B. Geny and M. Popoff, Bacterial protein toxins and lipids: pore formation or toxin entry into cells, Biology of the Cell, vol.44, issue.11, pp.667-78, 2006.
DOI : 10.1021/bi047705o

URL : http://onlinelibrary.wiley.com/doi/10.1042/BC20050082/pdf

J. Ballard, J. Crabtree, B. Roe, R. Tweten, M. Sousa et al., The primary structure of Clostridium septicum alpha-toxin exhibits similarity with that of Aeromonas hydrophila aerolysin Homology between the seed cytolysin enterolobin and bacterial aerolysins, Morhy L. Determination of the amino acid sequence of the plant cytolysin enterolobin, pp.340-344, 1994.

A. Cole, M. Gibert, M. Popoff, D. Moss, R. Titball et al., Clostridium perfringens epsilon-toxin shows structural similarity to the pore-forming toxin aerolysin Structural analysis of the Laetiporus sulphureus hemolytic pore-forming lectin in complex with sugars, Nat Struct Mol Biol J Biol Chem, vol.117, issue.280, pp.797-805, 2004.

T. Akiba, Y. Abe, and S. Kitada, Crystal structure of the parasporin- 2 Bacillus thuringiensis toxin that recognizes cancer cells The cholesterol-dependent cytolysins, J Mol Biol Curr Top Microbiol Immunol, vol.386, issue.257, pp.121-154, 2001.

J. Melton, J. Tweten, M. Parker, J. Buckley, and J. Postma, The comprehensive sourcebook of bacterial protein toxins. 3 rd ed Structure of the Aeromonas toxin proaerolysin in its water-soluble and membranechannel states, Nature, vol.1011, issue.367, pp.623-653, 1994.

I. Iacovache, P. Paumard, and H. Scheib, A rivet model for channel formation by aerolysin-like pore-forming toxins Interactions between aerolysin, erythrocytes, and erythrocyte membranes, EMBO J Infect Immun, vol.2513, issue.11, pp.457-66, 1975.
DOI : 10.1038/sj.emboj.7600959

URL : http://emboj.embopress.org/content/embojnl/25/3/457.full.pdf

B. Austin, A. C. Austin, B. Altweg, M. Gosling, P. Joseph et al., The genus Aeromonas Molecular cloning and expression in Escherichia coli of the structural gene for the hemolytic toxin aerolysin from Aeromonas hydrophila Nucleotide sequence of the gene for the hole-forming toxin aerolysin of Aeromonas hydrophila Cloning, Expression, and sequence analysis of a cytolytic enterotoxin gene from Aeromonas hydrophila, Mol Gen Genet J Bacteriol Chopra AK Can J Microbiol, vol.14151617, issue.39, pp.197-244, 1986.

G. Wang, K. Tyler, C. Munro, and W. Johnson, Characterization of cytotoxic, hemolytic Aeromonas caviae clinical isolates and their identification by determining presence of a unique hemolysin gene

A. Khan, E. Kim, C. Cerniglia, J. Janda, S. Abbott et al., Molecular cloning, nucleotide sequence, and expression in Escherichia coli of a hemolytic toxin (aerolysin) gene from Aeromonas trota [19] Kirov SM Food microbiology: fundamentals and frontiers Evolving concepts regarding the genus Aeromonas: an expanding Panorama of species, disease presentations, and unanswered questions Incidence of haemolysin-positive and drug-resistant Aeromonas hydrophila in freshly caught finfish and prawn collected from major commercial fishes of coastal South India, J Clin Micrbiol Appl Environ Microbiol Washington DC: American Society for Microbiology Clin Infect Dis FEMS Immunol Med Microbiol, vol.342022, issue.36, pp.3203-3208, 1996.

A. Chopra, X. Xu, and D. Ribardo, The cytotoxic enterotoxin of Aeromonas hydrophila induces proinflammatory cytokine production and activates arachidonic acid metabolism in macrophages Marker exchange mutagenesis of the aerolysin determinant in Aeromonas hydrophila demonstrates the role of aerolysin in A. hydrophilaassociated systemic infections Aerolysin from Aeromonas hydrophila and related toxins The comprehensive sourcebook of bacterial protein toxins, Infect Immun Infect Immun Curr Top Microbiol Immunol, vol.68232526, issue.3, pp.2808-2826, 1997.

