M. Lara-tejero and E. Pamer, T cell responses to Listeria monocytogenes, Current Opinion in Microbiology, vol.7, issue.1, pp.45-50, 2004.
DOI : 10.1016/j.mib.2003.12.002

L. Zenewicz and H. Shen, Innate and adaptive immune responses to Listeria monocytogenes: a short overview, Microbes and Infection, vol.9, issue.10, pp.1208-1223, 2007.
DOI : 10.1016/j.micinf.2007.05.008

F. Stavru, C. Archambaud, and P. Cossart, Cell biology and immunology of Listeria monocytogenes infections: novel insights, Immunological Reviews, vol.69, issue.1, pp.160-84, 2011.
DOI : 10.1128/IAI.69.3.1795-1807.2001

A. Camejo, F. Carvalho, O. Reis, E. Leitao, S. Sousa et al., The arsenal of virulence factors deployed by Listeria monocytogenes to promote its cell infection cycle, Virulence. Epub, vol.217, issue.5, pp.379-94, 2011.

P. Cossart, Illuminating the landscape of host-pathogen interactions with the bacterium Listeria monocytogenes, Proceedings of the National Academy of Sciences, vol.22, issue.3, pp.19484-91, 2011.
DOI : 10.1016/j.smim.2010.02.002

L. Tilney and D. Portnoy, Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes, The Journal of Cell Biology, vol.109, issue.4, pp.1597-608, 1989.
DOI : 10.1083/jcb.109.4.1597

K. Ray, B. Marteyn, P. Sansonetti, and C. Tang, Life on the inside: the intracellular lifestyle of cytosolic bacteria, Nature Reviews Microbiology, vol.46, issue.5, pp.333-373, 2009.
DOI : 10.4161/auto.6246

R. Lamason and M. Welch, Actin-based motility and cell-to-cell spread of bacterial pathogens, Current Opinion in Microbiology, vol.35, pp.48-57, 2016.
DOI : 10.1016/j.mib.2016.11.007

M. Ogawa, Y. Yoshikawa, H. Mimuro, T. Hain, T. Chakraborty et al., and the bacterial countermeasure, Autophagy, vol.7, issue.3, pp.310-314, 2011.
DOI : 10.4161/auto.7.3.14581

J. Pizarro-cerda, A. Kuhbacher, and P. Cossart, Entry of Listeria monocytogenes in mammalian epithelial cells: an updated view. Cold Spring Harb Perspect Med, 2012.

M. Hamon, D. Ribet, F. Stavru, and P. Cossart, Listeriolysin O: the Swiss army knife of Listeria. Trends in microbiology, pp.360-368, 2012.

S. Seveau, Multifaceted Activity of Listeriolysin O, the Cholesterol-Dependent Cytolysin of Listeria monocytogenes, Subcell Biochem, vol.80, pp.161-95, 2014.
DOI : 10.1007/978-94-017-8881-6_9

C. Kocks, E. Gouin, M. Tabouret, P. Berche, H. Ohayon et al., L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein, Cell, vol.68, issue.3, pp.521-552, 1992.
DOI : 10.1016/0092-8674(92)90188-I

Y. Yoshikawa, M. Ogawa, T. Hain, M. Yoshida, M. Fukumatsu et al., Listeria monocytogenes ActA-mediated escape from autophagic recognition, Nature Cell Biology, vol.113, issue.10, pp.1233-1273, 2009.
DOI : 10.1038/ni.1634

G. Mitchell, L. Ge, Q. Huang, C. Chen, S. Kianian et al., Avoidance of Autophagy Mediated by PlcA or ActA Is Required for Listeria monocytogenes Growth in Macrophages, Infection and Immunity, vol.83, issue.5, pp.2175-84, 2015.
DOI : 10.1128/IAI.00110-15

V. Goulet, M. Hebert, C. Hedberg, E. Laurent, V. Vaillant et al., Incidence of Listeriosis and Related Mortality Among Groups at Risk of Acquiring Listeriosis, Clinical Infectious Diseases, vol.14, issue.4, pp.652-60, 2011.
DOI : 10.1093/clinids/14.4.815

V. Goulet, L. King, V. Vaillant, and H. De-valk, What is the incubation period for listeriosis?, BMC Infectious Diseases, vol.156, issue.1, pp.11-23305174, 2013.
DOI : 10.1093/aje/kwf096

H. Hof, Listeria monocytogenes: a causative agent of gastroenteritis? Eur, J Clin Microbiol Infect Dis. Epub, vol.20, issue.6, pp.369-7331, 2001.

