W. B. Pratt and D. O. Toft, Steroid Receptor Interactions with Heat Shock Protein and Immunophilin Chaperones, Endocrine Reviews, vol.18, issue.3, pp.306-360, 1997.
DOI : 10.1210/er.18.3.306

L. Whitesell and S. L. Lindquist, HSP90 and the chaperoning of cancer, Nature Reviews Cancer, vol.344, issue.10, pp.761-772, 2005.
DOI : 10.1016/j.jmb.2004.08.091

URL : http://www.nature.com/articles/nrc1716.pdf

L. Whitesell, P. D. Sutphin, E. J. Pulcini, J. D. Martinez, and P. H. Cook, The Physical Association of Multiple Molecular Chaperone Proteins with Mutant p53 Is Altered by Geldanamycin, an hsp90-Binding Agent, Molecular and Cellular Biology, vol.18, issue.3, pp.1517-1524, 1998.
DOI : 10.1128/MCB.18.3.1517

T. Iki, M. Yoshikawa, T. Meshi, and M. Ishikawa, Cyclophilin 40 facilitates HSP90-mediated RISC assembly in plants, The EMBO Journal, vol.1, issue.2, pp.267-278, 2012.
DOI : 10.1002/pro.5560010903

URL : http://emboj.embopress.org/content/embojnl/31/2/267.full.pdf

V. E. Walker, R. Atanasiu, H. Lam, and A. Shrier, Co-chaperone FKBP38 Promotes HERG Trafficking, Journal of Biological Chemistry, vol.40, issue.32, pp.23509-23516, 2007.
DOI : 10.1126/science.279.5350.519

URL : http://www.jbc.org/content/282/32/23509.full.pdf

Y. K. Banasavadi-siddegowda, FKBP38 Peptidylprolyl Isomerase Promotes the Folding of Cystic Fibrosis Transmembrane Conductance Regulator in the Endoplasmic Reticulum, Journal of Biological Chemistry, vol.12, issue.50, pp.43071-43080, 2011.
DOI : 10.1074/jbc.M109.032631

J. Li and J. Buchner, Structure, function and regulation of the hsp90 machinery, Biomed J, vol.36, pp.106-117, 2013.

G. Fischer, B. Wittmann-liebold, K. Lang, T. Kiefhaber, and F. Schmid, Cyclophilin and peptidyl-prolyl cis-trans isomerase are probably identical proteins, Nature, vol.337, issue.6206, pp.476-478, 1989.
DOI : 10.1038/337476a0

M. W. Harding, A. Galat, D. E. Uehling, and S. L. Schreiber, A receptor for the immuno-suppressant FK506 is a cis???trans peptidyl-prolyl isomerase, Nature, vol.341, issue.6244, pp.758-760, 1989.
DOI : 10.1038/341758a0

D. M. Hutt, FK506 Binding Protein 8 Peptidylprolyl Isomerase Activity Manages a Late Stage of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Folding and Stability, Journal of Biological Chemistry, vol.269, issue.26, pp.21914-21925, 2012.
DOI : 10.1091/mbc.E10-09-0760

S. Periyasamy, T. Hinds, . Jr, L. Shemshedini, W. Shou et al., FKBP51 and Cyp40 are positive regulators of androgen-dependent prostate cancer cell growth and the targets of FK506 and cyclosporin A, Oncogene, vol.266, issue.11, pp.1691-1701, 2010.
DOI : 10.1093/carcin/22.9.1399

K. Liberek, D. Skowyra, M. Zylicz, C. Johnson, and C. Georgopoulos, The Escherichia coli DnaK chaperone, the 70-kDa heat shock protein eukaryotic equivalent, changes conformation upon ATP hydrolysis, thus triggering its dissociation from a bound target protein, J Biol Chem, vol.266, pp.14491-14496, 1991.