S. Howard, J. Critch, A. Bedi, and S. Howard, Isolation and analysis of eight exe genes and their involvement in extracellular protein secretion and outer membrane assembly in Aeromonas hydrophila., Journal of Bacteriology, vol.175, issue.20, pp.6695-703, 1993.
DOI : 10.1128/jb.175.20.6695-6703.1993

R. Dalbey and C. Robinson, Protein translocation into and across the bacterial plasma membrane and the plant thylakoid membrane, Trends in Biochemical Sciences, vol.24, issue.1, pp.17-22, 1999.
DOI : 10.1016/S0968-0004(98)01333-4

K. Hardie, A. Schulze, M. Parker, and J. Buckley, Vibrio spp. secrete proaerolysin as a folded dimer without the need for disulphide bond formation, Molecular Microbiology, vol.17, issue.6, pp.1035-1079, 1995.
DOI : 10.1111/j.1365-2958.1995.mmi_17061035.x

S. Howard, H. Meiklejohn, D. Shivak, and R. Jahagirdar, A TonB-like protein and a novel membrane protein containing an ATP-binding cassette function together in exotoxin secretion, Molecular Microbiology, vol.22, issue.4, pp.595-60431, 1996.
DOI : 10.1046/j.1365-2958.1996.d01-1713.x

V. Ast, I. Schoenhofen, and G. Langen, ExeD secretion port multimer Secretion and properties of the large and small lobes of the channel-forming toxin aerolysin Dimer dissociation of the pore-forming toxin aerolysin precedes receptor binding Oligomerization of the channel-forming toxin aerolysin precedes insertion into lipid bilayers The channelforming protein proaerolysin remains a dimer at low concentrations in solution Spectroscopic study of the activation and oligomerization of the channel-forming toxin aerolysin: identification of the site of proteolytic activation al. Movement of a loop in domain 3 of aerolysin is required for channel formation Aerolysin and pertussis toxin share a common receptor-binding domain, Mol Microbiol Mol Microbiol J Biol Chem Biochemistry J Biol Chem Biochemistry Rossjohn J, Raja SM Biochemistry EMBO J, vol.4435373839, issue.16, pp.217-248, 1992.

C. Mackenzie, T. Hirama, J. Buckley, D. Diep, K. Nelson et al., Analysis of receptor binding by the channel-forming toxin aerolysin using surface plasmon resonance Expression and properties of an aerolysin ? Clostridium septicum alpha toxin hybrid protein Increased stability upon heptamerization of the pore-forming toxin aerolysin Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore Crystal structure of the anthrax toxin protective antigen, -Scheperkeuter GH. Pore formation by LamB of Escherichia coli in lipid bilayer membranes, pp.22604-22613, 1996.

H. Wilmsen, K. Leonhard, W. Tichelaar, J. Buckly, F. Pattus et al., The aerolysin membrane channel is formed by heptamerization of the monomer Conformational changes in aerolysin during the transition from the water-soluble protoxin to the membrane channel Secretion of hemolysin of Aeromonas sobria as protoxin and contribution of the propeptide region removed from the protoxin to the proteolytic stability of the toxin al. Conversion of a transmembrane to a water-soluble protein complex by a single point mutation, EMBO J Biochemistry Microbiol Immunol Nat Struct Biol, vol.114749, issue.9, pp.2457-63, 1992.

A. Habeeb, C. Lee, M. Atassi, H. Tateno, I. Goldstein et al., Clostridium perfringens beta toxin and Clostridium septicum alpha toxin: their mechanisms and possible role in pathogenesis Conformational studies on modified proteins and peptides. VII. Conformation of epsilonprototoxin and epsilon-toxin from Clostridium perfringens. Conformational changes associated with toxicity Molecular cloning, expression, and characterization of novel hemolytic lectins from the mushroom Laetiporus sulphureus, which show homology to bacterial toxins Identification of functional domains of Clostridium septicum alpha toxin The erythrocyte receptor for the channel-forming toxin aerolysin is a novel glycosylphosphatidylinositol-anchored protein The glycosylphosphatidylinositol-anchored surface glycoprotein Thy-1 is a receptor for the channel-forming toxin aerolysin, Microbiol Immunol Vet Microbiol Biochim Biophys Acta J Biol Chem Biochemistry Mol Microbiol J Biol Chem, vol.415253545556, issue.272, pp.527-562, 1973.

