.431-437, 2003.
DOI : 10.1016/S0966-842X(03)00210-5

S. Bohnert, K. Deinhardt, S. Salinas, and G. Schiavo, Uptake and transport of Clostridium neurotoxins, The Sourcebook of Comprehensive Bacterial Protein Toxins, pp.390-408, 2006.
DOI : 10.1016/B978-012088445-2/50025-1

S. Bohnert and G. Schiavo, Tetanus Toxin Is Transported in a Novel Neuronal Compartment Characterized by a Specialized pH Regulation, Journal of Biological Chemistry, vol.49, issue.51, pp.42336-42344, 2005.
DOI : 10.1074/jbc.M504890200

URL : http://www.jbc.org/content/280/51/42336.full.pdf

K. Deinhardt, O. Berminghausen, H. J. Willison, C. R. Hopkins, and G. Schiavo, Tetanus toxin is internalized by a sequential clathrin-dependent mechanism initiated within lipid microdomains and independent of epsin1, The Journal of Cell Biology, vol.114, issue.3, pp.459-471, 2006.
DOI : 10.1016/S0014-5793(97)01328-8

URL : http://jcb.rupress.org/content/jcb/174/3/459.full.pdf

K. Deinhardt, S. Salinas, C. Verastegui, R. Watson, D. Worth et al., Rab5 and Rab7 Control Endocytic Sorting along the Axonal Retrograde Transport Pathway, Rab5 and Rab7 control endocytic sorting along the axonal retrograde transport pathway, pp.293-305, 2006.
DOI : 10.1016/j.neuron.2006.08.018

URL : https://doi.org/10.1016/j.neuron.2006.08.018

Y. Li, P. Foran, G. Lawrence, N. Mohammed, C. Chan-kwo-chion et al., Recombinant Forms of Tetanus Toxin Engineered for Examining and Exploiting Neuronal Trafficking Pathways, Journal of Biological Chemistry, vol.58, issue.33, pp.31394-31401, 2001.
DOI : 10.1111/j.1432-1033.1991.tb16174.x

URL : http://www.jbc.org/content/276/33/31394.full.pdf

U. Maskos, K. Kissa, C. St-cloment, and P. Brulet, Retrograde trans-synaptic transfer of green fluorescent protein allows the genetic mapping of neuronal circuits in transgenic mice, Proceedings of the National Academy of Sciences, vol.10, issue.5
DOI : 10.1016/S0959-4388(00)00127-6

M. Galloux, H. Vitrac, C. Montagner, S. Raffestin, M. R. Popoff et al., Membrane Interaction of Botulinum Neurotoxin A Translocation (T) Domain, Journal of Biological Chemistry, vol.103, issue.41, pp.27668-27676, 2008.
DOI : 10.1016/j.pbiomolbio.2004.01.009

URL : https://hal.archives-ouvertes.fr/hal-01187636

L. K. Koriazova and M. Montal, Translocation of botulinum neurotoxin light chain protease through the heavy chain channel, Nature Structural Biology, vol.10, issue.1, pp.13-18, 2003.
DOI : 10.1038/nsb879

A. Fischer and M. Montal, Crucial Role of the Disulfide Bridge between Botulinum Neurotoxin Light and Heavy Chains in Protease Translocation across Membranes, Journal of Biological Chemistry, vol.9, issue.40, pp.29604-29611, 2007.
DOI : 10.1006/abio.1999.4203

M. Montal, Translocation of botulinum neurotoxin light chain protease by the heavy chain protein-conducting channel, Toxicon, vol.54, issue.5, pp.565-569, 2009.
DOI : 10.1016/j.toxicon.2008.11.018

URL : http://europepmc.org/articles/pmc2782371?pdf=render

R. Ratts, C. Trujillo, A. Bharti, J. Vanderspek, R. Harrison et al., A conserved motif in transmembrane helix 1 of diphtheria toxin mediates catalytic domain delivery to the cytosol, Proceedings of the National Academy of Sciences, vol.16, issue.4
DOI : 10.1016/j.ceb.2004.06.009

W. C. Tucker, T. Weber, and E. R. Chapman, Reconstitution of Ca2+-Regulated Membrane Fusion by Synaptotagmin and SNAREs, Science, vol.304, issue.5669, pp.435-438, 2004.
DOI : 10.1126/science.1097196

T. Sakaba, A. Stein, R. Jahn, and E. Neher, Distinct Kinetic Changes in Neurotransmitter Release After SNARE Protein Cleavage, Science, vol.309, issue.5733, pp.491-494, 2005.
DOI : 10.1126/science.1112645

URL : http://pubman.mpdl.mpg.de/pubman/item/escidoc:597882/component/escidoc:597881/256085.pdf

K. L. Lynch, R. R. Gerona, D. M. Kielar, S. Martens, H. T. Mcmahon et al., Synaptotagmin-1 Utilizes Membrane Bending and SNARE Binding to Drive Fusion Pore Expansion, Molecular Biology of the Cell, vol.37, issue.12, pp.5093-5103, 2008.
DOI : 10.1021/bi9807512

URL : http://www.molbiolcell.org/content/19/12/5093.full.pdf

R. R. Gerona, E. C. Larsen, J. A. Kowalchyk, and T. F. Martin, -dependent Binding of Synaptotagmin to SNARE Complexes, Journal of Biological Chemistry, vol.52, issue.9, pp.6328-6336, 2000.
DOI : 10.1016/S0896-6273(00)80850-8

J. P. Apland, M. Adler, and G. A. Oyler, Inhibition of neurotransmitter release by peptides that mimic the N-terminal domain of SNAP-25, Journal of Protein Chemistry, vol.22, issue.2, pp.147-153, 2003.
DOI : 10.1023/A:1023423013741

R. Gutierrez, T. Garcia, I. Gonzalez, B. Sanz, P. E. Hernandez et al., A quantitative PCR-ELISA for the rapid enumeration of bacteria in refrigerated raw milk, Journal of Applied Microbiology, vol.83, issue.4, pp.518-523, 1997.
DOI : 10.1046/j.1365-2672.1997.00249.x

J. E. Keller and E. A. Neale, The Role of the Synaptic Protein SNAP-25 in the Potency of Botulinum Neurotoxin Type A, Journal of Biological Chemistry, vol.17, issue.16, pp.13476-13482, 2001.
DOI : 10.1006/bbrc.1995.2061