M. P. Mayer and R. Kityk, Insights into the molecular mechanism of allostery in Hsp70s, Frontiers in Molecular Biosciences, vol.112, issue.26, p.58, 2015.
DOI : 10.1073/pnas.1506692112

C. Schiene-fischer, J. Habazettl, F. X. Schmid, and G. Fischer, The hsp70 chaperone DnaK is a secondary amide peptide bond cis-trans isomerase, Nature Structural Biology, vol.9, issue.6, pp.419-424, 2002.
DOI : 10.1038/nsb804

C. Garrido, Heat Shock Proteins 27 and 70: Anti-Apoptotic Proteins with Tumorigenic Properties, Cell Cycle, vol.5, issue.22, pp.2592-2601, 2006.
DOI : 10.4161/cc.5.22.3448

URL : http://www.tandfonline.com/doi/pdf/10.4161/cc.5.22.3448?needAccess=true

E. A. Nollen and R. I. Morimoto, Chaperoning signaling pathways: molecular chaperones as stress-sensing 'heat shock' proteins, J Cell Sci, vol.115, pp.2809-2816, 2002.

P. De-los-rios, A. Ben-zvi, O. Slutsky, A. Azem, and P. Goloubinoff, Hsp70 chaperones accelerate protein translocation and the unfolding of stable protein aggregates by entropic pulling, Proceedings of the National Academy of Sciences, vol.7, issue.4, pp.6166-6171, 2006.
DOI : 10.1038/74062

E. Kaiser, ABSTRACT, Infection and Immunity, vol.79, issue.10, pp.3913-3921, 2011.
DOI : 10.1128/IAI.05372-11

G. Haug, C2 Toxin into the Cytosol, Journal of Biological Chemistry, vol.269, issue.34, pp.32266-32274, 2003.
DOI : 10.1083/jcb.200210028

R. Ratts, The cytosolic entry of diphtheria toxin catalytic domain requires a host cell cytosolic translocation factor complex, The Journal of Cell Biology, vol.265, issue.2, pp.1139-1150, 2003.
DOI : 10.1021/bi981436i

URL : http://jcb.rupress.org/content/jcb/160/7/1139.full.pdf

M. Taylor, Hsp90 Is Required for Transfer of the Cholera Toxin A1 Subunit from the Endoplasmic Reticulum to the Cytosol, Journal of Biological Chemistry, vol.264, issue.41, pp.31261-31267, 2010.
DOI : 10.1038/sj.emboj.7601307

G. Haug, K. Aktories, and H. Barth, 20301 | DOI: 10 The host cell chaperone Hsp90 is necessary for cytotoxic action of the binary iota-like toxins, Scientific RepoRts | Infect Immun, vol.6, issue.72, pp.3066-3068, 1038.

E. Kaiser, S. Pust, C. Kroll, and H. Barth, C2 toxin across membranes of acidified endosomes into the cytosol of mammalian cells, Cellular Microbiology, vol.54, issue.5, pp.780-795, 2009.
DOI : 10.1111/j.1365-2958.1997.tb02669.x

E. Kaiser, FK506-binding protein 51 interacts with Clostridium botulinum C2 toxin and FK506 inhibits membrane translocation of the toxin in mammalian cells, Cellular Microbiology, vol.104, issue.8, pp.1193-1205, 2012.
DOI : 10.1073/pnas.0707413104

URL : https://hal.archives-ouvertes.fr/pasteur-01762818

K. Ernst, Cyclophilin-Facilitated Membrane Translocation as Pharmacological Target to Prevent Intoxication of Mammalian Cells by Binary Clostridial Actin ADP-Ribosylated Toxins, Journal of Molecular Biology, vol.427, issue.6, pp.1224-1238, 2015.
DOI : 10.1016/j.jmb.2014.07.013

URL : https://hal.archives-ouvertes.fr/pasteur-01768428

H. Burress, M. Taylor, T. Banerjee, S. A. Tatulian, and K. Teter, Co- and Post-translocation Roles for HSP90 in Cholera Intoxication, Journal of Biological Chemistry, vol.357, issue.48, pp.33644-33654, 2014.
DOI : 10.1371/journal.pone.0075801

URL : http://www.jbc.org/content/289/48/33644.full.pdf

H. Barth, K. Aktories, M. R. Popoff, and B. G. Stiles, Binary Bacterial Toxins: Biochemistry, Biology, and Applications of Common Clostridium and Bacillus Proteins, Microbiology and Molecular Biology Reviews, vol.68, issue.3, pp.373-402, 2004.
DOI : 10.1128/MMBR.68.3.373-402.2004