L. Abrami, M. Fivaz, P. Glauser, R. Parton, and F. Van-der-goot, A Pore-forming Toxin Interacts with a GPI-anchored Protein and Causes Vacuolation of the Endoplasmic Reticulum, The Journal of Cell Biology, vol.11, issue.3, pp.525-565, 1998.
DOI : 10.1083/jcb.115.1.75

T. Pearson, L. Saya, S. Howard, and J. Buckley, Caspase-1 activation of lipid metabolic pathways in response to bacterial pore-forming toxins promotes cell survival The use of aerolysin toxin as an aid for visualization of low numbers of African trypanosomes in whole blood [59] Ferguson MAJ. The structure, biosynthesis and functions of glycosyl-phosphatidylinositol anchors, and the contributions of trypanosome research Intracellular glycosylphosphatidyl-inositols accumulate on endosomes: toxicity of alpha-toxin to Leishmania major, Cell Acta Trop J Cell Sci Eukaryot Cell, vol.12660, issue.4, pp.1135-1180, 1982.

L. Abrami, M. Velluz, and Y. Hong, The glycan core of GPIanchored proteins modulates aerolysin binding but is not sufficient: the polypeptide moiety is required for the toxin-receptor interaction, FEBS Lett, vol.51262, pp.249-54, 2002.

V. Gordon, K. Nelson, and J. Buckley, Clostridium septicum alpha toxin uses glycosylphosphatidy-linositol-anchored protein receptors, J Biol Chem, vol.27463, pp.27274-80, 1999.
DOI : 10.1074/jbc.274.38.27274

URL : http://www.jbc.org/content/274/38/27274.full.pdf

L. Abrami, M. Fivaz, and E. Decroly, The pore-forming toxin proaerolysin is activated by furin The cytolytic toxin aerolysin must aggregate to disrupt erythrocytes, and aggregation is stimulated by human glycophorin The Cterminal peptide produced upon proteolytic activation of the cytolytic toxin aerolysin is not involved in channel formation, J Biol Chem Infect Immun J Biol Chem, vol.2736466, issue.269, pp.32656-61, 1988.

L. Abrami, F. Van-der-goot, H. Wilmsen, J. Buckley, F. Pattus et al., Plasma membrane microdomains act as concentration platforms to facilitate intoxication by aerolysin Site-directed mutagenesis at histidines of aerolysin from Aeromonas hydrophila: a lipid planar bilayer study Site-directed mutagenesis of the holeforming toxin aerolysin: studies on the roles of histidines in receptor binding and oligomerization of the monomer Protonation of His-132 promotes oligomerization of the channel-forming toxin Aerolysin, J Cell Biol Mol Microbiol Biochemistry Biochemistry EMBO J, vol.1477071, issue.15, pp.175-84, 1990.

H. T. Bayley, O. Knapp, E. Maier, J. Masín, P. Sebo et al., Pore formation by the Bordetella adenylate cyclase toxin in lipid bilayer membranes: role of voltage and pH Balance of electrostatic and hydrophobic interactions in the lysis of model membranes by E. coli alpha-haemolysin Reversible adsorption and nonreversible insertion of Escherichia coli alpha-hemolysin into lipid bilayers Cloning, nucleotide sequence and expression of a hemolysin gene of Clostridium septicum, J Cell Biochem Biochim Biophys Acta J Membr Biol Biophys J FEMS Microbiol Lett, vol.56747576, issue.117, pp.177-82, 1994.

J. Melton, M. Parker, J. Rossjohn, J. Buckley, R. Tweten et al., The identification and structure of the membrane-spanning domain of the Clostridium septicum alpha toxin Activation and mechanism of Clostridium septicum alpha toxin Aerolysin of Aeromonas sobria: Evidence for formation of ion-permeable channels and comparison with alpha-toxin of Staphylococcus aureus, J Biol Chem Mol Microbiol Infect Immun, vol.279777879, issue.58, pp.14315-14337, 1990.

E. Gouaux, S. Howard, J. M. Buckley, U. Kubitscheck, G. Ugochukwu et al., Alpha-hemolysin from Staphylococcus aureus: an archetype of beta-barrel, channel-forming toxins Membrane glycoprotein receptor and hole-forming properties of a cytolytic protein toxin Optical single-channel analysis of the aerolysin pore in erythrocyte membranes, J Struct Biol Biochemistry Biophys J, vol.121808182, issue.70, pp.110-132, 1982.