Y. A. Chen, S. J. Scales, J. R. Jagath, and R. H. Scheller, A Discontinuous SNAP-25 C-terminal Coil Supports Exocytosis, Journal of Biological Chemistry, vol.269, issue.30, pp.28503-28508, 2001.
DOI : 10.1016/S0092-8674(01)00192-1

Y. A. Chen, S. J. Scales, S. M. Patel, Y. C. Doung, and R. H. Scheller, SNARE Complex Formation Is Triggered by Ca 2+ and Drives Membrane Fusion, Cell, vol.97, issue.2, pp.165-174, 1999.
DOI : 10.1016/S0092-8674(00)80727-8

URL : https://doi.org/10.1016/s0092-8674(00)80727-8

C. G. Schuette, K. Hatsuzawa, M. Margittai, A. Stein, D. Riedel et al., Jahn, R. Determinants of liposome fusion mediated by synaptic SNARE proteins

M. Bajohrs, C. Rickman, T. Binz, and B. Davletov, A molecular basis underlying differences in the toxicity of botulinum serotypes A and E. EMBO Rep, pp.1090-1095, 2004.

N. Salem, V. Faundez, J. T. Horng, and R. B. Kelly, A v-SNARE participates in synaptic vesicle formation mediated by the AP3 adaptor complex, Nature Neuroscience, vol.16, issue.7, pp.551-556, 1998.
DOI : 10.1093/emboj/16.5.917

F. Cornille, F. Deloye, M. C. Fournie-zaluski, B. P. Roques, and B. Poulain, Inhibition of Neurotransmitter Release by Synthetic Proline-rich Peptides Shows That the N-terminal Domain of Vesicle-associated Membrane Protein/Synaptobrevin Is Critical for Neuro-exocytosis, Journal of Biological Chemistry, vol.264, issue.28, pp.16826-16832, 1995.
DOI : 10.1073/pnas.85.12.4538

V. V. Vaidyanathan, K. Yoshino, M. Jahnz, C. Dorries, S. Bade et al., Proteolysis of SNAP-25 Isoforms by Botulinum Neurotoxin Types A, C, and E, Journal of Neurochemistry, vol.91, issue.1
DOI : 10.1073/pnas.91.11.4688

URL : http://onlinelibrary.wiley.com/doi/10.1046/j.1471-4159.1999.0720327.x/pdf

O. Connor, V. Heuss, C. De-bello, W. M. Dresbach, T. Charlton et al., Disruption of syntaxinmediated protein interactions blocks neurotransmitter secretion, Proc. Natl. Acad. Sci, pp.12186-12191, 1997.

M. Capogna, R. A. Mckinney, V. O-'connor, B. H. Gahwiler, and S. M. Thompson, Partially Rescues Synaptic Transmission in Hippocampal Cultures Treated with Botulinum Toxin A and C, But Not Tetanus Toxin, The Journal of Neuroscience, vol.17, issue.19, pp.7190-7202, 1997.
DOI : 10.1523/JNEUROSCI.17-19-07190.1997

L. C. Williamson, J. L. Halpern, C. Montecucco, J. E. Brown, and E. A. Neale, Clostridial Neurotoxins and Substrate Proteolysis in Intact Neurons, Journal of Biological Chemistry, vol.2, issue.13, pp.7694-7699, 1996.
DOI : 10.1097/00001756-199101000-00008

URL : http://www.jbc.org/content/271/13/7694.full.pdf

B. Poulain, B. G. Stiles, M. R. Popoff, and J. Molgo, Attack of the nervous system by clostridial toxins: physical findings, cellular and molecular actions, The Sourcebook of Bacterial Protein Toxins, pp.348-389, 2006.
DOI : 10.1016/B978-012088445-2/50024-X

O. Sullivan, G. A. Mohammed, N. Foran, P. G. Lawrence, G. W. Dolly et al., Rescue of Exocytosis in Botulinum Toxin A-poisoned Chromaffin Cells by Expression of Cleavage-resistant SNAP-25, Journal of Biological Chemistry, vol.268, issue.52, pp.36897-36904, 1999.
DOI : 10.1091/mbc.9.3.585

E. Fernandez-salas, L. E. Steward, H. Ho, P. E. Garay, S. W. Sun et al., Plasma membrane localization signals in the light chain of botulinum neurotoxin, Proc. Natl. Acad. Sci, pp.3208-3213, 2004.
DOI : 10.1093/emboj/20.21.5950

URL : http://www.pnas.org/content/101/9/3208.full.pdf

T. Hayashi, H. Mcmahon, S. Yamashi, T. Binz, Y. Hata et al., Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly, EMBO J, vol.13, pp.5051-5061, 1994.

L. L. Pellegrini, V. O-'connor, F. Lottspeich, and H. Betz, Clostridial neurotoxins compromise the stability of a low energy SNARE complex mediating NSF activation of synaptic vesicle fusion

R. Cohen, R-type voltage-gated ca2+ channel interacts with synaptic proteins and recruits synaptotagmin to the plasma membrane of xenopus oocytes, Neuroscience, vol.128, issue.4, pp.831-841, 2004.
DOI : 10.1016/j.neuroscience.2004.07.027

V. E. Degtiar, R. H. Scheller, and R. W. Tsien, Syntaxin Modulation of Slow Inactivation of N-Type Calcium Channels, The Journal of Neuroscience, vol.20, issue.12, pp.4355-4367, 2000.
DOI : 10.1523/JNEUROSCI.20-12-04355.2000

E. F. Stanley, Syntaxin I modulation of presynaptic calcium channel inactivation revealed by botulinum toxin C1, European Journal of Neuroscience, vol.460, issue.6, pp.1303-1305, 2003.
DOI : 10.1038/385340a0

O. Wiser, M. Trus, A. Hernandez, E. Renstrom, S. Barg et al., Atlas, D. The voltage sensitive Lc-type Ca 2+ channel is functionally coupled to the exocytotic machinery, Proc. Natl

J. B. Bergsman and R. W. Tsien, Syntaxin Modulation of Calcium Channels in Cortical Synaptosomes As Revealed by Botulinum Toxin C1, The Journal of Neuroscience, vol.20, issue.12, pp.4368-4378, 2000.
DOI : 10.1523/JNEUROSCI.20-12-04368.2000

