C. R. Ahsan, G. Hajnoczky, A. B. Maksymowych, and L. L. Simpson, Visualization of Binding and Transcytosis of Botulinum Toxin by Human Intestinal Epithelial Cells, Journal of Pharmacology and Experimental Therapeutics, vol.315, issue.3, pp.1028-1035, 2005.
DOI : 10.1124/jpet.105.092213

F. Antonucci, C. Rossi, L. Gianfranceschi, O. Rossetto, and M. Caleo, Long-Distance Retrograde Effects of Botulinum Neurotoxin A, Journal of Neuroscience, vol.28, issue.14, pp.3689-3696, 2008.
DOI : 10.1523/JNEUROSCI.0375-08.2008

S. S. Arnon, R. Schechter, T. V. Inglesby, D. A. Henderson, J. G. Bartlett et al., Botulinum Toxin as a Biological Weapon, JAMA, vol.285, issue.8, pp.1059-1070, 2001.
DOI : 10.1001/jama.285.8.1059

M. Z. Atassi, M. Taruishi, M. Naqvi, L. E. Steward, and K. R. Aoki, Synaptotagmin II and Gangliosides Bind Independently with Botulinum Neurotoxin B but Each Restrains the Other, The Protein Journal, vol.4, issue.8, pp.278-288, 2014.
DOI : 10.1038/ncomms3058

K. Bercsenyi, F. Giribaldi, and G. Schiavo, The Elusive Compass of Clostridial Neurotoxins: Deciding When and Where to Go?, Curr Top Microbiol Immunol, vol.364, pp.91-113, 2013.
DOI : 10.1007/978-3-662-45790-0_5

J. D. Black and J. O. Dolly, Selective location of acceptors for botulinum neurotoxin a in the central and peripheral nervous systems, Neuroscience, vol.23, issue.2, pp.767-779, 1987.
DOI : 10.1016/0306-4522(87)90094-7

S. Bohnert and G. Schiavo, Tetanus Toxin Is Transported in a Novel Neuronal Compartment Characterized by a Specialized pH Regulation, Journal of Biological Chemistry, vol.49, issue.51, pp.42336-42344, 2005.
DOI : 10.1074/jbc.M504890200

P. F. Bonventre, Absorption of Botulinal Toxin from the Gastrointestinal Tract, Clinical Infectious Diseases, vol.1, issue.4, pp.663-667, 1979.
DOI : 10.1093/clinids/1.4.663

URL : https://academic.oup.com/cid/article-pdf/1/4/663/1311810/1-4-663.pdf

S. Bose, S. Kalra, R. R. Yammani, R. Ahuja, and B. Seetharam, Plasma membrane delivery, endocytosis and turnover of transcobalamin receptor in polarized human intestinal epithelial cells, The Journal of Physiology, vol.79, issue.2, pp.457-466, 2007.
DOI : 10.1007/s00232-002-2007-3

I. Brook, Infant botulism, Journal of Perinatology, vol.28, issue.3, pp.175-180, 2007.
DOI : 10.1111/j.1440-1754.1992.tb02632.x

S. H. Brookes, Classes of enteric nerve cells in the guinea-pig small intestine, The Anatomical Record, vol.71, issue.1, pp.58-70, 2001.
DOI : 10.1113/jphysiol.1989.sp017722

Q. Chai, J. W. Arndt, M. Dong, W. H. Tepp, E. A. Johnson et al., Structural basis of cell surface receptor recognition by botulinum neurotoxin B, Nature, vol.147, issue.7122, pp.1096-1100, 2006.
DOI : 10.1016/S1388-1981(99)00140-7

A. Couesnon, J. Molgo, C. Connan, and M. R. Popoff, Preferential entry of botulinum neurotoxin A Hc domain trhough intestinal crypt cells and targeting to cholinergic neurons of the mouse intestine, PLoS Pathog, vol.8, 2012.