K. Krause, M. Fivaz, A. Monod, F. Van-der-goot, K. Nelson et al., Aerolysin induces G-protein activation and Ca 2+ release from intracellular stores in human granulocytes [83] Dinarello CA. A signal for the caspase-1 inflammasome free of TLR Channels formed by subnanomolar concentrations of the toxin aerolysin trigger apoptosis of T lymphomas Identification of Aeromonas hydrophila cytotoxic enterotoxin-induced genes in macrophages using microarrays Aeromonas hydrophila cytotoxic enterotoxin activates mitogen-activated protein kinases and induces apoptosis in murine macrophages and human intestinal epithelial cells Mitogen-activated protein kinase pathways defend against bacterial pore-forming toxins Differential role of p38 mitogen activated protein kinase for cellular recovery from attack by pore-forming S. aureus alpha-toxin or streptolysin O nontraumatic gangrene due to Clostridium septicum, J Biol Chem Immunity Cell Microbiol J Biol Chem J Biol Chem Proc Natl Acad Sci Biochem Biophys Res Commun Rev Infect Dis, vol.2738486878990, issue.12, pp.18122-9383, 1990.
DOI : 10.1074/jbc.273.29.18122

URL : http://www.jbc.org/content/273/29/18122.full.pdf

C. Hatheway, Toxigenic clostridia., Clinical Microbiology Reviews, vol.3, issue.1, pp.66-98, 1990.
DOI : 10.1128/CMR.3.1.66

B. Abella, P. Kuchinic, T. Hiraoka, D. Howes, C. Kennedy et al., Atraumatic clostridial myonecrosis: case report and literature review The alpha-toxin of Clostridium septicum is essential for virulence, J Emerg Med Mol Microbiol, vol.2493, issue.57, pp.401-406, 2003.
DOI : 10.1016/s0736-4679(03)00037-4

V. Gordon, R. Benz, K. Fujii, S. Leppla, R. Tweten et al., Cytotoxicity of Clostridium septicum alpha-toxin: its oligomerization in detergent resistant membranes of mammalian cells Clostridium septicum alpha-toxin is active against the parasitic protozoan Toxoplasma gondii and targets members of the SAG family of glycosylphosphatidyl-inositol-anchored surface proteins Genetic variation and cross-reactivity of Clostridium septicum alpha-toxin Purification and characterization of the lethal toxin (alpha-toxin) of Clostridium septicum The propeptide of Clostridium septicum alpha toxin functions as an intramolecular chaperone and is a potent inhibitor of alpha toxin-dependent cytolysis, [99] Hong Y, Ohishi K, Inoue N, et al. Requirement of N-glycan on GPI-anchored proteins for efficient binding of aerolysin but not Clostridium septicum alpha-toxin, pp.4130-4134, 1992.

O. Knapp, E. Maier, B. Mkaddem, and S. , Clostridium septicum alpha-toxin forms pores and induces rapid cell necrosis, Toxicon, vol.55, issue.1, pp.61-72, 2009.
DOI : 10.1016/j.toxicon.2009.06.037

URL : https://hal.archives-ouvertes.fr/pasteur-01509604

C. Kennedy, D. Smith, D. Lyras, A. Chakravorty, and J. Rood, Programmed Cellular Necrosis Mediated by the Pore-Forming ??-Toxin from Clostridium septicum, PLoS Pathogens, vol.134, issue.7, p.1000516, 2009.
DOI : 10.1371/journal.ppat.1000516.g007

URL : https://doi.org/10.1371/journal.ppat.1000516

M. Sousa and L. Morhy, Enterolobin, a hemolytic protein from Enterolobium contortisiliquum seeds (Leguminosae?Mimosoideae) Purification and character ization, An Acad Bras Cienc, vol.61, pp.405-417, 1989.

S. Bittencourt, L. Silva, and R. Azevedo, The plant cytolytic protein enterolobin assumes a dimeric structure in solution, FEBS Letters, vol.276, issue.1-3, pp.47-51, 2003.
DOI : 10.1074/jbc.M008097200

URL : http://onlinelibrary.wiley.com/doi/10.1016/S0014-5793(03)00763-4/pdf

F. Grecco, A. Dantas, F. Riet-correa, C. Leite, and J. Raposo, Cattle intoxication from Enterolobium contortisiliquum pods, Vet Hum Toxicol, vol.44, pp.160-162, 2002.