V. Bhardwaj, O. Kanagawa, P. Swanson, and E. Unanue, Chronic Listeria infection in SCID mice: requirements for the carrier state and the dual role of T cells in transferring protection or suppression, J Immunol, vol.160, issue.1, pp.376-84, 1998.

C. Birmingham, V. Canadien, N. Kaniuk, B. Steinberg, D. Higgins et al., Listeriolysin O allows Listeria monocytogenes replication in macrophage vacuoles, Nature, vol.99, issue.7176, pp.350-354, 2008.
DOI : 10.4161/auto.4450

G. Lam, M. Czuczman, D. Higgins, and J. Brumell, Interactions of Listeria monocytogenes with the Autophagy System of Host Cells, Adv Immunol, vol.11317, pp.7-18, 2012.
DOI : 10.1016/B978-0-12-394590-7.00008-7

J. Hardy, K. Francis, M. Deboer, P. Chu, K. Gibbs et al., Extracellular Replication of Listeria monocytogenes in the Murine Gall Bladder, Science, vol.303, issue.5659, pp.851-854, 2004.
DOI : 10.1126/science.1092712

J. Hardy, P. Chu, and C. Contag, Foci of Listeria monocytogenes persist in the bone marrow, Disease Models and Mechanisms, vol.2, issue.1-2, pp.39-46, 2009.
DOI : 10.1242/dmm.000836

M. Lecuit, Human listeriosis and animal models, Microbes and Infection, vol.9, issue.10, pp.1216-1241, 2007.
DOI : 10.1016/j.micinf.2007.05.009

D. Gibbons and J. Spencer, Mouse and human intestinal immunity: same ballpark, different players; different rules, same score, Mucosal Immunology, vol.89, issue.2, pp.148-57, 2011.
DOI : 10.1146/annurev.immunol.21.120601.141011

H. Bierne, L. Travier, T. Mahlakoiv, L. Tailleux, A. Subtil et al., Activation of type III interferon genes by pathogenic bacteria in infected epithelial cells and mouse placenta): e39080. https, PLoS One, vol.7, issue.6, 2012.

A. Lebreton, G. Lakisic, V. Job, L. Fritsch, T. Tham et al., A Bacterial Protein Targets the BAHD1 Chromatin Complex to Stimulate Type III Interferon Response, Science, vol.11, issue.6, pp.1319-1340, 2011.
DOI : 10.1111/j.1469-0691.2005.01146.x

URL : https://hal.archives-ouvertes.fr/cea-00819299

P. Hermant, C. Demarez, T. Mahlakoiv, P. Staeheli, P. Meuleman et al., Human but Not Mouse Hepatocytes Respond to Interferon-Lambda In Vivo ARTN e87906 https, Plos One, vol.9, issue.1, p.24498220, 2014.

A. Kuhbacher, P. Cossart, and J. Pizarro-cerda, Internalization Assays for Listeria monocytogenes, Methods Mol Biol, vol.1157, pp.167-78, 2014.
DOI : 10.1007/978-1-4939-0703-8_14

URL : https://hal.archives-ouvertes.fr/pasteur-01159730

H. Kim, H. Marquis, and K. Boor, ??B contributes to Listeria monocytogenes invasion by controlling expression of inlA and inlB, Microbiology, vol.151, issue.10, pp.3215-3237, 2005.
DOI : 10.1099/mic.0.28070-0