J. Aleu, J. Blasi, C. Solsona, and J. Marsal, Calcium-dependent acetylcholine release from Xenopus oocytes: Simultaneous ionic currents and acetylcholine release recordings. Eur, J. Neurochem, vol.8, pp.1442-1448, 2002.
DOI : 10.1046/j.1460-9568.2002.02208.x

E. F. Stanley and R. R. Mirotznik, Cleavage of syntaxin prevents G-protein regulation of presynaptic calcium channels, Nature, vol.385, issue.6614, pp.340-343, 1997.
DOI : 10.1038/385340a0

J. Ji, S. Tsuk, A. M. Salapatek, X. Huang, D. Chikvashvili et al., The 25-kDa Synaptosome-associated Protein (SNAP-25) Binds and Inhibits Delayed Rectifier Potassium Channels in Secretory Cells, Journal of Biological Chemistry, vol.1, issue.23, pp.20195-20204, 2002.
DOI : 10.1093/emboj/19.6.1279

URL : http://www.jbc.org/content/277/23/20195.full.pdf

J. W. Putney and . Jr, A model for receptor-regulated calcium entry, Cell Calcium, vol.7, issue.1, pp.1-12, 1986.
DOI : 10.1016/0143-4160(86)90026-6

R. S. Lewis, The molecular choreography of a store-operated calcium channel, Nature, vol.7, issue.7133, pp.284-287, 2007.
DOI : 10.1016/S0167-4838(00)00105-9

M. R. Popoff, E. Chaves-olarte, E. Lemichez, C. Von-eichel-streiber, M. Thelestam et al., Lethal Toxin Glucosylation, Journal of Biological Chemistry, vol.9, issue.17, pp.10217-10224, 1996.
DOI : 10.1016/0092-8674(95)90507-3

URL : https://hal.archives-ouvertes.fr/pasteur-01406497

C. Hermann, M. R. Ahmadian, and F. Hofmann, Functional Consequences of Monoglucosylation of Ha-Ras at Effector Domain Amino Acid Threonine 35, Journal of Biological Chemistry, vol.225, issue.26, pp.16134-16139, 1998.
DOI : 10.1021/bi972592c

I. R. Vetter, F. Hofmann, S. Wohlgemuth, and C. Hermann, Structural consequences of mono-glucosylation of Ha-Ras by Clostridium sordellii lethal toxin, Journal of Molecular Biology, vol.301, issue.5, pp.1091-1095, 2000.
DOI : 10.1006/jmbi.2000.4045

M. R. Popoff and P. Bouvet, Clostridial toxins, Future Microbiology, vol.274, issue.8, pp.1021-1064, 2009.
DOI : 10.1074/jbc.274.16.11046

URL : https://hal.archives-ouvertes.fr/hal-00105901

K. Aktories, Just, I. Clostridial Rho-inhibiting protein toxins, Curr. Top Microbiol. Immunol, vol.291, pp.113-145, 2005.

M. Vogelsgesang and A. Pautsch, C3 exoenzymes, novel insights into structure and action of Rho-ADP-ribosylating toxins, Naunyn-Schmiedeberg's Archives of Pharmacology, vol.69, issue.5-6, pp.347-360, 2007.
DOI : 10.1161/01.ATV.20.3.883

URL : https://link.springer.com/content/pdf/10.1007%2Fs00210-006-0113-y.pdf

N. Djouder, E. Aneiros, A. Cavalie, and K. Aktories, Effects of Large Clostridial Cytotoxins on Activation of RBL 2H3-hm1 Mast Cells Indicate Common and Different Roles of Rac in Fcepsilon RI and M1-Receptor Signaling, Journal of Pharmacology and Experimental Therapeutics, vol.304, issue.3, pp.1243-1250, 2003.
DOI : 10.1124/jpet.102.045351

S. Gasman, S. Chasserot-golaz, M. R. Popoff, D. Aunis, and M. F. Bader, Involvement of Rho GTPases in calcium-regulated exocytosis from adrenal chromaffin cells, J. Cell Sci, vol.112, pp.4763-4771, 1999.

A. Kowluru, G. Li, M. E. Rabaglia, V. B. Segu, F. Hofmann et al., Evidence for Differential Roles of the Rho Subfamily of GTP-Binding Proteins in Glucose- and Calcium-Induced Insulin Secretion from Pancreatic ?? Cells, Biochemical Pharmacology, vol.54, issue.10, pp.1097-1108, 1997.
DOI : 10.1016/S0006-2952(97)00314-6

U. Prepens, I. Just, C. Von-eichel-streiber, and K. Aktories, Toxin B (Monoglucosyltransferase), Journal of Biological Chemistry, vol.269, issue.13, pp.7324-7329, 1996.
DOI : 10.1083/jcb.105.4.1473

J. Barbier, M. R. Popoff, and J. Molgo, Degeneration and Regeneration of Murine Skeletal Neuromuscular Junctions after Intramuscular Injection with a Sublethal Dose of Clostridium sordellii Lethal Toxin, Infection and Immunity, vol.72, issue.6, pp.3120-3128, 2004.
DOI : 10.1128/IAI.72.6.3120-3128.2004

URL : https://hal.archives-ouvertes.fr/hal-00169722

B. Geny, H. Khum, C. Fitting, L. Zarantonelli, C. Mazuet et al., Clostridium sordellii Lethal Toxin Kills Mice by Inducing a Major Increase in Lung Vascular Permeability, The American Journal of Pathology, vol.170, issue.3, pp.1003-1017, 2007.
DOI : 10.2353/ajpath.2007.060583

URL : http://europepmc.org/articles/pmc1864880?pdf=render

C. Pothoulakis, I. Castagliuolo, and J. Lamont, Nerves and Intestinal Mast Cells Modulate Responses to Enterotoxins, Physiology, vol.13, issue.2, pp.58-63, 1998.
DOI : 10.1016/0016-5085(95)28065-0

N. Djouder, U. Prepens, K. Aktories, and A. Cavalie, Inhibition of Calcium Release-activated Calcium Current by Rac/Cdc42-inactivating Clostridial Cytotoxins in RBL Cells, Journal of Biological Chemistry, vol.483, issue.25, pp.18732-18738, 2000.
DOI : 10.1074/jbc.271.14.7883