M. Brooks, M. Sterne, and G. Warrack, A reassessment of the criteria used for type differentiation of Clostridia perfringens, J Pathol Bacteriol, vol.75, pp.185-95, 1957.

L. Petit, M. Gibert, and M. Popoff, Clostridium perfringens: toxinotype and genotype, Trends in Microbiology, vol.7, issue.3, pp.104-114, 1999.
DOI : 10.1016/S0966-842X(98)01430-9

D. Payne, P. Oyston, J. Rood, B. Mcclane, J. Songer et al., The clostridia: molecular biology and pathogenisis, 1997.

M. Nagahama, S. Ochi, and J. Sakurai, Assembly of Clostridium perfringens epsilon-toxin on MDCK cell membrane, J Nat Toxins, vol.7, pp.291-302, 1998.

M. Nagahama and J. Sakurai, Distribution of labeled Clostridium perfringens epsilon toxin in mice, Toxicon, vol.29, issue.2, pp.211-218, 1991.
DOI : 10.1016/0041-0101(91)90105-Z

J. Sakurai and M. Nagahama, Tryptophan content of Clostridium perfringens epsilon toxin, Infect Immun, vol.47, pp.260-263, 1995.

F. Uzal, W. Kelly, W. Morris, and R. Assis, Effects of Intravenous Injection of Clostridium perfringens Type D Epsilon Toxin in Calves, Journal of Comparative Pathology, vol.126, issue.1
DOI : 10.1053/jcpa.2001.0514

M. Nagahama and J. Sakura, High-affinity binding of Clostridium perfringens epsilon-toxin to rat brain, Infect Immun, vol.60, pp.1237-1277, 1992.

J. Sakurai, M. Nagahama, and Y. Fujii, Effect of Clostridium perfringens epsilon toxin on the cardiovascular system of rats, Infect Immun, vol.42, pp.1183-1189, 1983.

A. Soler-jover, J. Blasi, G. De-aranda, and I. , Effect of Epsilon Toxin???GFP on MDCK Cells and Renal Tubules In Vivo, Journal of Histochemistry & Cytochemistry, vol.9, issue.7, pp.931-973, 2004.
DOI : 10.1006/exnr.2001.7652

URL : http://journals.sagepub.com/doi/pdf/10.1369/jhc.4A6254.2004

O. Miyamoto, K. Sumitani, and T. Nakamura, epsilon toxin causes excessive release of glutamate in the mouse hippocampus, FEMS Microbiology Letters, vol.31, issue.1, pp.109-122, 2000.
DOI : 10.1136/vr.143.17.472

N. Mantis, Vaccines against the category B toxins: Staphylococcal enterotoxin B, epsilon toxin and ricin, Advanced Drug Delivery Reviews, vol.57, issue.9, pp.1424-1463, 2005.
DOI : 10.1016/j.addr.2005.01.017

S. Hunter, I. Clarke, D. Kelly, and R. Titball, Cloning and nucleotide sequencing of the Clostridium perfringens epsilon-toxin gene and its expression in Escherichia coli, Infect Immun, vol.60, pp.102-112, 1992.

S. Miyata, O. Matsushita, and J. Minami, ??-Toxin in the Synaptosomal Membrane, Journal of Biological Chemistry, vol.11, issue.17, pp.13778-83, 2001.
DOI : 10.1074/jbc.274.51.36722

S. Miyata, J. Minami, and E. Tamai, ??-Toxin Forms a Heptameric Pore within the Detergent-insoluble Microdomains of Madin-Darby Canine Kidney Cells and Rat Synaptosomes, Journal of Biological Chemistry, vol.335, issue.42, pp.39463-39471, 2002.
DOI : 10.1111/j.1574-695X.2001.tb00503.x

URL : http://www.jbc.org/content/277/42/39463.full.pdf

C. Chassin, M. Bens, and J. De-barry, Pore-forming epsilon toxin causes membrane permeabilization and rapid ATP depletion-mediated cell death in renal collecting duct cells, American Journal of Physiology-Renal Physiology, vol.293, issue.3, pp.927-964, 2007.
DOI : 10.1053/jcpa.2001.0514

URL : http://ajprenal.physiology.org/content/ajprenal/293/3/F927.full.pdf

S. Shimamoto, E. Tamai, and O. Matsushita, Epsilon-Toxin to Detergent-Resistant Membranes of Madin-Darby Canine Kidney Cells, Microbiology and Immunology, vol.169, issue.3, pp.245-53, 2005.
DOI : 10.1006/exnr.2001.7652