P. Vaudaux and F. Waldvogel, Gentamicin antibacterial activity in the presence of human polymorphonuclear leukocytes., Antimicrobial Agents and Chemotherapy, vol.16, issue.6, pp.743-752, 1979.
DOI : 10.1128/AAC.16.6.743

C. Becavin, C. Bouchier, P. Lechat, C. Archambaud, S. Creno et al., Comparison of Widely Used Listeria monocytogenes Strains EGD, 10403S, and EGD-e Highlights Genomic Differences Underlying Variations in Pathogenicity, mBio, vol.5, issue.2, pp.969-983, 2014.
DOI : 10.1128/mBio.00969-14

URL : https://hal.archives-ouvertes.fr/pasteur-01145480

S. Dramsi, I. Biswas, E. Maguin, L. Braun, P. Mastroeni et al., Entry of Listeria monocytogenes into hepatocytes requires expression of InIB, a surface protein of the internalin multigene family, Molecular Microbiology, vol.175, issue.2, pp.251-61, 1995.
DOI : 10.1016/0378-1119(91)90546-N

R. Jonquieres, H. Bierne, J. Mengaud, and P. Cossart, The inlA gene of Listeria monocytogenes LO28 harbors a nonsense mutation resulting in release of internalin, Infect Immun, vol.6625, issue.7 06, pp.3420-3422, 1998.

P. Velge, E. Bottreau, B. Kaeffer, and P. Pardon, Cell immortalization enhances Listeria monocytogenes invasion, Medical Microbiology and Immunology, vol.183, issue.3, pp.145-58, 1994.
DOI : 10.1007/BF00196049

P. Schnupf and D. Portnoy, Listeriolysin O: a phagosome-specific lysin, Microbes and Infection, vol.9, issue.10, pp.1176-87, 2007.
DOI : 10.1016/j.micinf.2007.05.005

R. Henry, L. Shaughnessy, M. Loessner, C. Alberti-segui, D. Higgins et al., Cytolysin-dependent delay of vacuole maturation in macrophages infected with Listeria monocytogenes, Cellular Microbiology, vol.257, issue.1, pp.107-126, 2006.
DOI : 10.1021/cr010142r

L. Dortet, S. Mostowy, A. Samba-louaka, E. Gouin, M. Nahori et al., Recruitment of the Major Vault Protein by InlK: A Listeria monocytogenes Strategy to Avoid Autophagy, PLoS Pathogens, vol.77, issue.8, 2011.
DOI : 10.1371/journal.ppat.1002168.s009

G. Lam, M. Cemma, A. Muise, D. Higgins, and J. Brumell, during the early stages of macrophage infection, Autophagy, vol.62, issue.7, pp.985-95, 2013.
DOI : 10.1046/j.1462-5822.2001.00087.x

M. Moors, B. Levitt, P. Youngman, and D. Portnoy, Expression of listeriolysin O and ActA by intracellular and extracellular Listeria monocytogenes, Infect Immun, vol.67, issue.1, pp.131-140, 1999.

M. Cemma, G. Lam, M. Stockli, D. Higgins, and J. Brumell, Strain-Specific Interactions of Listeria monocytogenes with the Autophagy System in Host Cells):e0125856. https, PLoS One, vol.10, issue.5, 2015.

P. Codogno, M. Mehrpour, and T. Proikas-cezanne, Canonical and non-canonical autophagy: variations on a common theme of self-eating?, Nature Reviews Molecular Cell Biology, vol.7, issue.1, pp.7-12, 2011.
DOI : 10.4161/auto.7.11.17661

D. Judith, S. Mostowy, M. Bourai, N. Gangneux, M. Lelek et al., Species-specific impact of the autophagy machinery on Chikungunya virus infection, EMBO reports, vol.285, issue.6, pp.534-578, 2013.
DOI : 10.1016/j.cell.2012.06.040

K. Bauckman, N. Owusu-boaitey, and I. Mysorekar, Selective autophagy: Xenophagy, Methods, vol.75, pp.120-127, 2015.
DOI : 10.1016/j.ymeth.2014.12.005