URL : http://mmbr.asm.org/content/68/3/373.full.pdf

B. G. Stiles, D. J. Wigelsworth, M. R. Popoff, and H. Barth, Clostridial Binary Toxins: Iota and C2 Family Portraits, Frontiers in Cellular and Infection Microbiology, vol.1, p.11, 2011.
DOI : 10.3389/fcimb.2011.00011

URL : https://hal.archives-ouvertes.fr/pasteur-01791344

M. Liebscher, Rational Design of Novel Peptidic DnaK Ligands, ChemBioChem, vol.37, issue.12, pp.1727-1737, 2010.
DOI : 10.1128/AAC.36.11.2468

M. Liebscher, Fatty Acyl Benzamido Antibacterials Based on Inhibition of DnaK-catalyzed Protein Folding, Journal of Biological Chemistry, vol.6, issue.7, pp.4437-4446, 2007.
DOI : 10.1002/pro.5560060511

URL : http://www.jbc.org/content/282/7/4437.full.pdf

D. Mamelak and C. Lingwood, The ATPase Domain of hsp70 Possesses a Unique Binding Specificity for 3???-Sulfogalactolipids, Journal of Biological Chemistry, vol.269, issue.1, pp.449-456, 2001.
DOI : 10.1038/381571a0

L. Chang, High-throughput screen for small molecules that modulate the ATPase activity of the molecular chaperone DnaK, Analytical Biochemistry, vol.372, issue.2, pp.167-176, 2008.
DOI : 10.1016/j.ab.2007.08.020

A. J. Massey, A novel, small molecule inhibitor of Hsc70/Hsp70 potentiates Hsp90 inhibitor induced apoptosis in HCT116 colon carcinoma cells, Cancer Chemotherapy and Pharmacology, vol.45, issue.12, pp.535-545, 2010.
DOI : 10.4161/cc.8.4.7583

URL : https://hal.archives-ouvertes.fr/hal-00552481

G. C. Li, L. Li, R. Y. Liu, M. Rehman, and W. M. Lee, Heat shock protein hsp70 protects cells from thermal stress even after deletion of its ATP-binding domain., Proceedings of the National Academy of Sciences, vol.89, issue.6, pp.2036-2040, 1992.
DOI : 10.1073/pnas.89.6.2036

URL : http://www.pnas.org/content/89/6/2036.full.pdf

G. J. Stege, L. Li, H. H. Kampinga, A. W. Konings, and G. C. Li, Importance of the ATP-Binding Domain and Nucleolar Localization Domain of HSP72 in the Protection of Nuclear Proteins against Heat-Induced Aggregation, Experimental Cell Research, vol.214, issue.1, pp.279-284, 1994.
DOI : 10.1006/excr.1994.1259

J. I. Leu, J. Pimkina, A. Frank, M. E. Murphy, and D. L. George, A Small Molecule Inhibitor of Inducible Heat Shock Protein 70, Molecular Cell, vol.36, issue.1, pp.15-27, 2009.
DOI : 10.1016/j.molcel.2009.09.023

URL : https://doi.org/10.1016/j.molcel.2009.09.023

R. Schlecht, Functional Analysis of Hsp70 Inhibitors, PLoS ONE, vol.271, issue.11, p.78443, 2013.
DOI : 10.1371/journal.pone.0078443.s005

URL : http://doi.org/10.1371/journal.pone.0078443

J. I. Leu, P. Zhang, M. E. Murphy, R. Marmorstein, and D. L. George, Structural Basis for the Inhibition of HSP70 and DnaK Chaperones by Small-Molecule Targeting of a C-Terminal Allosteric Pocket, ACS Chemical Biology, vol.9, issue.11, pp.2508-2516, 2014.
DOI : 10.1021/cb500236y

P. Zhang, J. I. Leu, M. E. Murphy, D. L. George, and R. Marmorstein, Crystal Structure of the Stress-Inducible Human Heat Shock Protein 70 Substrate-Binding Domain in Complex with Peptide Substrate, PLoS ONE, vol.11, issue.7, p.103518, 2014.
DOI : 10.1371/journal.pone.0103518.t001