L. Petit, M. Gibert, and D. Gillet, Clostridium perfringens epsilon-toxin acts on MDCK cells by forming a large membrane complex., Journal of Bacteriology, vol.179, issue.20, pp.6480-6487, 1997.
DOI : 10.1128/jb.179.20.6480-6487.1997

URL : http://jb.asm.org/content/179/20/6480.full.pdf

S. Shortt, R. Titball, and C. Lindsay, An assessment of the in vitro toxicology of Clostri di urn perfringens type D ??-toxin in human and animal cells, Human & Experimental Toxicology, vol.7, issue.1, pp.108-124, 2000.
DOI : 10.1016/0300-483X(94)90201-1

L. Petit, M. Gibert, and A. Gourch, Clostridium perfringens epsilon toxin rapidly decreases membrane barrier permeability of polarized MDCK cells, Cellular Microbiology, vol.61, issue.4967, pp.155-64, 2003.
DOI : 10.1006/exnr.2001.7652

URL : http://onlinelibrary.wiley.com/doi/10.1046/j.1462-5822.2003.00262.x/pdf

E. Borrmann, H. Gunther, and H. Kohler, epsilon toxin on MDCK cells, FEMS Immunology & Medical Microbiology, vol.52, issue.2, pp.85-92, 2001.
DOI : 10.1128/jb.179.20.6480-6487.1997

URL : https://academic.oup.com/femspd/article-pdf/31/2/85/19165475/31-2-85.pdf

L. Petit, E. Maier, M. Gibert, M. Popoff, and R. Benz, Epsilon Toxin Induces a Rapid Change of Cell Membrane Permeability to Ions and Forms Channels in Artificial Lipid Bilayers, Journal of Biological Chemistry, vol.58, issue.19, pp.15736-15776, 2001.
DOI : 10.1016/S0092-8674(00)81564-0

P. Baumann, M. Clark, L. Baumann, and A. Broadwell, Bacillus sphaericus as a mosquito pathogen: properties of the organism and its toxins, Microbiol Rev, vol.55, pp.425-461, 1991.

H. De-barjac, M. Véron, C. Dumanoir, and V. , Biochemical and serological characterization of "Bacillus sphaericus" strains, pathogenic or non-pathogenic for mosquitoes (author's transl), Ann Microbiol, vol.131, pp.191-201, 1980.

A. Porter, E. Davidson, and J. Lui, Mosquitocidal toxins of bacilli and their genetic manipulation for effective biological control of mosquitoes, Microbiol Rev, vol.57, pp.838-61, 1993.

T. Thanabalu, J. Hindley, J. Jackson-yap, and C. Barry, Cloning, sequencing, and expression of a gene encoding a 100-kilodalton mosquitocidal toxin from Bacillus sphaericus SSII-1., Journal of Bacteriology, vol.173, issue.9, pp.2776-85, 1991.
DOI : 10.1128/jb.173.9.2776-2785.1991

URL : http://jb.asm.org/content/173/9/2776.full.pdf

T. Thanabalu, J. Hindley, and C. Barry, Proteolytic processing of the mosquitocidal toxin from Bacillus sphaericus SSII-1., Journal of Bacteriology, vol.174, issue.15, pp.5051-56, 1992.
DOI : 10.1128/jb.174.15.5051-5056.1992

URL : http://jb.asm.org/content/174/15/5051.full.pdf

J. Liu, A. Porter, B. Wee, and T. Thanabalu, New gene from nine Bacillus sphaericus strains encoding highly conserved 35.8- kilodalton mosquitocidal toxins, Appl Environ Microbiol, vol.62, pp.2174-2180, 1996.

T. Thanabalu and A. Porter, A Bacillus sphaericus gene encoding a novel type of mosquitocidal toxin of 31.8 kDa, Gene, vol.170, issue.1, pp.85-94, 1996.
DOI : 10.1016/0378-1119(95)00836-5

T. Hayashi, Y. Kamio, and F. Hishinuma, Pseudomonas aeruginosa cytotoxin: the nucleotide sequence of the gene and the mechanism of activation of the protoxin, Molecular Microbiology, vol.9, issue.7, pp.861-869, 1989.
DOI : 10.1016/0378-1119(85)90120-9