URL : http://www.jbc.org/content/275/25/18732.full.pdf

B. Short and F. A. Barr, Membrane Traffic: Exocyst III ??? Makes a Family, Current Biology, vol.12, issue.1, pp.18-20, 2002.
DOI : 10.1016/S0960-9822(01)00641-8

URL : https://doi.org/10.1016/s0960-9822(01)00641-8

B. El-hadj, N. Popoff, M. R. Marvaud, J. C. Payrastre, B. Boquet et al., in HL-60 Cells, Journal of Biological Chemistry, vol.271, issue.20, pp.14021-14031, 1999.
DOI : 10.1016/S0304-3835(96)04439-4

D. K. Meyer, C. Olenik, F. Hofmann, H. Barth, J. Leemhuis et al., Receptor Channels in Rat Hippocampal Neurons: Evidence for a Role of the Small GTPase Rac1, The Journal of Neuroscience, vol.20, issue.18, pp.6743-6751, 2000.
DOI : 10.1523/JNEUROSCI.20-18-06743.2000

H. J. Murray and J. J. O-'connor, A role for monomeric G-proteins in synaptic plasticity in the rat dentate gyrus in vitro, Brain Research, vol.1000, issue.1-2, pp.85-91, 2004.
DOI : 10.1016/j.brainres.2003.11.044

A. Triller and D. Choquet, Synaptic structure and diffusion dynamics of synaptic receptors, Biology of the Cell, vol.95, issue.7, pp.465-476, 2003.
DOI : 10.1016/j.biolcel.2003.07.001

URL : http://onlinelibrary.wiley.com/doi/10.1016/j.biolcel.2003.07.001/pdf

D. A. Linseman, T. Laessig, M. K. Meintzer, M. Mcclure, H. Barth et al., An Essential Role for Rac/Cdc42 GTPases in Cerebellar Granule Neuron Survival, Journal of Biological Chemistry, vol.18, issue.42, pp.39123-39131, 2001.
DOI : 10.1074/jbc.274.49.35113

URL : http://www.jbc.org/content/276/42/39123.full.pdf

H. M. Marriott, T. J. Mitchell, and D. H. Dockrell, Pneumolysin: A Double-Edged Sword During the Host-Pathogen Interaction, Current Molecular Medicine, vol.8, issue.6, pp.497-509, 2008.
DOI : 10.2174/156652408785747924

J. Rossjohn, R. J. Gilbert, D. Crane, P. J. Morgan, T. J. Mitchell et al., The molecular mechanism of pneumolysin, a virulence factor from Streptococcus pneumoniae 1 1Edited by J. Thornton, Journal of Molecular Biology, vol.284, issue.2, pp.449-461, 1998.
DOI : 10.1006/jmbi.1998.2167

C. E. Soltani, E. M. Hotze, A. E. Johnson, and R. K. Tweten, Structural elements of the cholesteroldependent cytolysins that are responsible for their cholesterol-sensitive membrane interactions
DOI : 10.1073/pnas.0708104105

URL : http://www.pnas.org/content/104/51/20226.full.pdf

T. J. Mitchell, Pneumolysin: structure, function, and role in disease, The Sourcebook of Bacterial Protein Toxins, pp.680-699, 2006.
DOI : 10.1016/B978-012088445-2/50044-5

C. E. Soltani, E. M. Hotze, A. E. Johnson, and R. K. Tweten, Specific Protein-Membrane Contacts Are Required for Prepore and Pore Assembly by a Cholesterol-dependent Cytolysin, Journal of Biological Chemistry, vol.14, issue.21, pp.15709-15716, 2007.
DOI : 10.1016/S1438-4221(00)80039-9

URL : http://www.jbc.org/content/282/21/15709.full.pdf

T. X. Dang, E. M. Hotze, I. Rouiller, R. K. Tweten, and E. M. Wilson-kubalek, Prepore to pore transition of a cholesterol-dependent cytolysin visualized by electron microscopy, Journal of Structural Biology, vol.150, issue.1, pp.100-108, 2005.
DOI : 10.1016/j.jsb.2005.02.003

R. Ramachandran, R. K. Tweten, and A. Johnson, Membrane-dependent conformational changes initiate cholesterol-dependent cytolysin oligomerization and intersubunit ??-strand alignment, Nature Structural & Molecular Biology, vol.277, issue.8
DOI : 10.1016/S0076-6879(97)77028-9

A. P. Heuck, C. G. Savva, A. Holzenburg, and A. Johnson, Conformational Changes That Effect Oligomerization and Initiate Pore Formation Are Triggered throughout Perfringolysin O upon Binding to Cholesterol, Journal of Biological Chemistry, vol.600, issue.31, pp.22629-22637, 2007.
DOI : 10.1002/1439-7633(20010401)2:4<265::AID-CBIC265>3.0.CO;2-V

URL : http://www.jbc.org/content/282/31/22629.full.pdf

J. Rossjohn, G. Polekhina, S. C. Feil, C. J. Morton, R. K. Tweten et al., Structures of Perfringolysin O Suggest a Pathway for Activation of Cholesterol-dependent Cytolysins, Journal of Molecular Biology, vol.367, issue.5
DOI : 10.1016/j.jmb.2007.01.042

URL : http://europepmc.org/articles/pmc3674820?pdf=render

R. Ramachandran, A. P. Heuck, R. K. Tweten, and A. Johnson, Structural insights into the membrane-anchoring mechanism of a cholesterol-dependent cytolysin, Nature Structural Biology, vol.9, pp.823-827, 2002.
DOI : 10.1038/nsb855

A. P. Heuck, E. M. Hotze, R. K. Tweten, and A. Johnson, Mechanism of Membrane Insertion of a Multimeric ??-Barrel Protein, Molecular Cell, vol.6, issue.5, pp.1233-1242, 2000.
DOI : 10.1016/S1097-2765(00)00119-2

URL : https://doi.org/10.1016/s1097-2765(00)00119-2

O. Shatursky, A. Heuck, L. Shepard, J. Rossjhon, M. Parker et al., The Mechanism of Membrane Insertion for a Cholesterol-Dependent Cytolysin, Cell, vol.99, issue.3, pp.293-299, 1999.
DOI : 10.1016/S0092-8674(00)81660-8

URL : https://doi.org/10.1016/s0092-8674(00)81660-8

E. M. Hotze, A. P. Heuck, D. M. Czajkowsky, Z. Shao, A. E. Johnson et al., Monomer-Monomer Interactions Drive the Prepore to Pore Conversion of a ??-Barrel-forming Cholesterol-dependent Cytolysin, Journal of Biological Chemistry, vol.59, issue.13, pp.11597-11605, 2002.
DOI : 10.1016/S0092-8674(00)80251-2

URL : http://www.jbc.org/content/277/13/11597.full.pdf

J. Rossjohn, S. C. Feil, W. J. Mckinstry, R. K. Tweten, and M. W. Parker, Structure of a Cholesterol-Binding, Thiol-Activated Cytolysin and a Model of Its Membrane Form, Cell, vol.89, issue.5, pp.685-692, 1997.
DOI : 10.1016/S0092-8674(00)80251-2

D. M. Czajkowsky, E. M. Hotze, Z. Shao, and R. K. Tweten, Vertical collapse of a cytolysin prepore moves its transmembrane ??-hairpins to the membrane, The EMBO Journal, vol.267, issue.16, pp.3206-3215, 2004.
DOI : 10.1016/S0079-6107(00)00014-6

R. A. Hirst, A. Kadioglu, C. O-'callaghan, and P. W. Andrew, The role of pneumolysin in pneumococcal pneumonia and meningitis, Clinical and Experimental Immunology, vol.67, issue.2, pp.195-201, 2004.
DOI : 10.1016/0882-4010(90)90016-J

J. S. Braun, J. E. Sublett, D. Freyer, T. J. Mitchell, J. L. Cleveland et al., Pneumococcal pneumolysin and H2O2 mediate brain cell apoptosis during meningitis, Journal of Clinical Investigation, vol.109, issue.1, pp.19-27, 2002.
DOI : 10.1172/JCI12035

URL : http://europepmc.org/articles/pmc150815?pdf=render

J. S. Braun, O. Hoffmann, M. Schickhaus, D. Freyer, E. Dagand et al., Pneumolysin Causes Neuronal Cell Death through Mitochondrial Damage, Infection and Immunity, vol.75, issue.9, pp.4245-4254, 2007.
DOI : 10.1128/IAI.00031-07

URL : http://iai.asm.org/content/75/9/4245.full.pdf

A. K. Stringaris, J. Geisenhainer, F. Bergmann, C. Balshusemann, U. Lee et al., Neurotoxicity of Pneumolysin, a Major Pneumococcal Virulence Factor, Involves Calcium Influx and Depends on Activation of p38 Mitogen-Activated Protein Kinase, Neurobiology of Disease, vol.11, issue.3, pp.355-368, 2002.
DOI : 10.1006/nbdi.2002.0561

J. Goldstein, W. E. Morris, C. F. Loidl, C. Tironi-farinatti, B. A. Mcclane et al., Clostridium perfringens Epsilon Toxin Increases the Small Intestinal Permeability in Mice and Rats, PLoS ONE, vol.29, issue.9, p.7065, 2009.
DOI : 10.1371/journal.pone.0007065.t002

URL : https://doi.org/10.1371/journal.pone.0007065

D. M. Losada-eaton, F. A. Uzal, and M. E. Fernandez-miyakawa, Clostridium perfringens epsilon toxin is absorbed from different intestinal segments of mice, Toxicon, vol.51, issue.7, pp.1207-1213, 2008.
DOI : 10.1016/j.toxicon.2008.02.008

J. W. Finnie, Pathogenesis of brain damage produced in sheep by Clostridium perfringens type D epsilon toxin: a review, Australian Veterinary Journal, vol.35, issue.4, pp.219-221, 2003.
DOI : 10.1016/S0021-9975(97)80044-8

D. Payne, E. D. Williamson, and R. W. Titball, The Clostridium perfringens epsilon-toxin, Reviews in Medical Microbiology, vol.8, pp.28-30, 1997.
DOI : 10.1097/00013542-199712001-00014

M. Nagahama and J. Sakurai, Distribution of labeled Clostridium perfringens epsilon toxin in mice, Toxicon, vol.29, issue.2, pp.211-217, 1991.
DOI : 10.1016/0041-0101(91)90105-Z

M. Nagahama and J. Sakurai, High-affinity binding of Clostridium perfringens epsilon-toxin to rat brain, Infect. Immun, vol.60, pp.1237-1240, 1992.

J. W. Finnie, Clostridium perfringens prototoxin-induced alteration of endothelial barrier antigen (EBA) immunoreactivity at the blood brain barrier (BBB), Exp. Neurol, vol.169, pp.72-82, 2001.

D. Buxton, The Use of An Immunoperoxidase Technique to Investigate by Light and Electron Microscopy the Sites of Binding of Clostridium Welchii Type-D Epsilon Toxin in Mice, Journal of Medical Microbiology, vol.11, issue.3, pp.289-292, 1978.
DOI : 10.1099/00222615-11-3-289

J. W. Finnie, P. C. Blumbergs, and J. Manavis, Neuronal Damage Produced in Rat Brains byClostridium perfringensType D Epsilon Toxin, Journal of Comparative Pathology, vol.120, issue.4, pp.415-420, 1999.
DOI : 10.1053/jcpa.1998.0289

O. Miyamoto, J. Minami, T. Toyoshima, T. Nakamura, T. Masada et al., Neurotoxicity of Clostridium perfringens epsilon-toxin for the rat hipocampus via glutamanergic system, Infect. Immun, vol.66, pp.2501-2508, 1998.

O. Miyamoto, K. Sumitami, T. Nakamura, S. Yamagani, S. Miyatal et al., epsilon toxin causes excessive release of glutamate in the mouse hippocampus, FEMS Microbiology Letters, vol.31, issue.1, pp.109-113, 2000.
DOI : 10.1136/vr.143.17.472

A. R. Cole, M. Gibert, M. R. Popoff, D. S. Moss, R. W. Titball et al., Clostridium perfringens ??-toxin shows structural similarity to the pore-forming toxin aerolysin, Nature Structural & Molecular Biology, vol.25, issue.8, pp.797-798, 2004.
DOI : 10.1046/j.1365-2958.1997.4541820.x

O. Knapp, E. Maier, R. Benz, B. Geny, and M. R. Popoff, Identification of the channel-forming domain of Clostridium perfringens Epsilon-toxin (ETX), Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1788, issue.12, pp.1788-2584, 2009.
DOI : 10.1016/j.bbamem.2009.09.020

A. Cole, C. Duchesnes, J. Mainil, M. R. Popoff, R. Titball et al., Structural studies on epsilon toxin from Clostridium perfringens, Protein Toxins of the Genus Clostridium and Vaccination Presses de la Faculté de Médecine Vétérinaire, p.95, 2003.

S. Miyata, J. Minami, E. Tamai, O. Matsushita, S. Shimamoto et al., ??-Toxin Forms a Heptameric Pore within the Detergent-insoluble Microdomains of Madin-Darby Canine Kidney Cells and Rat Synaptosomes, Journal of Biological Chemistry, vol.335, issue.42, pp.39463-39468, 2002.
DOI : 10.1111/j.1574-695X.2001.tb00503.x

URL : http://www.jbc.org/content/277/42/39463.full.pdf

L. Petit, M. Gibert, D. Gillet, C. Laurent-winter, P. Boquet et al., Clostridium perfringens epsilon-toxin acts on MDCK cells by forming a large membrane complex., Journal of Bacteriology, vol.179, issue.20
DOI : 10.1128/jb.179.20.6480-6487.1997

URL : http://jb.asm.org/content/179/20/6480.full.pdf

L. Petit, E. Maier, M. Gibert, M. R. Popoff, and R. Benz, Epsilon Toxin Induces a Rapid Change of Cell Membrane Permeability to Ions and Forms Channels in Artificial Lipid Bilayers, Journal of Biological Chemistry, vol.58, issue.19, pp.15736-15740, 2001.
DOI : 10.1016/S0092-8674(00)81564-0

URL : http://www.jbc.org/content/276/19/15736.full.pdf

P. Petit, J. Breard, V. Montalescol, N. Hadj, T. Levade et al., induces apoptotic cell death by disruption of mitochondrial homeostasis in HL-60 cells, Cellular Microbiology, vol.9, issue.11, pp.761-771, 2003.
DOI : 10.1016/S0959-437X(99)80016-1

URL : http://onlinelibrary.wiley.com/doi/10.1046/j.1462-5822.2003.00309.x/pdf

S. Miyata, O. Matsushita, J. Minami, S. Katayama, S. Shimamoto et al., ??-Toxin in the Synaptosomal Membrane, Journal of Biological Chemistry, vol.11, issue.17, pp.13778-13783, 2001.
DOI : 10.1074/jbc.274.51.36722

L. Petit, M. Gibert, A. Gourch, M. Bens, A. Vandewalle et al., Clostridium perfringens epsilon toxin rapidly decreases membrane barrier permeability of polarized MDCK cells, Cellular Microbiology, vol.61, issue.4967, pp.155-164, 2003.
DOI : 10.1006/exnr.2001.7652

URL : http://onlinelibrary.wiley.com/doi/10.1046/j.1462-5822.2003.00262.x/pdf

C. Chassin, M. Bens, J. De-barry, R. Courjaret, J. L. Bossu et al., Pore-forming epsilon toxin causes membrane permeabilization and rapid ATP depletion-mediated cell death in renal collecting duct cells, American Journal of Physiology-Renal Physiology, vol.293, issue.3, pp.927-937, 2007.
DOI : 10.1053/jcpa.2001.0514

URL : http://ajprenal.physiology.org/content/ajprenal/293/3/F927.full.pdf

M. J. Farthing, Enterotoxins and the enteric nervous system ??? a fatal attraction, International Journal of Medical Microbiology, vol.290, issue.4-5, pp.491-496, 2000.
DOI : 10.1016/S1438-4221(00)80073-9

M. J. Farthing, A. Casburn-jones, and M. R. Banks, Enterotoxins, enteric nerves, and intestinal secretion, Current Gastroenterology Reports, vol.110, issue.Suppl 2, pp.177-180, 2004.
DOI : 10.1113/jphysiol.1994.sp020091

T. R. Hirst and J. M. Souza, Vibrio cholerae and Escherichia coli thermolabile enterotoxin In The Sourcebook of Bacterial Protein Toxins, pp.270-290, 2006.
DOI : 10.1016/b978-012088445-2/50020-2

R. K. Holmes, M. G. Jobling, and T. D. Conell, Cholera toxin and related enterotoxins of Gram-negative bacteria. In Bacterial Toxins and Virulence Factors in Disease, pp.225-255, 1995.

L. De-haan and T. Hirst, Cholera toxin: A paradigm for multi-functional engagement of cellular mechanisms (Review), Molecular Membrane Biology, vol.40, issue.2, pp.77-92, 2004.
DOI : 10.1021/bi002628s

B. J. Nichols, A distinct class of endosome mediates clathrin-independent endocytosis to the Golgi complex, Nature Cell Biology, vol.274, issue.5, pp.374-378, 2002.
DOI : 10.1126/science.274.5285.239

Y. Fujinaga, A. A. Wolf, C. Rodighiero, H. E. Wheeler, B. Tsai et al., Gangliosides that associate with lipid rafts mediate transport of cholera and related toxins from the plasma membrane to endoplasmic reticulum
DOI : 10.1091/mbc.e03-06-0354

URL : http://www.molbiolcell.org/content/14/12/4783.full.pdf

L. Johannes, D. Tenza, C. Antony, and B. Goud, Retrograde Transport of KDEL-bearing B-fragment of Shiga Toxin, Journal of Biological Chemistry, vol.268, issue.31, pp.19554-19561, 1997.
DOI : 10.1083/jcb.119.2.273

URL : http://www.jbc.org/content/272/31/19554.full.pdf

O. Lundgren, 5-Hydroxytryptamine, enterotoxins, and intestinal fluid secretion, Gastroenterology, vol.115, issue.4, pp.1009-1012, 1998.
DOI : 10.1016/S0016-5085(98)70275-6

J. L. Turvill, F. H. Mourad, and M. J. Farthing, Crucial role for 5-HT in cholera toxin but not Escherichia coli heat-labile enterotoxin-intestinal secretion in rats, Gastroenterology, vol.115, issue.4, pp.883-890, 1998.
DOI : 10.1016/S0016-5085(98)70260-4

F. H. Mourad, L. J. Donnell, J. A. Dias, E. Ogutu, E. A. Andre et al., Role of 5-hydroxytryptamine type 3 receptors in rat intestinal fluid and electrolyte secretion induced by cholera and Escherichia coli enterotoxins., Gut, vol.37, issue.3, pp.340-345, 1995.
DOI : 10.1136/gut.37.3.340

URL : http://gut.bmj.com/content/gutjnl/37/3/340.full.pdf

C. P. Bearcroft, D. Perrett, and M. J. Farthing, 5-hydroxytryptamine release into human jejunum by cholera toxin., Gut, vol.39, issue.4, pp.528-531, 1996.
DOI : 10.1136/gut.39.4.528

URL : http://gut.bmj.com/content/gutjnl/39/4/528.full.pdf

O. Nilsson, J. Cassuto, P. A. Larsson, M. Jodal, P. Lidberg et al., 5-Hydroxytryptamine and cholera secretion: a histochemical and physiological study in cats., Gut, vol.24, issue.6, pp.542-548, 1983.
DOI : 10.1136/gut.24.6.542

URL : http://gut.bmj.com/content/gutjnl/24/6/542.full.pdf

E. Beubler and G. Horina, 5-HT2 and 5-HT3 receptor subtypes mediate cholera toxin-induced intestinal fluid secretion in the rat, Gastroenterology, vol.99, issue.1, pp.83-89, 1990.
DOI : 10.1016/0016-5085(90)91233-V

K. H. Buchheit, Inhibition of cholera toxin-induced intestinal secretion by the 5-HT3 receptor antagonist ICS 205?930, Naunyn-Schmiedeberg's Archives of Pharmacology, vol.339, issue.6, pp.704-705, 1989.
DOI : 10.1007/BF00168665

D. T. Beattie and J. A. Smith, Serotonin pharmacology in the gastrointestinal tract: a review, Naunyn-Schmiedeberg's Archives of Pharmacology, vol.15, issue.Suppl 2, pp.181-203, 2008.
DOI : 10.1111/j.1476-5381.1996.tb15452.x

H. J. Cooke, Neurotransmitters in Neuronal Reflexes Regulating Intestinal Secretion, Annals of the New York Academy of Sciences, vol.347, issue.1
DOI : 10.1111/j.1476-5381.1993.tb13599.x

O. Lundgren, Enteric Nerves and Diarrhoea, Pharmacology and Toxicology, vol.69, issue.3, pp.109-120, 2002.
DOI : 10.1016/S0016-5085(98)70260-4

URL : http://onlinelibrary.wiley.com/doi/10.1034/j.1600-0773.2002.900301.x/pdf

J. L. Turvill, P. Connor, and M. J. Farthing, Neurokinin 1 and 2 receptors mediate cholera toxin secretion in rat jejunum, Gastroenterology, vol.119, issue.4, pp.1037-1044, 2000.
DOI : 10.1053/gast.2000.18147

I. Castagliuolo, J. T. Lamont, R. Letourneau, C. Kelly, J. C. O-'keane et al., Neuronal involvement in the intestinal effects of Clostridium difficile toxin A and Vibrio cholerae enterotoxin in rat ileum, Gastroenterology, vol.107, issue.3, pp.657-665, 1994.
DOI : 10.1016/0016-5085(94)90112-0

C. Pothoulakis and J. Lamont, toxins, American Journal of Physiology-Gastrointestinal and Liver Physiology, vol.276, issue.2
DOI : 10.1016/S0016-5085(98)70315-4

I. Castagliuolo, M. Riegler, A. Pasha, S. Nikulasson, B. Lu et al., Neurokinin-1 (NK-1) receptor is required in Clostridium difficile- induced enteritis., Journal of Clinical Investigation, vol.101, issue.8, pp.1547-1550, 1998.
DOI : 10.1172/JCI2039

URL : http://www.jci.org/articles/view/2039/files/pdf

I. Castagliuolo, C. C. Wang, L. Valenick, A. Pasha, S. Nikulasson et al., Neurotensin is a proinflammatory neuropeptide in colonic inflammation, Journal of Clinical Investigation, vol.103, issue.6, pp.843-849, 1999.
DOI : 10.1172/JCI4217

URL : http://www.jci.org/articles/view/4217/files/pdf

Y. Xia, H. Z. Hu, S. Liu, C. Pothoulakis, and J. D. Wood, Clostridium difficile toxin A excites enteric neurones and suppresses sympathetic neurotransmission in the guinea pig, Gut, vol.46, issue.4, pp.481-486, 2000.
DOI : 10.1136/gut.46.4.481

URL : http://gut.bmj.com/content/gutjnl/46/4/481.full.pdf

B. A. Mcclane, Clostridium perfringens enterotoxin, The Cmprehensive Sourcebook of Bacterial Protein Toxins, pp.763-778, 2006.

T. Senda, N. Sugimoto, Y. Horiguchi, and M. Matsuda, The enterotoxin of Clostridium perfringens type a binds to the presynaptic nerve endings in neuromuscular junctions of mouse phrenic nerve-diaphragm, Toxicon, vol.33, issue.4, pp.499-506, 1995.
DOI : 10.1016/0041-0101(94)00165-5

V. E. Rolfe and R. J. Levin, Vagotomy inhibits the jejunal fluid secretion activated by luminal ileal Escherichia coli STa in the rat in vivo, Gut, vol.44, issue.5, pp.615-619, 1999.
DOI : 10.1136/gut.44.5.615

F. H. Mourad and C. Nassar, Effect of vasoactive intestinal polypeptide (VIP) antagonism on rat jejunal fluid and electrolyte secretion induced by cholera and Escherichia coli enterotoxins, Gut, vol.47, issue.3, pp.382-386, 2000.
DOI : 10.1136/gut.47.3.382

URL : http://gut.bmj.com/content/gutjnl/47/3/382.full.pdf

V. Rolfe and R. J. Levin, Enterotoxin Escherichia coli STa activates a nitric oxide-dependent myenteric plexus secretory reflex in the rat ileum., The Journal of Physiology, vol.475, issue.3, pp.475-531, 1994.
DOI : 10.1113/jphysiol.1994.sp020091

URL : http://onlinelibrary.wiley.com/doi/10.1113/jphysiol.1994.sp020091/pdf

S. Eklund, M. Jodal, and O. Lundgren, The enteric nervous system participates in the secretory response to the heat stable enterotoxins of Escherichia coli in rats and cats, Neuroscience, vol.14, issue.2, pp.673-681, 1985.
DOI : 10.1016/0306-4522(85)90318-5

L. P. Stenfors-arnesen, A. Fagerlund, and P. Granum, and its food poisoning toxins, FEMS Microbiology Reviews, vol.27, issue.4, pp.579-606, 2008.
DOI : 10.1128/JB.01701-06

M. Toh, M. C. Moffitt, L. Henrichsen, M. Raftery, K. Barrow et al., Cereulide, the emetic toxin of Bacillus cereus, is putatively a product of nonribosomal peptide synthesis, Journal of Applied Microbiology, vol.23, issue.5, pp.992-1000, 2004.
DOI : 10.1016/0378-1097(94)00459-5

N. Agata, M. Ohta, M. Mori, and M. Isobe, A novel dodecadepsipeptide, cereulide, is an emetic toxin of Bacillus cereus, FEMS Microbiol. Lett, vol.129, pp.17-20, 1995.
DOI : 10.1111/j.1574-6968.1995.tb07550.x

P. F. Horwood, G. W. Burgess, and H. J. Oakey, Evidence for non-ribosomal peptide synthetase production of cereulide (the emetic toxin) in Bacillus cereus, FEMS Microbiology Letters, vol.65, issue.2, pp.319-324, 2004.
DOI : 10.1128/jb.170.10.4669-4674.1988

N. Agata, M. Ohta, and M. Mori, Production of an Emetic Toxin, Cereulide, Is Associated with a Specific Class of Bacillus cereus, Current Microbiology, vol.33, issue.1, pp.67-69, 1996.
DOI : 10.1007/s002849900076

K. Shinagawa, H. Konuma, H. Sekita, and S. Sugii, Emesis of rhesus monkeys induced by intragastric administration with the HEp-2 vacuolation factor (cereulide) produced by Bacillus cereus, FEMS Microbiol. Lett, vol.130, pp.87-90, 1995.
DOI : 10.1111/j.1574-6968.1995.tb07703.x

N. Agata, M. Mori, M. Ohta, S. Suwan, I. Ohtani et al., A novel dodecadepsipeptide, cereulide, isolated from Bacillus cereus causes vacuole formation in HEp-2 cells, FEMS Microbiol. Lett, vol.121, pp.31-34, 1994.
DOI : 10.1111/j.1574-6968.1994.tb07071.x

K. Yokoyama, M. Ito, N. Agata, M. Isobe, K. Shibayama et al., , is reversible in mice, FEMS Immunology & Medical Microbiology, vol.22, issue.1, pp.115-120, 1999.
DOI : 10.1111/j.1348-0421.1994.tb01788.x

S. M. Virtanen, M. Roivainen, M. A. Andersson, P. Ylipaasto, D. Hoornstra et al., In vitro toxicity of cereulide on porcine pancreatic Langerhans islets, Salkinoja-Salonen, M.S. In vitro toxicity of cereulide on porcine pancreatic Langerhans islets, pp.1029-1037, 2008.
DOI : 10.1016/j.toxicon.2008.01.019

M. A. Andersson, P. Hakulinen, U. Honkalampi-hamalainen, D. Hoornstra, J. C. Lhuguenot et al., Toxicological profile of cereulide, the Bacillus cereus emetic toxin, in functional assays with human, animal and bacterial cells, Salkinoja-Salonen, M. Toxicological profile of cereulide, the Bacillus cereus emetic toxin functional assays with human, animal and bacterial cells, pp.351-367, 2007.
DOI : 10.1016/j.toxicon.2006.10.006

V. V. Teplova, R. Mikkola, A. A. Tonshin, N. E. Saris, and M. S. Salkinoja-salonen, The higher toxicity of cereulide relative to valinomycin is due to its higher affinity for potassium at physiological plasma concentration, Toxicology and Applied Pharmacology, vol.210, issue.1-2, pp.39-46, 2006.
DOI : 10.1016/j.taap.2005.06.012

N. E. Saris, M. A. Andersson, R. Mikkola, L. C. Andersson, V. V. Teplova et al., Microbial toxin???s effect on mitochondrial survival by increasing K+ uptake, Toxicology and Industrial Health, vol.10, issue.3, pp.441-446, 2009.
DOI : 10.1016/j.toxicon.2008.01.019

T. Krakauer and B. G. Stiles, Staphylococcal enterotoxins, toxic-shock syndrome toxin-1, and streptococcal pyrogenic exotoxins: Some basic biology of bacterial superantigens, Rec. Res. Dev. Infect. Immun, vol.1, pp.21-27, 2003.

M. Jett, W. Brinkley, R. Neill, P. Gemski, and R. Hunt, Staphylococcus aureus enterotoxin B challenge of monkeys: Correlation of plasma levels of arachidonic acid cascade products with occurrence of illness, Infect. Immun, vol.58, pp.3494-3499, 1990.

G. Alber, P. H. Scheuber, B. Reck, B. Sailer-kramer, A. Hartmann et al., Role of substance P in immediate-type skin reactions induced by staphylococcal enterotoxin B in unsensitized monkeys, Journal of Allergy and Clinical Immunology, vol.84, issue.6, pp.880-885, 1989.
DOI : 10.1016/0091-6749(89)90383-7

G. Tiegs, R. Bang, and W. L. Neuhuber, Requirement of peptidergic sensory innervation for disease activity in murine models of immune hepatitis and protection by beta-adrenergic stimulation

X. Wang, B. R. Wang, X. J. Zhang, X. L. Duan, X. Guo et al., Fos Expression in the Rat Brain After Intraperitoneal Injection of Staphylococcus Enterotoxin B and the Effect of Vagotomy, Neurochemical Research, vol.29, issue.9, pp.1667-1674, 2004.
DOI : 10.1023/B:NERE.0000035801.81825.2a

D. L. Hu, G. Zhu, F. Mori, K. Omoe, M. Okada et al., Staphylococcal enterotoxin induces emesis through increasing serotonin release in intestine and it is downregulated by cannabinoid receptor 1, Cellular Microbiology, vol.121, issue.9, pp.2267-2277, 2007.
DOI : 10.1093/infdis/111.3.233

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1462-5822.2007.00957.x/pdf