O. Pinhasi-kimhi, D. Michalovitz, A. Ben-zeev, and M. Oren, Specific interaction between the p53 cellular tumour antigen and major heat shock proteins, Nature, vol.112, issue.6058, pp.182-184, 1986.
DOI : 10.1128/MCB.5.1.167

F. A. Aprile, Hsp70 Oligomerization Is Mediated by an Interaction between the Interdomain Linker and the Substrate-Binding Domain, PLoS ONE, vol.21, issue.6, p.67961, 2013.
DOI : 10.1371/journal.pone.0067961.s012

URL : https://doi.org/10.1371/journal.pone.0067961

H. Ihmels, B. Engels, K. Faulhaber, and C. Lennartz, New Dyes Based on Amino-Substituted Acridizinium Salts-Synthesis and Exceptional Photochemical Properties, Chemistry - A European Journal, vol.6, issue.15, pp.2854-2864, 2000.
DOI : 10.1002/1521-3765(20000804)6:15<2854::AID-CHEM2854>3.0.CO;2-5

H. Ihmels, Acridizinium Salts as a Novel Class of DNA-binding and Site-selective DNA-photodamaging Chromophores??, Photochemistry and Photobiology, vol.10532, issue.4, pp.505-511, 2001.
DOI : 10.1002/ange.19931051244

A. Granzhan, H. Ihmels, and G. Viola, 9-Donor-Substituted Acridizinium Salts:?? Versatile Environment-Sensitive Fluorophores for the Detection of Biomacromolecules, Journal of the American Chemical Society, vol.129, issue.5, pp.1254-1267, 2007.
DOI : 10.1021/ja0668872

M. Tewari, Yama/CPP32??, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase, Cell, vol.81, issue.5, pp.801-809, 1995.
DOI : 10.1016/0092-8674(95)90541-3

URL : https://doi.org/10.1016/0092-8674(95)90541-3

C. Schiene-fischer, J. Habazettl, T. Tradler, and G. Fischer, Evaluation of Similarities in the cis/trans Isomerase Function of Trigger Factor and DnaK, Biological Chemistry, vol.14, issue.12, pp.1865-1873, 2002.
DOI : 10.1126/science.272.5268.1606

H. M. Beere, Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome, Nature Cell Biology, vol.94, issue.8, pp.469-475, 2000.
DOI : 10.1101/gad.13.24.3179

D. D. Mosser, The Chaperone Function of hsp70 Is Required for Protection against Stress-Induced Apoptosis, Molecular and Cellular Biology, vol.20, issue.19, pp.7146-7159, 2000.
DOI : 10.1128/MCB.20.19.7146-7159.2000

URL : http://mcb.asm.org/content/20/19/7146.full.pdf

D. D. Mosser and R. I. Morimoto, Molecular chaperones and the stress of oncogenesis, Oncogene, vol.23, issue.16, pp.2907-2918, 2004.
DOI : 10.1016/S0960-9822(02)00547-X

A. Aghdassi, Heat Shock Protein 70 Increases Tumorigenicity and Inhibits Apoptosis in Pancreatic Adenocarcinoma, Cancer Research, vol.67, issue.2, pp.616-625, 2007.
DOI : 10.1158/0008-5472.CAN-06-1567

URL : http://cancerres.aacrjournals.org/content/canres/67/2/616.full.pdf

S. Gurbuxani, Selective depletion of inducible HSP70 enhances immunogenicity of rat colon cancer cells, Oncogene, vol.20, issue.51, pp.7478-7485, 2001.
DOI : 10.1038/35023643

E. Schmitt, Chemosensitization by a non-apoptogenic heat shock protein 70-binding apoptosis-inducing factor mutant, Cancer Res, vol.63, pp.8233-8240, 2003.