S. Chang, [32] Engineering for protein secretion in gram-positive bacteria, Methods Enzymol, vol.153, pp.507-523, 1987.
DOI : 10.1016/0076-6879(87)53075-0

O. Almog, A. González, and D. Klein, The 0.93?? Crystal Structure of Sphericase: A Calcium-loaded Serine Protease from Bacillus sphaericus, Journal of Molecular Biology, vol.332, issue.5, pp.1071-82, 2003.
DOI : 10.1016/j.jmb.2003.07.011

M. Tati, T. Thanabalu, and A. Porter, Gene from tropical Bacillus sphaericus encoding a protease closely related to subtilisins from Antarctic bacilli, Biochim Biophys Acta, vol.1352, pp.56-62, 1997.

A. Ito, Y. Sasaguri, and S. Kitada, Crystal Protein with Selective Cytocidal Action to Human Cells, Journal of Biological Chemistry, vol.978, issue.20, pp.21282-21288, 2004.
DOI : 10.1016/0005-2736(89)90118-1

URL : http://www.jbc.org/content/279/20/21282.full.pdf

H. Katayama, H. Yokota, and T. Akao, Parasporin-1, a Novel Cytotoxic Protein to Human Cells from Non-Insecticidal Parasporal Inclusions of Bacillus thuringiensis, Journal of Biochemistry, vol.137, issue.1, pp.17-25, 2005.
DOI : 10.1093/jb/mvi003

S. Yamashita, T. Akao, and E. Mizuki, Characterization of the anticancer-cell parasporal proteins of a Bacillus thuringiensis isolate

D. Lee, T. Akao, and S. Yamashita, Noninsecticidal Parasporal Proteins of a Bacillus thuringiensis Serovar shandongiensis Isolate Exhibit a Preferential Cytotoxicity against Human Leukemic T Cells, Biochemical and Biophysical Research Communications, vol.272, issue.1, pp.218-241, 2000.
DOI : 10.1006/bbrc.2000.2765

J. Li, J. Carroll, and D. Ellar, Crystal structure of insecticidal ??-endotoxin from Bacillus thuringiensis at 2.5 ?? resolution, Nature, vol.353, issue.6347, pp.815-836, 1991.
DOI : 10.1038/353815a0

P. Grochulski, L. Masson, and S. Borisova, Bacillus thuringiensisCrylA(a) Insecticidal Toxin: Crystal Structure and Channel Formation, Journal of Molecular Biology, vol.254, issue.3, pp.447-64, 1995.
DOI : 10.1006/jmbi.1995.0630

J. Li, P. Koni, and D. Ellar, Structure of the Mosquitocidal ??-Endotoxin CytB fromBacillus thuringiensissp.kyushuensisand Implications for Membrane Pore Formation, Journal of Molecular Biology, vol.257, issue.1, pp.129-52, 1996.
DOI : 10.1006/jmbi.1996.0152

R. Morse, T. Yamamoto, and R. Stroud, Structure of Cry2Aa Suggests an Unexpected Receptor Binding Epitope, Structure, vol.9, issue.5, pp.409-426, 2001.
DOI : 10.1016/S0969-2126(01)00601-3

URL : https://doi.org/10.1016/s0969-2126(01)00601-3

P. Boonserm, P. Davis, D. Ellar, and J. Li, Crystal Structure of the Mosquito-larvicidal Toxin Cry4Ba and Its Biological Implications, Journal of Molecular Biology, vol.348, issue.2, pp.363-82, 2005.
DOI : 10.1016/j.jmb.2005.02.013

P. Boonserm, M. Mo, C. Angsuthanasombat, and J. Lescar, Structure of the Functional Form of the Mosquito Larvicidal Cry4Aa Toxin from Bacillus thuringiensis at a 2.8-Angstrom Resolution, Journal of Bacteriology, vol.188, issue.9, pp.3391-401, 2006.
DOI : 10.1128/JB.188.9.3391-3401.2006

Y. Abe, H. Shimada, and S. Kitada, Raft-targeting and Oligomerization of Parasporin-2, a Bacillus thuringiensis Crystal Protein with Anti-Tumour Activity, Journal of Biochemistry, vol.52, issue.4, pp.269-75, 2008.
DOI : 10.1139/W05-134

E. Mizuki, M. Ohba, and T. Akao, Unique activity associated with non-insecticidal Bacillus thuringiensis parasporal inclusions: in vitro cell-killing action on human cancer cells, Journal of Applied Microbiology, vol.66, issue.3, pp.477-86, 1999.
DOI : 10.1007/BF01575980