A. Couesnon, Y. Pereira, and M. R. Popoff, Receptor-mediated transcytosis of botulinum neurotoxin A through intestinal cell monolayers, Cellular Microbiology, vol.263, issue.0, pp.375-387, 2008.
DOI : 10.1074/jbc.M205258200

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1462-5822.2007.01051.x/pdf

A. Couesnon, T. Shimizu, and M. R. Popoff, Differential entry of botulinum neurotoxin A into neuronal and intestinal cells, Cellular Microbiology, vol.277, issue.2, pp.289-308, 2009.
DOI : 10.1016/j.bbamcr.2005.11.014

URL : https://hal.archives-ouvertes.fr/pasteur-01758348

J. O. Dolly, G. W. Lawrence, J. Meng, J. Wang, and S. V. Ovsepian, Neuro-exocytosis: botulinum toxins as inhibitory probes and versatile therapeutics???, Current Opinion in Pharmacology, vol.9, issue.3, pp.326-335, 2009.
DOI : 10.1016/j.coph.2009.03.004

M. Dong, D. A. Richards, M. C. Goodnough, W. H. Tepp, E. A. Johnson et al., Synaptotagmins I and II mediate entry of botulinum neurotoxin B into cells, The Journal of Cell Biology, vol.263, issue.7, pp.1293-1303, 2003.
DOI : 10.1016/S0896-6273(02)00671-2

URL : http://jcb.rupress.org/content/jcb/162/7/1293.full.pdf

N. Dover, J. R. Barash, K. K. Hill, G. Xie, and S. S. Arnon, Molecular Characterization of a Novel Botulinum Neurotoxin Type H Gene, The Journal of Infectious Diseases, vol.235, issue.2, pp.192-202, 1097.
DOI : 10.1111/j.1574-6968.2004.tb09561.x

URL : https://academic.oup.com/jid/article-pdf/209/2/192/13804460/jit450.pdf

G. Feng, R. H. Mellor, M. Bernstein, C. Keller-peck, Q. T. Nguyen et al., Imaging Neuronal Subsets in Transgenic Mice Expressing Multiple Spectral Variants of GFP, Neuron, vol.28, issue.1, pp.41-51, 2000.
DOI : 10.1016/S0896-6273(00)00084-2

URL : https://doi.org/10.1016/s0896-6273(00)00084-2

P. G. Foran, N. Mohammed, G. O. Lisk, S. Nagwaney, G. W. Lawrence et al., Evaluation of the Therapeutic Usefulness of Botulinum Neurotoxin B, C1, E, and F Compared with the Long Lasting Type A, Journal of Biological Chemistry, vol.351, issue.2, pp.1363-1371, 2003.
DOI : 10.1046/j.1471-4159.2000.0741979.x

C. K. Fox, C. A. Keet, and J. B. Strober, Recent advances in infant botulism, Pediatric Neurology, vol.32, issue.3, pp.149-154, 2005.
DOI : 10.1016/j.pediatrneurol.2004.10.001

Y. Fujinaga, K. Inoue, S. Watanabe, K. Yokota, Y. Hirai et al., The haemagglutinin of Clostridium botulinum type C progenitor toxin plays an essential role in binding of toxin to the epithelial cells of guinea pig small intestine, leading to the efficient absorption of the toxin, Microbiology, vol.143, issue.12, pp.3841-3847, 1997.
DOI : 10.1099/00221287-143-12-3841

Y. Fujinaga, Y. Sugawara, and T. Matsumura, Uptake of Botulinum Neurotoxin in the Intestine, Curr Top Microbiol Immunol, vol.364, pp.45-59, 2013.
DOI : 10.1007/978-3-662-45790-0_3

J. B. Furness, Types of neurons in the enteric nervous system, Journal of the Autonomic Nervous System, vol.81, issue.1-3, pp.87-96, 2000.
DOI : 10.1016/S0165-1838(00)00127-2

J. B. Furness, The enteric nervous system and neurogastroenterology, Nature Reviews Gastroenterology & Hepatology, vol.394, issue.5, pp.286-294, 2012.
DOI : 10.1113/jphysiol.1987.sp016860

J. B. Furness, B. P. Callaghan, L. R. Rivera, and H. J. Cho, The Enteric Nervous System and Gastrointestinal Innervation: Integrated Local and Central Control, Adv Exp Med Biol, vol.817, issue.10, pp.39-711978, 1007.
DOI : 10.1007/978-1-4939-0897-4_3

J. B. Furness, C. A. Jones, K. Nurgali, and N. Clerc, Intrinsic primary afferent neurons and nerve circuits within the intestine, Progress in Neurobiology, vol.72, issue.2, pp.143-164, 2004.
DOI : 10.1016/j.pneurobio.2003.12.004

E. M. Garabedian, L. J. Roberts, M. S. Mcnevin, and J. I. Gordon, Examining the Role of Paneth Cells in the Small Intestine by Lineage Ablation in Transgenic Mice, Journal of Biological Chemistry, vol.57, issue.38, pp.23729-23740, 1997.
DOI : 10.1016/0092-8674(93)80068-P

F. Gerbe, J. H. Van-es, L. Makrini, B. Brulin, G. Mellitzer et al., Distinct ATOH1 and Neurog3 requirements define tuft cells as a new secretory cell type in the intestinal epithelium, The Journal of Cell Biology, vol.129, issue.Suppl 111, pp.767-780, 2011.
DOI : 10.1126/science.1065718

M. D. Gershon, 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract, Current Opinion in Endocrinology & Diabetes and Obesity, vol.20, issue.1, 2013.
DOI : 10.1097/MED.0b013e32835bc703

N. Gonzalez-escalona, N. Thirunavukkarasu, A. Singh, M. Toro, E. W. Brown et al., Draft Genome Sequence of Bivalent Clostridium botulinum Strain IBCA10-7060, 2014.

, Genome Announc, vol.2, issue.6, pp.1275-01214

R. K. Goyal and I. Hirano, The Enteric Nervous System, New England Journal of Medicine, vol.334, issue.17, pp.1106-1115, 1996.
DOI : 10.1056/NEJM199604253341707

D. Grundy and M. Schermann, Enteric nervous system, Current Opinion in Gastroenterology, vol.22, issue.2, pp.102-110, 2006.
DOI : 10.1097/01.mog.0000208459.46395.16

S. Gu and R. Jin, Assembly and Function of the Botulinum Neurotoxin Progenitor Complex, Curr Top Microbiol Immunol, vol.364, issue.10, pp.21-44, 1003.
DOI : 10.1007/978-3-662-45790-0_2

S. Gu, S. Rumpel, J. Zhou, J. Strotmeier, H. Bigalke et al., Botulinum Neurotoxin Is Shielded by NTNHA in an Interlocked Complex, Science, vol.332, issue.1, pp.977-981, 2012.
DOI : 10.1016/j.ab.2004.04.031

C. B. Harper, S. Martin, T. H. Nguyen, S. J. Daniels, N. A. Lavidis et al., Dynamin Inhibition Blocks Botulinum Neurotoxin Type A Endocytosis in Neurons and Delays Botulism, Journal of Biological Chemistry, vol.222, issue.41, pp.35966-35976, 2011.
DOI : 10.1073/pnas.0812839106

URL : https://hal.archives-ouvertes.fr/pasteur-01762247

C. B. Harper, M. R. Popoff, A. Mccluskey, P. J. Robinson, and F. A. Meunier, Targeting membrane trafficking in infection prophylaxis: dynamin inhibitors, Trends in Cell Biology, vol.23, issue.2, 1017.
DOI : 10.1016/j.tcb.2012.10.007

URL : https://hal.archives-ouvertes.fr/pasteur-01791517

A. M. Harrington, J. M. Hutson, and B. R. Southwell, Cholinergic neurotransmission and muscarinic receptors in the enteric nervous system, Progress in Histochemistry and Cytochemistry, vol.44, issue.4, 1011.
DOI : 10.1016/j.proghi.2009.10.001

L. Hernandes, P. Gama, and E. P. Alvares, Ileal VIP submucous neurons: confocal study of the area enlargement induced by myenteric denervation in weanling rats, Regulatory Peptides, vol.117, issue.1, pp.69-72, 2004.
DOI : 10.1016/j.regpep.2003.10.006

M. Hesse, C. Grund, H. Herrmann, D. Brohl, T. Franz et al., A mutation of keratin 18 within the coil 1A consensus motif causes widespread keratin aggregation but cell type-restricted lethality in mice, Experimental Cell Research, vol.313, issue.14, pp.3127-3140, 2007.
DOI : 10.1016/j.yexcr.2007.05.019

K. K. Hill and T. J. Smith, Genetic Diversity Within Clostridium botulinum Serotypes, Botulinum Neurotoxin Gene Clusters and Toxin Subtypes, Curr Top Microbiol Immunol, vol.364, pp.1-20, 2013.
DOI : 10.1007/978-3-662-45790-0_1

H. Igarashi, N. Fujimori, T. Ito, T. Nakamura, T. Oono et al., Vasoactive Intestinal Peptide (VIP) and VIP Receptors-Elucidation of Structure and Function for Therapeutic Applications, International Journal of Clinical Medicine, vol.02, issue.04, pp.500-508, 2011.
DOI : 10.4236/ijcm.2011.24084

M. H. Jang, M. N. Kweon, K. Iwatani, M. Yamamoto, K. Terahara et al., Intestinal villous M cells: An antigen entry site in the mucosal epithelium, Proceedings of the National Academy of Sciences, vol.168, issue.1, pp.6110-6115, 2004.
DOI : 10.4049/jimmunol.168.1.57

Y. Jin, Y. Takegahara, Y. Sugawara, T. Matsumura, and Y. Fujinaga, Disruption of the epithelial barrier by botulinum haemagglutinin (HA) proteins - differences in cell tropism and the mechanism of action between HA proteins of types A or B, and HA proteins of type C, Microbiology, vol.51, issue.10, pp.35-45, 2009.
DOI : 10.1016/S0006-291X(05)80328-6

M. Kitamura, S. Sakaguchi, and G. Sakaguchi, Significance of 12S toxin of Clostridium botulinum type E, J Bacteriol, vol.98, pp.1173-1178, 1969.

A. Kulkarni-narta, A. J. Beltz, and D. R. Brown, Catecholaminergic, cholinergic and peptidergic innervation of gut-associated lymphoid tissue in porcine jejunum and ileum, Cell and Tissue Research, vol.298, issue.2, pp.275-286, 1999.
DOI : 10.1007/s004419900096

G. Lalli, S. Gschmeissner, and G. Schiavo, Myosin Va and microtubule-based motors are required for fast axonal retrograde transport of tetanus toxin in motor neurons, Journal of Cell Science, vol.116, issue.22, pp.4639-4650, 2003.
DOI : 10.1242/jcs.00727

T. I. Lam, L. H. Stanker, K. Lee, R. Jin, and L. W. Cheng, Translocation of botulinum neurotoxin serotype A and associated proteins across the intestinal epithelia, Cellular Microbiology, vol.6, issue.8, 2015.
DOI : 10.3390/toxins6020624

K. Lee, X. Zhong, S. Gu, A. M. Kruel, M. B. Dorner et al., Molecular basis for disruption of E-cadherin adhesion by botulinum neurotoxin A complex, Science, vol.64, issue.5, pp.1405-1410, 2014.
DOI : 10.1006/bbrc.2002.6689

Z. Li, A. Chalazonitis, Y. Y. Huang, J. J. Mann, K. G. Margolis et al., Essential Roles of Enteric Neuronal Serotonin in Gastrointestinal Motility and the Development/Survival of Enteric Dopaminergic Neurons, Journal of Neuroscience, vol.31, issue.24, pp.8998-9009, 2011.
DOI : 10.1523/JNEUROSCI.6684-10.2011

E. Macia, M. Ehrlich, R. Massol, E. Boucrot, C. Brunner et al., , 2006.

, Dynasore, a cell-permeable inhibitor of dynamin, Dev Cell, vol.10, pp.839-850

A. B. Maksymowych, M. Rienhard, C. J. Malizio, M. C. Goodnough, E. A. Johnson et al., Pure botulinum neurotoxin is absorbed from the stomach and small intestine and produces peripheral neuromuscular blockade, Infect. Immun, vol.67, pp.4708-4712, 1999.

A. B. Maksymowych and L. I. Simpson, Structural Features of the Botulinum Neurotoxin Molecule That Govern Binding and Transcytosis across Polarized Human Intestinal Epithelial Cells, Journal of Pharmacology and Experimental Therapeutics, vol.310, issue.2, pp.633-641, 2004.
DOI : 10.1124/jpet.104.066845

A. B. Maksymowych and L. L. Simpson, Binding and Transcytosis of Botulinum Neurotoxin by Polarized Human Colon Carcinoma Cells, Journal of Biological Chemistry, vol.65, issue.34, pp.21950-21957, 1998.
DOI : 10.1016/0378-1119(95)00152-V

S. E. Malaska, Botulism as a disease of Humans, In Molceular Aspects of Botulinum Neurotoxin, pp.259-289, 2014.

T. Matsumura, Y. Sugawara, M. Yutani, S. Amatsu, H. Yagita et al., Botulinum toxin A complex exploits intestinal M cells to enter the host and exert neurotoxicity, Nature Communications, vol.10, issue.1, p.6255, 2015.
DOI : 10.1074/jbc.M410599200

G. M. Mawe and J. M. Hoffman, Serotonin signalling in the gut???functions, dysfunctions and therapeutic targets, Nature Reviews Gastroenterology & Hepatology, vol.20, issue.8, pp.473-486, 1025.
DOI : 10.1053/j.gastro.2005.08.005

C. Mazuet, L. A. King, P. Bouvet, C. Legeay, J. Sautereau et al., Le botulisme humain en France, pp.2010-2012, 2014.

P. G. Mclean, R. A. Borman, and K. Lee, 5-HT in the enteric nervous system: gut function and neuropharmacology, Trends in Neurosciences, vol.30, issue.1, pp.9-13, 2006.
DOI : 10.1016/j.tins.2006.11.002

F. A. Meunier, J. Herreros, G. Schiavo, B. Poulain, and J. Molgó, Molecular Mechanism of Action of Botulinal Neurotoxins and the Synaptic Remodeling They Induce In Vivo at the Skeletal Neuromuscular Junction, Handbook of Neurotoxicology, pp.305-347, 2002.
DOI : 10.1385/1-59259-132-9:305

URL : https://hal.archives-ouvertes.fr/hal-00194091

W. G. Mitchell and L. Tseng-ong, Reviews of Infant Botulism at Childrens Hospital Los Angeles, Journal of Child Neurology, vol.23, issue.8, p.968, 2008.
DOI : 10.1542/peds.2006-3276

D. Montufar-solis, T. Garza, and J. R. Klein, T-cell activation in the intestinal mucosa, Immunological Reviews, vol.66, issue.14, pp.189-201, 2007.
DOI : 10.1097/00054725-200411000-00016

G. Nikitas, C. Deschamps, O. Disson, T. Niault, P. Cossart et al., across the intestinal barrier upon specific targeting of goblet cell accessible E-cadherin, The Journal of Experimental Medicine, vol.276, issue.11, pp.2263-2277, 2011.
DOI : 10.1016/S0092-8674(00)00071-4

URL : https://hal.archives-ouvertes.fr/pasteur-02040395

A. Nishikawa, N. Uotsu, H. Arimitsu, J. C. Lee, Y. Miura et al., The receptor and transporter for internalization of Clostridium botulinum type C progenitor toxin into HT-29 cells, Biochemical and Biophysical Research Communications, vol.319, issue.2, pp.327-333, 2004.
DOI : 10.1016/j.bbrc.2004.04.183

T. Nishiki, Y. Tokuyama, Y. Kamata, Y. Nemoto, A. Yoshida et al., FEBS Letters, vol.375, issue.3, pp.253-257, 1996.
DOI : 10.1038/375594a0

J. B. Park and L. L. Simpson, Inhalational Poisoning by Botulinum Toxin and Inhalation Vaccination with Its Heavy-Chain Component, Infection and Immunity, vol.71, issue.3, pp.1147-1154, 2003.
DOI : 10.1128/IAI.71.3.1147-1154.2003

M. W. Peck, Biology and Genomic Analysis of Clostridium botulinum, Adv Microb Physiol, vol.55, issue.320, pp.183-265, 2009.
DOI : 10.1016/S0065-2911(09)05503-9

E. K. Persson, C. L. Scott, A. M. Mowat, and W. W. Agace, Dendritic cell subsets in the intestinal lamina propria: Ontogeny and function, European Journal of Immunology, vol.207, issue.Suppl 1, pp.3098-3107, 2013.
DOI : 10.1084/jem.20092140

M. R. Popoff and C. Connan, Absorption and Transport of Botulinum Neurotoxins, Molecular Aspects of Botulinum Neurotoxin, pp.35-68, 2014.
DOI : 10.1007/978-1-4614-9454-6_3

M. R. Popoff, C. Mazuet, and B. Poulain, Botulism and Tetanus, The Prokaryotes: Human Microbiology, pp.247-290, 2013.
DOI : 10.1007/978-3-642-30144-5_97

M. R. Popoff and B. Poulain, Bacterial Toxins and the Nervous System: Neurotoxins and Multipotential Toxins Interacting with Neuronal Cells, Toxins, vol.9, issue.2, pp.683-737, 2010.
DOI : 10.1111/j.1462-5822.2007.00957.x

URL : https://hal.archives-ouvertes.fr/pasteur-01788650

G. M. Portela-gomes, A. Lukinius, and L. Grimelius, Synaptic Vesicle Protein 2, A New Neuroendocrine Cell Marker, The American Journal of Pathology, vol.157, issue.4, pp.1299-1309, 2000.
DOI : 10.1016/S0002-9440(10)64645-7

B. Poulain, M. R. Popoff, and J. Molgo, How do the Botulinum Neurotoxins block neurotransmitter release: from botulism to the molecular mechanism of action, The Botulinum J., vol.1, issue.1, 2008.
DOI : 10.1504/TBJ.2008.018951

URL : https://hal.archives-ouvertes.fr/hal-00303601

, Botulinum J, vol.1, pp.14-87

R. Poulsom and N. A. Wright, Trefoil peptides: a newly recognized family of epithelial mucin-associated molecules, American Journal of Physiology-Gastrointestinal and Liver Physiology, vol.265, issue.2, pp.205-213, 1993.
DOI : 10.1152/ajpgi.1993.265.2.G205

C. Rasetti-escargueil, R. G. Jones, Y. Liu, and D. Sesardic, Measurement of botulinum types A, B and E neurotoxicity using the phrenic nerve???hemidiaphragm: Improved precision with in-bred mice, Toxicon, vol.53, issue.5, pp.503-511, 2009.
DOI : 10.1016/j.toxicon.2009.01.019

L. Restani, F. Antonucci, L. Gianfranceschi, C. Rossi, O. Rossetto et al., Evidence for Anterograde Transport and Transcytosis of Botulinum Neurotoxin A (BoNT/A), Journal of Neuroscience, vol.31, issue.44, pp.15650-15659, 2011.
DOI : 10.1523/JNEUROSCI.2618-11.2011

L. Restani, F. Giribaldi, M. Manich, K. Bercsenyi, G. Menendez et al., Botulinum Neurotoxins A and E Undergo Retrograde Axonal Transport in Primary Motor Neurons, PLoS Pathogens, vol.5, issue.8, 2012.
DOI : 10.1371/journal.ppat.1003087.s010

O. Rossetto, M. Pirazzini, and C. Montecucco, Botulinum neurotoxins: genetic, structural and mechanistic insights, Nature Reviews Microbiology, vol.344, issue.8, 1030.
DOI : 10.1126/science.1253823

S. Roux, C. Saint-cloment, T. Curie, E. Girard, F. J. Mena et al., internalization of tetanus neurotoxin C-terminal fragment fusion proteins in mature mouse motor nerve terminals, European Journal of Neuroscience, vol.24, issue.6, pp.1546-1554, 2006.
DOI : 10.1146/annurev.ne.19.030196.002335

URL : https://hal.archives-ouvertes.fr/hal-00105586

A. Rummel, Double Receptor Anchorage of Botulinum Neurotoxins Accounts for their Exquisite Neurospecificity, Curr Top Microbiol Immunol, vol.364, pp.61-90, 2013.
DOI : 10.1007/978-3-662-45790-0_4

A. Rummel, T. Eichner, T. Weil, T. Karnath, A. Gutcaits et al., Identification of the protein receptor binding site of botulinum neurotoxins B and G proves the double-receptor concept, Proceedings of the National Academy of Sciences, vol.355, issue.3, pp.359-364, 2007.
DOI : 10.1007/PL00004951

G. Sakaguchi, Clostridium botulinum toxins, Pharmacology & Therapeutics, vol.19, issue.2, pp.165-194, 1983.
DOI : 10.1016/0163-7258(82)90061-4

G. Schiavo, M. Matteoli, and C. Montecucco, Neurotoxins Affecting Neuroexocytosis, Physiological Reviews, vol.267, issue.2, pp.717-766, 2000.
DOI : 10.1007/BF00498693

C. C. Shone and H. S. Tranter, Growth of Clostridia and Preparation of Their Neurotoxins, Clostridial neurotoxins, pp.143-160, 1995.
DOI : 10.1007/978-3-642-85173-5_7

L. Simpson, The life history of a botulinum toxin molecule, Toxicon, vol.68, pp.40-59, 2013.
DOI : 10.1016/j.toxicon.2013.02.014

B. R. Singh, T. Wang, R. Kukreja, and S. Cai, The Botulinum Neurotoxin Complex and the Role of Ancillary Proteins, Molecular Aspects, pp.68-101, 2014.
DOI : 10.1007/978-1-4614-9454-6_4

J. Sobel, Botulism, Clinical Infectious Diseases, vol.178, issue.1, pp.1167-1173, 2005.
DOI : 10.1086/515615

Y. Sugawara and Y. Fujinaga, The botulinum toxin complex meets E-cadherin on the way to its destination, Cell Adhesion & Migration, vol.24, issue.1, pp.34-36, 2011.
DOI : 10.2307/1589803

URL : http://www.tandfonline.com/doi/pdf/10.4161/cam.5.1.13574?needAccess=true

Y. Sugawara, T. Matsumura, Y. Takegahara, Y. Jin, Y. Tsukasaki et al., Botulinum hemagglutinin disrupts the intercellular epithelial barrier by directly binding E-cadherin, The Journal of Cell Biology, vol.16, issue.4, pp.691-700, 2010.
DOI : 10.1083/jcb.200910119.dv

S. Sugii, I. Ohishi, and G. Sakaguchi, Intestinal absorption of botulinum toxins of different molecular sizes in rats, Infect. Immun, vol.17, pp.491-496, 1977.

C. O. Tacket and M. A. Rogawski, , pp.351-378, 1989.

M. Tavallaie, A. Chenal, D. Gillet, Y. Pereira, M. Manich et al., Interaction between the two subdomains of the C-terminal part of the botulinum neurotoxin A is essential for the generation of protective antibodies, FEBS Letters, vol.23, issue.1-3, pp.299-306, 2004.
DOI : 10.1023/B:JOPC.0000016257.91979.06

M. Vuksic, D. Turco, D. , B. Orth, C. Burbach et al., 3D-reconstruction and functional properties of GFP-positive and GFP-negative granule cells in the fascia dentata of the Thy1-GFP mouse, Hippocampus, vol.495, issue.4, pp.364-375, 2008.
DOI : 10.1002/hipo.20398

Y. B. Yu and Y. Q. Li, Enteric glial cells and their role in the intestinal epithelial barrier, World Journal of Gastroenterology, vol.20, issue.32, pp.11273-11280, 2014.
DOI : 10.1371/journal.pone.0069042

, Supplementary Figure 4. Cells of the intestinal epithelium which accumulated HCcB, were not immunoreactive with antibodies ITF and cytokeratin18 specific of goblet cells

, Cy3 (100 µg) was injected into mouse ligated jejuno-ileal loop After 10 min incubation the intestinal samples were prepared as described in Fig. 1. The preparations were co-stained with antibodies anti-ITF (green) or anti-cytokeratin18 (green), as well as anti E cadherin (ECCD2) (white) and Hoechst (blue)

, Supplementary Figure 5 The ganglioside GM1 does not impair HCcB entrys into the intestinal mucosa HCcB-Cy3 (70 µg) was injected into ligated jejuno-ileal loop (A) or incubated with a 10-fold excess of GM1 for 20 min at room temperature prior to injection into intestinal loop (B) After 15 min incubation the intestinal samples were prepared as described in Fig

, Supplementary Figure 6 Visualization of fluorescent HCcB (10 µg) in the mouse intestine following its injection into the intestinal lumen. HCcB-Cy3 (10 µg) in Dulbecco's modified Eagle's medium was injected into ligated jejuno-ileal loop of anesthetized mice

, After 20 min incubation the intestinal samples were prepared as described in Fig

, Preparations were co-stained with antibodies anti E-cadherin (ECCD2) and Hoechst (blue)

, Scale bars = 10 µm