K. L. Milarski and R. I. Morimoto, Expression of human HSP70 during the synthetic phase of the cell cycle., Proceedings of the National Academy of Sciences, vol.83, issue.24, pp.9517-9521, 1986.
DOI : 10.1073/pnas.83.24.9517

E. A. Nollen, Dynamic changes in the localization of thermally unfolded nuclear proteins associated with chaperone-dependent protection, Proceedings of the National Academy of Sciences, vol.145, issue.3, pp.12038-12043, 2001.
DOI : 10.1083/jcb.145.3.481

E. G. Mimnaugh, Simultaneous inhibition of hsp 90 and the proteasome promotes protein ubiquitination, causes endoplasmic reticulum-derived cytosolic vacuolization, and enhances antitumor activity, Mol Cancer Ther, vol.3, pp.551-566, 2004.

H. Ihmels, K. Faulhaber, D. Vedaldi, F. Dall-'acqua, and G. Viola, Intercalation of Organic Dye Molecules into Double-stranded DNA. Part 2: The Annelated Quinolizinium Ion as a Structural Motif in DNA Intercalators???, Photochemistry and Photobiology, vol.47, issue.5, pp.1107-1115, 2005.
DOI : 10.3998/ark.5550190.0005.520

L. Dmochewitz, Role of CypA and Hsp90 in membrane translocation mediated by anthrax protective antigen, Cellular Microbiology, vol.12, issue.3, pp.359-373, 2011.
DOI : 10.1111/j.1462-5822.2010.01480.x

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1462-5822.2010.01539.x/pdf

H. Barth, J. C. Preiss, F. Hofmann, and K. Aktories, C2 Toxin by Site-directed Mutagenesis, Journal of Biological Chemistry, vol.269, issue.45, pp.29506-29511, 1998.
DOI : 10.1073/pnas.85.20.7521

J. Fahrer, Selective and specific internalization of clostridial C3 ADP-ribosyltransferases into macrophages and monocytes, Cellular Microbiology, vol.154, issue.2, pp.233-247, 2010.
DOI : 10.4049/jimmunol.169.5.2330

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1462-5822.2009.01393.x/pdf

S. Perelle, M. Domenighini, and M. R. Popoff, Evidence that Arg-295, Glu-378, and Glu-380 are active-site residues of the ADP-ribosyltransferase activity of iota toxin, FEBS Letters, vol.29, issue.2-3, pp.191-194, 1996.
DOI : 10.1016/0041-0101(91)90076-4

URL : http://onlinelibrary.wiley.com/doi/10.1016/0014-5793(96)01035-6/pdf

B. C. Freeman, A. Michels, J. Song, H. H. Kampinga, and R. Morimoto, 20301 | DOI: 10.1038/srep20301 63 Analysis of molecular chaperone activities using in vitro and in vivo approaches, Scientific RepoRts | Methods Mol Biol, vol.6, issue.99, pp.393-419, 2000.

K. Richter, Conserved Conformational Changes in the ATPase Cycle of Human Hsp90, Journal of Biological Chemistry, vol.14, issue.26, pp.17757-17765, 2008.
DOI : 10.1074/jbc.M709516200

A. Granzhan and H. Ihmels, Synthesis of 9-amino-and 9-sulfanyl-substituted benzo[b]quinolizinium derivatives, Arkivoc, pp.136-149, 2007.

A. Szabo, The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system DnaK, DnaJ, and GrpE., Proceedings of the National Academy of Sciences, vol.91, issue.22, pp.10345-10349, 1994.
DOI : 10.1073/pnas.91.22.10345

G. Bartolommei, M. R. Moncelli, and F. Tadini-buoninsegni, A Method to Measure Hydrolytic Activity of Adenosinetriphosphatases (ATPases), PLoS ONE, vol.9, issue.3, p.58615, 2013.
DOI : 10.1371/journal.pone.0058615.s006

URL : https://doi.org/10.1371/journal.pone.0058615

R. Frank, The SPOT-synthesis technique, Journal of Immunological Methods, vol.267, issue.1, pp.13-26, 2002.
DOI : 10.1016/S0022-1759(02)00137-0

D. Blocker, J. Behlke, K. Aktories, and H. Barth, Cellular Uptake of the Clostridium perfringens Binary Iota-Toxin, Infection and Immunity, vol.69, issue.5, pp.2980-2987, 2001.
DOI : 10.1128/IAI.69.5.2980-2987.2001

URL : http://iai.asm.org/content/69/5/2980.full.pdf