URL : http://onlinelibrary.wiley.com/doi/10.1046/j.1365-2672.1999.00692.x/pdf

E. Mizuki, Y. Park, and H. Saitoh, Parasporin, a Human Leukemic Cell-Recognizing Parasporal Protein of Bacillus thuringiensis, Clinical and Vaccine Immunology, vol.7, issue.4, pp.625-659, 2000.
DOI : 10.1128/CDLI.7.4.625-634.2000

URL : http://cvi.asm.org/content/7/4/625.full.pdf

I. Goldstein, R. Hughes, M. Monsigny, T. Osawa, and N. Sharon, What should be called a lectin?, Nature, vol.119, issue.5760, p.66, 1980.
DOI : 10.1038/285066b0

B. Jr, H. Banik, and M. , The genus Laetiporus in North America, Harvard Papers Botany, vol.6, pp.43-55, 2001.

G. Konska, J. Guillot, M. Dusser, M. Damez, and B. Botton, Isolation and Characterization of an N-Acetyllactosamine-Binding Lectin from the Mushroom Laetiporus sulfureus, The Journal of Biochemistry, vol.116, issue.3, pp.519-542, 1994.
DOI : 10.1093/oxfordjournals.jbchem.a124555

R. Harris, P. Sims, and R. Tweten, Evidence that Clostridium perfringens theta-toxin induces colloid-osmotic lysis of erythrocytes, Infect Immun, vol.59, pp.2499-501, 1991.

D. Sher, Y. Fishman, and M. Zhang, Hydralysins, a New Category of ??-Pore-forming Toxins in Cnidaria, Journal of Biological Chemistry, vol.109, issue.24, pp.22847-55, 2005.
DOI : 10.1016/j.peptides.2004.07.016

URL : http://www.jbc.org/content/280/24/22847.full.pdf

D. Sher, Y. Fishman, N. Melamed-book, M. Zhang, and E. Zlotkin, Osmotically driven prey disintegration in the gastrovascular cavity of the green hydra by a pore-forming protein, The FASEB Journal, vol.22, issue.1, pp.207-221, 2008.
DOI : 10.1016/j.mod.2006.03.002

J. Ghosh and M. Caparon, glycohydrolase in cytolysin-mediated translocation, Molecular Microbiology, vol.62, issue.4, pp.1203-1217, 2006.
DOI : 10.1073/pnas.051429498

D. Blöcker, H. Barth, E. Maier, R. Benz, J. Barbieri et al., The C Terminus of Component C2II of Clostridium botulinum C2 Toxin Is Essential for Receptor Binding, Infection and Immunity, vol.68, issue.8, pp.4566-73, 2000.
DOI : 10.1128/IAI.68.8.4566-4573.2000

J. Marvaud, T. Smith, and M. Hale, Clostridium perfringens Iota-Toxin: Mapping of Receptor Binding and Ia Docking Domains on Ib, Infection and Immunity, vol.69, issue.4, pp.2435-2476, 2001.
DOI : 10.1128/IAI.69.4.2435-2441.2001

URL : http://iai.asm.org/content/69/4/2435.full.pdf

K. Cunningham, D. Lacy, J. Mogridge, and R. Collier, Mapping the lethal factor and edema factor binding sites on oligomeric anthrax protective antigen, Proceedings of the National Academy of Sciences, vol.50, issue.Pt 6, pp.7049-53, 2002.
DOI : 10.1107/S0907444994006396

URL : http://www.pnas.org/content/99/10/7049.full.pdf

J. Mogridge, K. Cunningham, D. Lacy, M. Mourez, and R. Collier, The lethal and edema factors of anthrax toxin bind only to oligomeric forms of the protective antigen, Proceedings of the National Academy of Sciences, vol.67, issue.4, pp.7045-7053, 2002.
DOI : 10.1021/bi990792d

O. Knapp, R. Benz, M. Gibert, J. Marvaud, and M. Popoff, Iota-Toxin with Lipid Bilayer Membranes, Journal of Biological Chemistry, vol.7, issue.8, pp.6143-52, 2002.
DOI : 10.1038/385833a0

S. Leppla, The comprehensive sourcebook of bacterial protein toxins, pp.323-370, 2006.

©. Knapp, Licensee Bentham Open This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http: //creativecommons.org/licenses/by- nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium