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Abstract

Clostridium perfringens Delta toxin is one of the three hemolysin-like proteins produced by C. perfringens type C and possibly
type B strains. One of the others, NetB, has been shown to be the major cause of Avian Nectrotic Enteritis, which following
the reduction in use of antibiotics as growth promoters, has become an emerging disease of industrial poultry. Delta toxin
itself is cytotoxic to the wide range of human and animal macrophages and platelets that present GM2 ganglioside on their
membranes. It has sequence similarity with Staphylococcus aureus b-pore forming toxins and is expected to heptamerize
and form pores in the lipid bilayer of host cell membranes. Nevertheless, its exact mode of action remains undetermined.
Here we report the 2.4 Å crystal structure of monomeric Delta toxin. The superposition of this structure with the structure of
the phospholipid-bound F component of S. aureus leucocidin (LukF) revealed that the glycerol molecules bound to Delta
toxin and the phospholipids in LukF are accommodated in the same hydrophobic clefts, corresponding to where the toxin
is expected to latch onto the membrane, though the binding sites show significant differences. From structure-based
sequence alignment with the known structure of staphylococcal a-hemolysin, a model of the Delta toxin pore form has
been built. Using electron microscopy, we have validated our model and characterized the Delta toxin pore on liposomes.
These results highlight both similarities and differences in the mechanism of Delta toxin (and by extension NetB)
cytotoxicity from that of the staphylococcal pore-forming toxins.
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Introduction

Delta toxin is one of three toxins expressed by C. perfringens that

have approximately 25% sequence identity with the leucocidin

family of pore-forming toxins secreted by S. aureus (supplementary

Fig. 1) [1,2]. All three of the toxins have been shown

experimentally to assemble into oligomeric pores on cell surfaces

[1]. Delta toxin has been found to be hemolytic to red blood cells

from even-toed ungulates and cytotoxic to a wide range of white

blood cells, such as macrophages, monocytes and blood platelets of

humans and various animals [3–6]. The other two C. perfringens

toxins are necrotic enteritis toxin B (NetB), the recently discovered

cause of Avian Necrotic Enteritis [7] and Beta toxin, the cause of

Pig Bel in humans and necrotic enteritis in animals including pigs,

goats and sheep [8]. Antibiotics have been added to animal

feedstuffs to promote growth for some time [9]. Following concern

about increasing microbial resistance, some governments are

requiring reductions of these additives [10]. As a consequence

there are renewed concerns about the emergence of infectious

diseases in industrial farming. Although related to the staphylo-

coccal pore-forming toxins, Delta toxin, NetB and Beta toxin form

a separate subgroup, and likely a number of unique features.

These three toxins are of particular interest as NetB and Beta toxin

have both been shown to have significant links to animal disease

and Delta toxin is known to be cytotoxic, and their similarities

mean information on one is likely to be applicable to the others.

Delta toxin’s selectivity for white blood cells and human and

animal platelets has been linked to its specific binding to

gangliosides, particularly to the monosialic ganglioside 2 (GM2)

[6]. It also binds GM2 isolated from cell membranes and either

used to form liposomes or immobilized on polystyrene beads

[1,11]. Gangliosides present on cell surfaces, participate in

membrane organization and can act as receptors [12]. Therefore

it seems likely that GM2 acts as the receptor for this toxin, though a

role for a membrane protein receptor has not been completely

ruled out [1].

The leucocidin family of bacterial toxins are initially secreted as

water-soluble monomers, which recognize receptors on the surface

of cells and bind to the cellular membranes as monomers.

Subsequently, they oligomerize on the cell surface to form

prepores that insert amphipathic hairpins into the lipid bilayer

to form an oligomeric b-barrel pore [13]. The S. aureus members of

this family include a-hemolysin (aHL), c-hemolysin (cHL),

leucocidin (Luk) and Panton-Valentine leukocidin (PV-Luk) [14].

aHL forms a homoheptamer [15], while cHL, Luk and PV-Luk

are bicomponent toxins where an F component protein binds the

membrane initially, followed by an S component protein to form a

heterodimer [16] and the heterodimers then oligomerise to form
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the pore [17,18]. In cHL, Luk and PV-Luk, the F and S

components are LukF and Hlg2, LukF and LukS and LukF-PV

and LukS-PV, respectively. Sequence alignment (supplementary

Fig. 1) reveals that the LukF proteins are around 70% identical to

each other, as are LukS proteins to each other, however, LukF and

LukS share only approximately 30% sequence identity between

them. aHL shares more sequence identity with LukF proteins

(,30%) than LukS proteins (,20%). All three C. perfringens toxins

are active as homo-oligomers, and have more similarity to aHL

and the LukF proteins (,27%) than LukS proteins (,21%).

There are structures available for a number of the S. aureus

proteins. These include the water-soluble monomeric forms of

LukF [19], LukF-PV [20] and LukS-PV [21], the homohepta-

meric pore form of aHL [15] and the hetero-octomeric pore-form

of cHL [22]. The structures are all similar and are organized in

four domains: an N-terminal latch domain, a b-sandwich domain,

then a central domain called the stem domain and finally a C-

terminal region rich in b-strands, called the rim domain. The main

difference between the monomeric and oligomeric state is the

folding and position of the stem domain. In the monomeric form,

it is folded into b-strands, which are packed against the N-terminal

b-sandwich domain [19,20], whereas in the oligomeric form it

unravels to form a transmembrane b-hairpin. [15,22–24]. After

oligomerization, the b-hairpin from each monomer assembles to

form an anti-parallel b-barrel that inserts into the membrane

[15,22–24]. In aHL, the latch domain is also extended to form

stabilising interactions with the adjacent monomer in the

heptamer [15,23], in cHL, however, this domain is disordered

[22], and it is not required for cytotoxic activity [25]. Very

recently, the structures of the heptameric pore [24] and soluble

monomer [26] of NetB have become available confirming the

overall similarity of this subgroup to the staphylococcal toxins,

though there are a number of distinct features in the receptor

binding domain.

Here, we present the monomeric structure of Delta toxin at 2.4

Å resolution, determined by X-ray crystallography. The structure

revealed a fold that is similar to NetB and the staphylococcal b-

pore forming toxins. From structure-based sequence alignment

and superposition of the structures of Delta toxin, we show that

Delta toxin shares many characteristics of the LukF family

members and that this has implications for membrane binding.

However, we were able to identify differences that are likely to be

linked to difference in cell specificity between the groups of toxins.

In addition, we built a 3D model of the heptameric pore form of

Delta toxin based on the staphylococcal a-hemolysin heptamer. By

using electron microscopy we validated our model and further

characterized the pore form of Delta toxin.

Materials and Methods

Protein Expression, Purification and Crystallization
C. perfringens Delta toxin was over-expressed, purified and

crystallized as reported previously [1,27]. Briefly, Delta toxin was

expressed as a N-terminal His-tagged protein in E. Coli BL21,

purified using affinity chromatography and subsequently concen-

trated to 6.6 mg/ml in 20 mM Tris-HCl pH 8.0, 100 mM

Figure 1. Two views at 1806C of the C. perfringens Delta toxin structure in cartoon representation. Latch domain, b-sandwich domain,
Stem domain and rim domain are colored in pale cyan, cyan, red and magenta, respectively. Glycerol molecules are shown as sticks. Zinc molecules
are depicted as yellow balls. Figures 1–4 are produced with PyMol.
doi:10.1371/journal.pone.0066673.g001

C. Perfringens Delta-Toxin Structure
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imidazole, 50 mM NaCl and 5% glycerol. X-ray diffraction

quality crystals grew in the presence of 100 mM MES-NaOH

pH 6.0, 25–30% polyethylene glycol monomethyl ether 550,

25 mM ZnSO4. The crystals belong to the orthorhombic space

group P21212 with cell dimensions a = 112.9, b = 49.7 and c = 58.5

Å. Calculations based on Matthews coefficient indicated that there

is one monomer in the asymmetric unit with a VM of 2.58

Å3.Da21 corresponding to a solvent content of 52.4%.

Data Collection, Processing and Phasing
The data were collected on beamline ID29 at ESRF in

Grenoble, France. The diffraction data were processed with

MOSFLM [28] and scaled and merged using SCALA [29]. The

CCP4 suite of programs [30] was used for all subsequent steps.

Molecular replacement was carried out successfully with a number

of different hemolysin-like structures. The best results used the S

component of S. aureus Panton-Valentine leucocidin (PDB ID

1T5R [21], as the search model and the program Phaser [31].

This gave a Z-score of 11.6 and a log-likelihood gain of 123.4

following placement of a single copy in the asymmetric unit, and

an R-factor and R-free of 41.8 and 44.9% respectively following

an initial rigid-body refinement round.

Model Building and Refinement
Alternating rounds of refinement in Phenix [32] and manual

rebuilding in Coot [33] were carried out until no further

improvement in R-factor and R-free could be achieved. The final

model comprises residues 9 to 290, three Zn ions, three glycerol

molecules, one imidazole and 139 water molecules. The final

crystallographic R-factor and R-free are 17.9% and 22.8%

respectively, and the model has good geometry as assessed by

Molprobity [34].

Molecular Modeling
We choose to model a Delta toxin heptamer based on the

structure of aHL [15,23] for two reasons. Firstly, we excluded a

model based on cHL [22] because Delta toxin forms homo-

oligomers like aHL, rather than hetero-oligomers as seen in cHL.

Secondly, aHL has detectable sequence homology to Delta toxin,

whereas the more recently solved (and structurally related) Vibrio

cholerae cytolysin heptamer [35] has inserted domains and much

lower sequence homology. Delta toxin was sequence aligned with

a number of other known hemolysin-like atomic structures using

ClustalW [36] and aHL (PDB ID 7AHL) [15], and residues

corresponding to the stem and latch domains in aHL were deleted

from the final refined model of Delta toxin. The coordinates of the

refined Delta toxin minus these two regions were then optimally

superposed onto the A molecule from aHL using SSM [37] in

CCP4. The residues corresponding to the latch and stem domains

from 7AHL where mutated to their corresponding residues in

Delta toxin using Chainsaw [38] from CCP4 and these two

domains added to the Delta toxin. This model of a Delta toxin

pore-form monomer was then superposed on each of the 7

monomers in 7AHL in turn to form a model of a heptameric Delta

toxin pore. The model was then energy-minimised in Phenix [32].

Oligomerization on Cells
Recombinant Delta toxin was produced in E. coli from pET28

vector and purified on cobalt column as previously described [1].

The His-tag was removed by thrombin (Novagen) and was labeled

with Cy3 according to the manufacturer’s recommendations (GE

Healthcare). Cy3-Delta toxin was checked for cytotoxic activity on

HeLa cells.

HeLa cells were incubated with 5 mg/ml Cy3-Delta toxin for

30min at 4uC (lane 1), 5 mg/ml for 30 min at 37uC (lane 2), or

10 mg/ml for 30 min at 37uC (lane 3) in DMEM medium

containing 0.1% BSA. Then the cells were washed three times

with PBS and lysed with Tris-HCl 10 mM pH 7.5 containing

Triton X100 1% and DNAse 50 mg/ml. The cell lysates were

elctrophoresed in a SDS-containing 10% polyacrylamide gel and

scanned for fluorescence with a Typhoon scanner using a

wavelength of 532 nm.

Electron Microscopy
Samples for electron microscopy were prepared as follows. A

mixture of lipids (Egg phosphatidylcholine:Egg phosphatidylgly-

cerol:cholesterol at a molar ratio of 4:1:5, Avanti polar lipids) was

dried under nitrogen and rehydrated in buffer (50 mM Tris

pH 8.0, 150 mM NaCl). The rehydrated lipids were incubated at

37uC for 30 minutes followed by vigorous vortexing. The

suspension was then subjected to two rounds of freezing in liquid

nitrogen followed by thawing at 37uC. Finally, the lipid suspension

was extruded through a 100 nm pore filter 21 times. Delta toxin

was mixed with 150 mM lipid to give a final Delta toxin

heptamer:liposome ratio of 50:1 and incubated at 37uC. A 5 ml

sample was then applied to formvar-carbon coated grid that had

been freshly glow-discharged. Specimens were observed on a

Phillips T12 transmission electron microscope operating at

120 kV.

Results

Structure Determination of the X-ray Crystal Structure
In an effort to determine the structure of C. perfringens pore-

forming toxins, we cloned, over-expressed, purified, and crystal-

lized Delta toxin [1,27], resulting in crystals that diffracted up to

2.4 Å resolution. Analysis of the diffraction pattern and systematic

absences led to Delta toxin crystals being assigned to the

orthorhombic space group P21212, with unit-cell dimensions

a = 112.93, b = 49.66, c = 58.48 Å. The Matthews coefficient (VM

of 2.58 Å3.Da21) suggested that the asymmetric unit contained

one molecule of Delta toxin, corresponding to a crystal solvent

content of 52.4%.

C. perfringens Delta toxin structure was determined by molecular

replacement using Phaser [31] and LukS-PV (PDB ID: 1T5R;

[21]) as the model and yielded excellent quality electron density

maps. The model was refined using Phenix [32] and built with

Coot [33]. It includes a monomer of Delta toxin, comprising 282

residues (residues Ile9 to Ser290), 139 water molecules, three

glycerol molecules, one imidazole and three zinc molecules. The

final values of R-factor and R-free are 17.9% and 22.8%,

respectively (Table 1). The final refined co-ordinates were

submitted to the Protein DataBank with PDB ID: 2YGT.

Monomeric form of Delta Toxin Determined by X-ray
Crystallography

C. perfringens Delta toxin structure has an elongated ellipsoid

shape composed of eighteen b-strands and three short helical

fragments: two 310 helices and one a-helix (Fig. 1). These

secondary structure elements are arranged into three structural

domains: a b-sandwich domain, a stem domain and a rim domain

(Fig. 1). The b-sandwich domain is made up of a sandwich of two

anti-parallel b-sheets, composed of six and seven b-strands,

respectively. Three b-strands are folded into an anti-parallel b-

sheet to form the stem domain. The rim domain consists of one a-

helix turn and an anti-parallel b-sheet of four b-strands (Fig. 1).

C. Perfringens Delta-Toxin Structure
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Comparison of Delta Toxin with Related Proteins
To compare Delta toxin with the staphylococcal toxins, we

superposed their structures and performed a maximum-likelihood

structure-based sequence alignment using Theseus-3D [39,40].

The superposition together with the multiple sequence alignment

shows that, despite a relatively low sequence identity between

Delta toxin and the staphylococcal b-pore forming toxins (less than

30%), the secondary structure elements are conserved across the

whole group (Fig. S1 and Fig. 2). The root mean square deviation

for all Ca-atoms that have equivalents in all aligned structures,

excluding the stem domain (198 atoms or 70% of the Ca-atoms in

Delta toxin), is between 0.64 and 2.34 Å (Table 2).

Delta toxin shows a novel conformation of the N-terminal latch

domain (Fig. 2). In aHL, the N-terminal residues are extended and

form interactions with the adjacent monomer in the heptamer

[15]. In both components of the cHL pore [22], the recently

solved structure of the NetB pore form and all monomeric S

component structures [21] these residues are disordered. In the

monomeric NetB [26] structure, this latch conformation is

partially, but not completely, ordered, in a similar manner to

Delta toxin. However, in monomeric F component structures

[19,20] they extend along the whole length of the b-sandwich

domain to form an additional strand. In Delta toxin, the N-

terminal residues form a b-hairpin that extends halfway along the

b-sandwich domain and creates a cap above the folded,

monomeric stem domain residues (Fig. 1 and Fig. 2).

As has been well noted previously, the main difference between

both Delta toxin and the monomeric leukocidins and the

heptameric pore structures (aHL, cHL and NetB) is that the

stem domain adopts an extended b-hairpin conformation in the

mature pore structures [15,22–24], while it is folded back towards

the b-sandwich domain in the water-soluble form structures [19–

21].

As described earlier, a number of the staphylococcal toxins are

bicomponent, with both F and S components required for

functionality. Other authors have shown that the F and S

components differ most in their rim domains [21]. By comparing

Delta toxin to the F and S components, we observed that the rim

domain is more similar to the F component than the S (Fig. 2A

and B). In Delta toxin, residues 75–80 form a short turn similar to

that for component F rather than the extended loop seen in S

component structures (Fig. 2B). Delta toxin residues 183–193 form

an extended loop present in component F but not in component S

(Fig. 2B). The V loop formed by residues 199–209 of Delta toxin

follows the conformation seen in component F structures; in S

component structures this loop is flipped. Finally, residues 258–

261 in Delta toxin form a loop at the base of the rim domain,

similar to that seen in component F, while in component S this

loop is longer due to the insertion of 5 amino acids. There are

differences, however between Delta toxin and F component

structures. Though we have already commented that residues 75–

80 form an F-type like short turn, rather than an S-type extended

loop, the conformation of this turn is quite different from the F

component. In addition, the V loop in Delta toxin is shorter than

that seen in any of the S. aureus proteins. Finally, Delta toxin has a

four-residue deletion in the residue 177–183 loop (Fig. 2B) relative

to the S. aureus proteins. This deletion means that Delta toxin does

not possess a Tryptophan (residue 177 in LukF; Fig. 2B) that is

important for phosphatidylcholine binding in the S. aureus proteins

[41,42]. A similar conformation to that of Delta toxin of the rim

domain is seen in both NetB structures [24,26].

Model of the Heptameric Pore Form of Delta Toxin
The Delta toxin heptameric pore model was generated by

splicing the b-hairpin and latch domains of aHL [15,23] to the rim

and b-sandwich domains of Delta toxin (Fig. 3). It has no clashes

and is stable in energy minimisation. The heptamer is similar to

the Delta toxin oligomer seen by electron microscopy (see below)

and has an unobscured central channel for ion conduction (Fig. 3).

In addition, the recently solved structure of the NetB oligomer

[24], to which Delta toxin is closely related (approximately 43%

sequence identity), is also heptameric and closely resembles our

model, with an Ca-atom RMSD of 1.2 Å over 261 residues,

including the stem domain, between a monomer from the Delta

heptameric model and one from the NetB heptamer, and 1.7 Å

over 1827 matched Ca in the heptamers. Interestingly, the buried

surface area in this model, at approximately 2300 Å2 per interface,

though still extensive, is significantly smaller than that seen in aHL

(approximately 2800 Å2 per interface), and all but one of the salt

bridges present in aHL have been lost in this model. The

reduction in contact regions between monomers in the Delta toxin

can be seen in holes in the side of the pore in the b-sandwich

domain (Fig. 3).

Table 1. Data collection and structure refinement statistics.

Synchrotron/beamline ESRF ID29

Crystal parameters

Space group P21212

Cell dimensions (Å) a = 112.93, b = 49.66, c = 58.48

Angles (û) a= b= c= 90u

Data collection

Wavelength (Å) 1.0332

Resolution limit (Å) 100.0–2.40 (2.53–2.40)

Mosaicity 0.29û

Rmerge 0.15 (0.69)

Total number of observations 140,319 (20,111)

Total number unique 13,409 (1898)

Mean I/sI 15.8 (3.5)

Completeness (%) 99.9 (99.8)

Multiplicity 10.4 (10.6)

Refinement

Protein atoms in model 2173

Solvent atoms in model 250

Rworking 0.179

Rfree 0.228a

RMSD from ideal geometryb

Bond lengths (Å) 0.08

Bond angles (u) 0.772

Wilson B-factor (Å2) 38.1

Mean B-factor of protein atoms (Å2) 29.6

Ramachandran plot

Most favoured (%) 94.7

Outlier (%) 0.0

PDB ID code 2YGT

Rmerge =S|Ii – bIiN|/SIi.
Rworking =S|Fo – Fc|/SFo.
Rfree is the R-factor calculated for the cross-validated test set of reflections.
aRfree is 4.9% of reflections.
bAs defined by MOLPROBITY.
doi:10.1371/journal.pone.0066673.t001

C. Perfringens Delta-Toxin Structure
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Both the recently published NetB heptamer [24] and cHL

octamer [22] also appear to show a similarly reduced monomer

interface (both with around 2200 Å2 buried per interface).

However, in both these complexes the latch domain is disordered

and not contributing to the interface. We have modelled a latch

domain into the Delta heptamer, and in both our model and aHL,

the latch domain contributes approximately 640 Å2 buried surface

area and a number of hydrogen bonds to the interface. This

suggests that the main heptamer interface, including the stem

domain is similar in size in aHL, NetB and cHL, but significantly

smaller in our Delta toxin model.

Implications for Membrane Binding in Delta Toxin
A prerequisite of Delta toxin action is binding to the target

membrane. With the aim of defining which region is involved in

this interaction, we studied the nature of the solvent-exposed

residues in Delta toxin. When studying the hydrophobicity of the

solvent-exposed residues, we found that a large number of

hydrophobic residues are located in the rim domain. In particular,

there is an aromatic patch composed of seven residues (Tyr81,

Tyr182, Trp187, Tyr191, Tyr201, Trp257, Trp261, Tyr266) at

the base of this domain (Fig. 4A and B). These residues are partly

composed of and close to the V and shortened residue 75–80 loops

described previously. The presence of hydrophobic, and more

specifically, aromatic residues at this particular location has

already been highlighted for the staphylococcal leucocidins

[19,20] and has been linked to their interaction with phospholipid

head groups. However, with the exception of Tyr 191, the exact

residue positions are not in general conserved between Delta toxin

and the leukocidins, suggesting a general similarity in membrane

recognition, while the details of the mechanism are different.

Small Molecules Bound to Delta Toxin
There are three glycerol molecules bound to the hydrophobic

region of the rim domain (Fig. 4). Two (named Gol5 and Gol6 in

the rest of this manuscript) are bound to opposite sides of the 199–

209 V loop, close to the patch of hydrophobic residues. Gol5 is

bound to a pocket formed by Tyr81 and Trp257 and Trp261 and

forms hydrogen bonds with the mainchain of residues 201–203.

Gol6 packs against Tyr201 and Arg200 and forms hydrogen

bonds with residues 200–202. The third glycerol, referred to as

Gol7 here, is bound at the top of the rim domain, close to the base

of the folded stem domain, it is hydrogen bonded to the sidechain

of Glu177. There are no small molecules observed bound to the

Figure 2. Superposition of C. perfringens Delta toxin structure with cHL-Hlg2 in grey (PDB ID: 3B07) (A), with cHL-LukF in pale green
(PDB ID: 3B07) (B) and with a monomer of the aHL of S. aureus in yellow (PDB ID: 7AHL) (C). Colors for the different domains of C.
perfringens Delta toxin have been kept as for Fig. 1. The conserved Arginine and Tryptophan associated with phospholipid binding are shown as
sticks. Loops in the rim domain that differ in the various toxins are identified in (B) by their residue numbers in Delta.
doi:10.1371/journal.pone.0066673.g002

Table 2. Root-mean-square deviation in Angstroms, between
the 198 Ca-atoms that have equivalents in all structures,
excluding the stem domain, following Maximum-Likelihood-
based multiple sequence alignment with Theseus-3D [39,40].

RMSD (Å) Delta
aHL
(7ahl)

Hlg2-cHL
(3b07)

LukF-cHL
(3b07)

LukS-PV
(1t5r)

LukF-PV
(1pvl)

LukF (1lkf) 1.82 1.67 0.75 2.34 2.25 0.64

LukF-PV
(1pvl)

1.67 1.61 0.87 2.22 2.14

LukS-PV
(1t5r)

1.80 1.78 2.19 1.20

LukF-cHL
(3b07)

1.76 1.62 2.25

Hlg2-cHL
(3b07)

1.80 1.77

aHL
(7ahl)

1.74

doi:10.1371/journal.pone.0066673.t002

C. Perfringens Delta-Toxin Structure
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NetB heptamer [24], however there is an ethylene glycol bound to

monomeric NetB at an equivalent location to Gol5 [26].

The S. aureus F components and aHL have been cocrystallised

with a number different small molecules. LukF was cocrystallized

with dipropanoyl phosphatidyl choline, and the phosphocholine

headgroup was seen bound in a pocket formed by Trp177 and

Arg198 [19]. Interestingly, when Delta toxin and LukF are

superposed, the glycerol of Delta toxin is positioned where the

glycerol moiety of the phosphatidylcholine would be expected to

be in the LukF structure, if it had been ordered (Fig. 4C). In

Figure 3. Model of the Delta toxin heptameric pore shown in cartoon representation with a semi-transparent surface. Chain A is
coloured cyan for the latch domain, pale green for the b-sandwich, red for the stem and raspberry for the stem domains. Remaining chains shown in
single colour (pale teal, grey, lilac, pink white and yellow). (A) Top (looking down at extra-cellular face) and (B) side-view, indicating possible
membrane location.
doi:10.1371/journal.pone.0066673.g003

Figure 4. C. perfringens Delta toxin structure surface from the side (A) and from the bottom of the rim domain (B). Aliphatic residues
(Ala, Val, Ile, Leu, Met) are in salmon and aromatic residues (Phe, Trp, Typ) are in red. Glycerol molecules are shown as grey sticks. In C, a cartoon
representation of the glycerol molecules binding region of C. perfringens Delta toxin in cyan superposed with S. aureus LukF in lemon (PDB ID: 3LKF;
[19]) and LukF-PV in pink (PDB ID: 1PVL; [20]). In D, the glycerol molecule binding region of Delta toxin, coloured as for Fig. 1 showing the residues
involved in binding glycerol which are shown as lemon sticks.
doi:10.1371/journal.pone.0066673.g004
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addition, MES-NaOH molecules were found in the LukF-PV

structure, and were proposed to be mimicking lipid head groups,

(no MES-NaOH was used in crystallisation; [20,21]) these MES

molecules were also bound in the Trp177/Arg198 pocket. When

the proteins are superposed, Gol5 and Gol6 in Delta toxin overlap

with these MES-NaOH molecules. Finally, both the LukF in cHL

[22] and a recent determination of aHL heptamer structure [23]

have 2-methyl-2,4-pentanediol (MPD) bound in the Trp177/

Arg198 pocket, overlapping with Gol6 in Delta toxin when the

proteins are superposed.

One imidazole molecule is bound between the sidechains of

Asp34 and Arg287 at a crystallographic interface. Imidazole is

present at significant concentration in the crystallisation condi-

tions, is bound to non-conserved residues, and is also in a non-

physiological environment created by the presence of the non-

biological crystallographic interface. It is unlikely this molecule has

any biological significance. There are also three bound zinc

molecules. Zinc was also present at significant quantity in the

crystallisation conditions, and all three zinc ions are bound either

to charged residues at the protein surface, which with one

exception, are not conserved, or, in one case, bound imidazole.

The zinc is therefore unlikely to be biologically significant.

Characterization of Delta Toxin Pores by Electron
Microscopy and Fluorescence Imaging

In order to confirm that Delta toxin is able to bind membranes

and oligomerize in a manner similar to other staphylococcal b-

pore forming toxins, we observed Delta toxin on the surface of

sensitive cells by fluorescence imaging and in the presence of

liposomes by electron microscopy. HeLa cells were incubated with

fluorescent Delta toxin and oligomers were visualized by SDS-

PAGE and fluorescence imaging. Delta toxin formed oligomers

only when incubated at 37uC with cells and not at 4uC (Fig. 5).

Electron microscopic observation of the toxin-liposome mixtures

revealed liposomes heavily packed with toxin oligomers (Fig. 6).

The oligomers are ring-shaped and measure approximately 10 nm

in diameter. This dimension closely matches the reported diameter

of the aHL pore form at its maximum dimension. These

observations confirm that Delta toxin is able to bind and

oligomerize on lipid bilayers.

Discussion

Antibiotics have been added to animal feedstuffs to promote

growth for some time [9]. Following concern about increasing

microbial resistance, some governements are requiring reductions

of these additives [10]. As a consequence there are renewed

concerns about the emergence of infectious diseases in industrial

farming. The leukocidin-like toxins secreted by C. perfringens are of

interest in connection with this, as NetB and Beta toxin have been

shown to have significant links with these diseases, while Delta

toxin is cytotoxic, as discussed earlier [1,7,8]. In this study, we

have described the monomeric structure of C. perfringens Delta

toxin and a model of its oligomeric form that is supported by

electron microscopy views of liposomes surrounded by pores. As

expected, the monomeric structure has a fold that is homologous

to those of the previously solved structures of the monomeric

S. aureus leukocidin structures, however it suggests differences in

membrane recognition and headgroup specificity which are likely

to be of importance in the design of therapeutics or novel vaccines

for the animal disease caused by the C. perfringens group of pore-

forming toxins.

In Delta toxin we have observed bound glycerol in a location

similar to that in which lipid and amphipathic moleules have been

observed binding both to aHL and LukF [19,23]. Ethylene glycol

has also been observed binding to this location in NetB [26]. In the

bicomponent pores, F component proteins have been associated

with initial phosphatidylcholine binding prior to binding of LukS

and its recognition by any specific receptors [42]. Reflecting this

difference in function, the rim domain, which interacts most

closely with the membrane surface in the oligomeric structures, is

the location of the largest structural differences between F and S

components [21]. The site of lipid and amphipathic molecule

binding in LukF is eliminated in LukS by loss of the conserved

residues associated with membrane binding, the change in V-loop

conformation and by the insertion of long loops that occupy the

space normally taken by the ligand. It is noticeable that in all three

structures of homo-heptameric pore forming toxins solved to date

(aHL, NetB and Delta toxin), these toxins are more similar to

LukF than LukS. In addition, both aHL and now Delta toxin have

small molecules bound to the lipid binding site identified in LukF

[19,20,23]. Membrane-binding is an essential precursor to

insertion of the pore into the lipid bilayer, regardless of any

Figure 5. HeLa cells were incubated with 5 mg/ml Cy3-Delta
toxin for 30min at 46C (lane 1), 5 mg/ml for 30 min at 376C (lane
2), or 10 mg/ml for 30 min at 376C (lane 3) in DMEM medium
containing 0.1% BSA. After washing, the cell lysates were
elctrophoresed in a SDS-containing 10% polyacrylamide gel without
reducing agent and scanned for fluorescence.
doi:10.1371/journal.pone.0066673.g005
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particular specificity and thus the homo-oligomers have retained

the LukF lipid binding site at the cost of any specificity conferred

by the LukS rim domain.

Nevertheless, Delta toxin still requires specificity as it has been

shown to be cytotoxic only to cells expressing GM2 in their

membrane [3–5,11]. There are aspects of the Delta toxin that

might shed light on this specificity. The Delta toxin structure has

three bound glycerol molecules, all located in the rim domain,

which is mainly composed of hydrophobic and aromatic residues.

As we have already described, two of these glycerol molecules are

close to the V loop and a stretch of hydrophobic residues.

Interestingly, the superposition of aHL and component F

structures with bound small molecules [19,20,22,23] and the

Delta toxin structure revealed that hydrophobic molecules such as

phosphatidylcholine, MPD or even MES-NaOH are found at the

same location, close to the V loop, as two of the glycerol molecules.

One of these two glycerol molecules interacts with Trp257, and

replacement of the equivalent residue in NetB reduces cytotoxicity

[24,26]. The V loop contains an arginine that is conserved in all

the pore-forming toxins except the S components, corresponding

to Arg200 in Delta toxin, the other glycerol is interacting with this

arginine, which has been shown to play a crucial role in these

toxins. In S. aureus aHL, the mutation of the corresponding

arginine (Arg200) to cysteine abolishes the ability of the toxin to

bind its target cells, inducing a complete loss of hemolytic activity

[43]. Similarly, the replacement of the corresponding arginine

(Arg212) by a glutamate in C. perfringens Beta toxin impairs the

toxin’s oligomerization and the binding to cell surface, resulting in

a decrease of toxin lethal activity [44] and the replacement of the

equivalent Arginine in NetB eliminates cytotoxicity [24,26].

Likewise, it has been shown that the mutation of the correspond-

ing arginine (Arg198) to threonine in S. aureus LukF reduces the

hemolytic activity by impairing the membrane-binding and the

hetero-oligomerization with Hlg2 and therefore the formation of

the cHL pore [42]. One of the glycerol molecules in the Delta

toxin structure is interacting with the Arg200 residue, and, it is

likely that, in analogy with these related proteins, Arg200 in Delta

toxin is important for cell surface recognition.

Interestingly, however, in aHL and component F, the

recognised phospholipid binding site is completed by a conserved

Tryptophan (Trp177 in LukF) [42]. We have already noted that

Delta toxin has differences from the leukocidins. The most

noticeable of these is the loss of the loop containing Trp177. It has

been shown that GM2 ganglioside is the receptor for the Delta

toxin, while the leukocidins bind phosphatidylcholine. The loss of

the tryptophan containing loop enlarges the binding site as well as

changing its chemical nature, and this may reflect the binding of

GM2 ganglioside rather than phosphatidylcholine. It is interesting

to note that all three C. perfringens toxins have lost the tryptophan

containing loop (Fig. S1 and Fig. 2A), perhaps reflecting altered

cell specificties for all these toxins compared to the staphylococcal

proteins.

C. perfringens secretes a range of b-PFTs from a number of

different families. Distinct from the hemolysin-like group of which

Delta toxin is part, are C. perfringens enterotoxin and epsilon toxin.

These toxins are structurally related to each other and are

members of the Aerolysin family [45,46] of b-PFTs, despite

sharing no significant sequence homology with Aerolysin or one

another. Aerolysin, from the bacterium Aeromonas, is the prototype

of this toxin family which also encompasses animal and plant

toxins, such as hydralysin and enterolobin, respectively [47–49].

C. perfringens enterotoxin and epsilon toxin are more elongated

than Delta toxin, but like Delta toxin they contain three domains

and form hexamers or heptamers. In these aerolysin-like toxins,

the N-terminal domain is involved in binding to specific receptor,

domain 2 contains an amphipatic b-hairpin forming the b-barrel,

and the C-terminal domain is associated with oligomerization

[45,46]. Perfringolysin (PFO) also produced by C. perfringens is a

representative of the cholesterol-dependent cytolysin (CDC)

family. PFO retains a structural organization and mode of

insertion into membrane similar to those of other b-PFTs. But

PFO forms large pores resulting from the association of a large

number (40–50) of monomers and unfolds two b-hairpins from

each monomer to build the b-barrel, in contrast to the single

hairpin from both the aerolysin- and hemolysin-like families [50–

52]. Why C. perfringens synthesizes so many and such a diverse

range of b-PFTs is intriguing. Have these b-PFTs evolved from a

common clostridial ancestor gene or have they been acquired by

horizontal gene transfer from other bacteria and subsequently

evolved in C. perfringens? A basic role of bacterial b-PFTs probably

concerns the uptake of nutrients from eukaryotic cells. But the

benefits for C. perfringens of these different b-PFTs is not evident. It

might be hypothesized that they contribute to C. perfringens

adaptation to specific hosts or ecological niches.

In summary, NetB, Delta toxin and Beta toxin are three toxins

secreted by C. perfringens that are both related to the S. aureus

leukocidins and, in the case of NetB and Beta toxin, are important

pathogenic factors in industrial livestock diseases that are emerging

following the removal of antibiotics from foodstuffs [53]. Here, we

have presented the 2.4 Å X-ray crystallographic structure of C.

perfringens Delta toxin monomeric structure together with a model

of the heptameric pore-form which is supported by negative stain

electron microscopy images. The structure shows that while there

are similarities in the mechanism of membrane recognition

between the C. perfringens toxins and the S. aureus leukocidins,

there are also a number of key differences that may explain the

altered specificity of these toxins. Such differences will be

important in the design of novel therapeutics and/or vaccines.

Figure 6. Electron micrographs of liposomes incubated with
Delta toxin. Scale bars correspond to 50 nm.
doi:10.1371/journal.pone.0066673.g006
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Supporting Information

Figure S1 Multiple sequence alignment of C. perfrin-
gens Delta toxin. (Uniprot ID: B8QGZ7), C. perfringens Beta

toxin (Uniprot ID: Q9L403), C. perfringens NetB (Uniprot ID:

A8ULG6), S. aureus aHL (aHL; Uniprot ID: P09616; PDB ID:

7AHL), the F component of S. aureus leucocidin (LukF; Uniprot

ID: P0A077; PDB ID: 1LKF), the F component of S. aureus

Panton-Valentine leucocidin (LukF-PV; Uniprot ID: O50604;

PDB ID: 1PVL), the S component of S. aureus Panton-Valentine

leucocidin (LukS-PV; Uniprot ID: Q783R1; PDB ID: 1T5R), the

F component of S. aureus c-Hemolysin (LukF-gHL; Uniprot ID:

Q931F3; PDB ID: 3B07) and the S component of S. aureus c-

Hemolysin (Hlg2-gHL; Uniprot ID: P0A071; PDB ID: 3B07).

Secondary structures elements (arrows for b-strands and coils for

a- or 310 helices) are shown in red and at the top for Delta toxin

and at the bottom for aHL. Secondary structures elements for the

leucocidins are boxed. The predicted Stem domain is in yellow.

Sequence identity and homology are in red and grey, respectively.

The Figure has been made using ESPript program [54].

(TIFF)
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