URL : http://europepmc.org/articles/pmc4355331?pdf=render

S. Stocks, Mechanism and use of the commercially available viability stain, BacLight. Cytometry A, pp.189-95, 2004.

M. Johnson and A. Criss, Fluorescence Microscopy Methods for Determining the Viability of Bacteria in Association with Mammalian Cells, Journal of Visualized Experiments, issue.79, p.24056524, 2013.
DOI : 10.3791/50729

M. Kubica, K. Guzik, J. Koziel, M. Zarebski, W. Richter et al., A Potential New Pathway for Staphylococcus aureus Dissemination: The Silent Survival of S. aureus Phagocytosed by Human Monocyte-Derived Macrophages, PLoS ONE, vol.27, issue.1, 2008.
DOI : 10.1371/journal.pone.0001409.t002

J. Oliver, Formation of viable but nonculturable cells Starvation in bacteria, pp.239-72, 1993.

T. Ramamurthy, A. Ghosh, G. Pazhani, and S. Shinoda, Current Perspectives on Viable but Non-Culturable (VBNC) Pathogenic Bacteria, Frontiers in Public Health, vol.29, issue.103, 2014.
DOI : 10.1007/s11274-013-1390-5

L. Li, N. Mendis, H. Trigui, J. Oliver, and S. Faucher, The importance of the viable but non-culturable state in human bacterial pathogens, Frontiers in Microbiology, vol.36, issue.70, p.258, 2014.
DOI : 10.1371/journal.pone.0062388

P. Lauer, M. Chow, M. Loessner, D. Portnoy, and R. Calendar, Construction, Characterization, and Use of Two Listeria monocytogenes Site-Specific Phage Integration Vectors, Journal of Bacteriology, vol.184, issue.15, pp.4177-864177, 2002.
DOI : 10.1128/JB.184.15.4177-4186.2002

L. Travier, S. Guadagnini, E. Gouin, A. Dufour, V. Chenal-francisque et al., ActA Promotes Listeria monocytogenes Aggregation, Intestinal Colonization and Carriage, PLoS Pathogens, vol.56, issue.1, 2013.
DOI : 10.1371/journal.ppat.1003131.s005

URL : https://doi.org/10.1371/journal.ppat.1003131

S. Ohya, H. Xiong, Y. Tanabe, M. Arakawa, and M. Mitsuyama, Killing mechanism of Listeria monocytogenes in activated macrophages as determined by an improved assay system, Journal of Medical Microbiology, vol.47, issue.3, pp.211-216, 1998.
DOI : 10.1099/00222615-47-3-211

M. Sorbara and S. Girardin, Emerging themes in bacterial autophagy, Current Opinion in Microbiology, vol.23, pp.163-70, 2015.
DOI : 10.1016/j.mib.2014.11.020

M. Cemma and J. Brumell, Interactions of Pathogenic Bacteria with Autophagy Systems, Current Biology, vol.22, issue.13, pp.540-545, 2012.
DOI : 10.1016/j.cub.2012.06.001

S. Mostowy and P. Cossart, Bacterial autophagy: restriction or promotion of bacterial replication? Trends Cell Biol, Epub 2012/05/05, pp.283-91, 2012.

M. Pareja and M. Colombo, Autophagic clearance of bacterial pathogens: molecular recognition of intracellular microorganisms, Front Cell Infect Microbiol, vol.3, p.54, 2013.

B. Tang, Bacteria-Containing Vacuoles: Subversion of Cellular Membrane Traffic and Autophagy, Critical Reviews in Eukaryotic Gene Expression, vol.25, issue.2, pp.163-74, 2015.
DOI : 10.1615/CritRevEukaryotGeneExpr.2015013572

C. Miller and J. Celli, Avoidance and Subversion of Eukaryotic Homeostatic Autophagy Mechanisms by Bacterial Pathogens, Journal of Molecular Biology, vol.428, issue.17, pp.3387-98, 2016.
DOI : 10.1016/j.jmb.2016.07.007

I. Tattoli, M. Sorbara, C. Yang, S. Tooze, D. Philpott et al., phospholipases subvert host autophagic defenses by stalling pre-autophagosomal structures, The EMBO Journal, vol.109, issue.23, pp.3066-78, 2013.
DOI : 10.1083/jcb.109.4.1597

URL : http://emboj.embopress.org/content/embojnl/32/23/3066.full.pdf

C. Collins, D. Maziere, A. Van-dijk, S. Carlsson, F. Klumperman et al., Atg5-independent sequestration of ubiquitinated mycobacteria):e1000430. https, PLoS pathogens, vol.5, issue.5, 2009.

L. Kohler and C. Roy, Biogenesis of the lysosome-derived vacuole containing Coxiella burnetii, Microbes and Infection, vol.17, issue.11-12, pp.11-12766, 2015.
DOI : 10.1016/j.micinf.2015.08.006

S. Ryan, C. Hill, and C. Gahan, Acid Stress Responses in Listeria monocytogenes, Adv Appl Microbiol, vol.65, pp.67-91, 2008.
DOI : 10.1016/S0065-2164(08)00603-5

V. Besnard, M. Federighi, E. Declerq, F. Jugiau, and J. Cappelier, Environmental and physico-chemical factors induce VBNC state in Listeria monocytogenes, Veterinary Research, vol.33, issue.4, pp.359-70, 2002.
DOI : 10.1051/vetres:2002022

J. Cappelier, V. Besnard, S. Roche, N. Garrec, E. Zundel et al., cells demonstrated by in vitro and in vivo models, Veterinary Research, vol.36, issue.4, pp.589-99, 2005.
DOI : 10.1051/vetres:2005018

URL : https://hal.archives-ouvertes.fr/hal-00902986

N. Dreux, C. Albagnac, M. Federighi, F. Carlin, C. Morris et al., on parsley leaves and absence of recovery to a culturable state, Journal of Applied Microbiology, vol.58, issue.4, pp.1272-81, 2007.
DOI : 10.1111/j.1365-2672.1991.tb04450.x

T. Lindback, M. Rottenberg, S. Roche, and L. Rorvik, The ability to enter into an avirulent viable but nonculturable (VBNC) form is widespread among Listeria monocytogenes isolates from salmon, patients and environment, Vet Res, vol.41, issue.1, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00903137

S. Steele, L. Radlinski, S. Taft-benz, J. Brunton, and T. Kawula, Author response, eLife, vol.3, 2016.
DOI : 10.7554/eLife.10625.019

M. Gengenbacher and S. Kaufmann, : success through dormancy, FEMS Microbiology Reviews, vol.36, issue.3, pp.514-546, 2012.
DOI : 10.1164/rccm.200710-1561UP

URL : https://academic.oup.com/femsre/article-pdf/36/3/514/18128985/36-3-514.pdf

N. Dutta and P. Karakousis, Latent Tuberculosis Infection: Myths, Models, and Molecular Mechanisms, Microbiology and Molecular Biology Reviews, vol.78, issue.3, pp.343-71, 2014.
DOI : 10.1128/MMBR.00010-14

URL : http://mmbr.asm.org/content/78/3/343.full.pdf

I. Friesema, S. Kuiling, A. Van-der-ende, M. Heck, L. Spanjaard et al., Risk factors for sporadic listeriosis in the Netherlands, Eurosurveillance, vol.20, issue.31, pp.15-24, 2008.

J. Mclauchlin, A. Audurier, and A. Taylor, Treatment failure and recurrent human listeriosis, Journal of Antimicrobial Chemotherapy, vol.27, issue.6, pp.851-858, 1991.
DOI : 10.1093/jac/27.6.851

B. Sauders, M. Wiedmann, M. Desjardins, C. Fenlon, N. Davenport et al., Infection: Relapse or Reinfection with a Unique Strain Confirmed by Molecular Subtyping, Clinical Infectious Diseases, vol.308, issue.2, pp.257-266, 2001.
DOI : 10.1056/NEJM198301273080407

P. Kleemann, E. Domann, T. Chakraborty, I. Bernstein, and M. Lohoff, Chronic prosthetic joint infection caused by Listeria monocytogenes, Journal of Medical Microbiology, vol.20, issue.6, pp.138-179, 2009.
DOI : 10.1128/CMR.14.3.584-640.2001

M. Pandey, R. R. Agrawal, and S. , An update in recurrent spontaneous abortion, Archives of Gynecology and Obstetrics, vol.73, issue.8, pp.95-108, 2005.
DOI : 10.1016/0002-9378(94)90134-1

R. Fisher, B. Gollan, and H. S. , Persistent bacterial infections and persister cells, Nature Reviews Microbiology, vol.14, issue.8, pp.453-64, 2017.
DOI : 10.1038/nrmicro.2016.141

URL : http://hdl.handle.net/10044/1/53563

B. Van-den-bergh, M. Fauvart, and J. Michiels, Formation, physiology, ecology, evolution and clinical importance of bacterial persisters, FEMS Microbiology Reviews, vol.56, issue.Suppl 1, pp.219-51, 2017.
DOI : 10.1128/AAC.06288-11

M. Maurin and D. Raoult, Use of Aminoglycosides in Treatment of Infections Due to Intracellular Bacteria, Antimicrobial Agents and Chemotherapy, vol.45, issue.11, pp.2977-86, 2001.
DOI : 10.1128/AAC.45.11.2977-2986.2001

G. Mitchell, E. Brouillette, D. Seguin, A. Asselin, C. Jacob et al., A role for sigma factor B in the emergence of Staphylococcus aureus small-colony variants and elevated biofilm production resulting from an exposure to aminoglycosides, Microbial Pathogenesis, vol.48, issue.1, pp.18-27, 2010.
DOI : 10.1016/j.micpath.2009.10.003

G. Knudsen, Y. Ng, and L. Gram, Survival of bactericidal antibiotic treatment by a persister subpopulation of Listeria monocytogenes Applied and environmental microbiology, pp.7390-7397, 2013.

M. Temple and M. Nahata, Treatment of Listeriosis, Annals of Pharmacotherapy, vol.43, issue.5, pp.656-61, 2000.
DOI : 10.1007/BF01643476

J. Gaillard, F. Jaubert, and P. Berche, The inlAB locus mediates the entry of Listeria monocytogenes into hepatocytes in vivo, Journal of Experimental Medicine, vol.183, issue.2, pp.359-69, 1996.
DOI : 10.1084/jem.183.2.359

R. Brundage, G. Smith, A. Camilli, J. Theriot, and D. Portnoy, Expression and phosphorylation of the Listeria monocytogenes ActA protein in mammalian cells., Proceedings of the National Academy of Sciences, vol.90, issue.24, pp.11890-11894, 1993.
DOI : 10.1073/pnas.90.24.11890

S. Jones and D. Portnoy, Small plaque mutants, Methods Enzymol, vol.236, pp.526-557, 1994.
DOI : 10.1016/0076-6879(94)36040-5

M. Arnaud, A. Chastanet, and M. Debarbouille, New vector for efficient allelic replacement in naturally nontransformable , low-GC-content, gram-positive bacteria Applied and environmental microbiology, pp.6887-91, 2004.

W. Vincent, C. Freisinger, P. Lam, A. Huttenlocher, and J. Sauer, Macrophages mediate flagellin induced inflammasome activation and host defense in zebrafish, Cellular Microbiology, vol.477, issue.4, pp.591-604, 2016.
DOI : 10.1038/nature10510

D. Balestrino, M. Hamon, L. Dortet, M. Nahori, J. Pizarro-cerda et al., Single-cell techniques using chromosomally tagged fluorescent bacteria to study Listeria monocytogenes infection processes Applied and environmental microbiology, pp.3625-3661, 2010.

C. Sabet, A. Toledo-arana, N. Personnic, M. Lecuit, S. Dubrac et al., The Listeria monocytogenes Virulence Factor InlJ Is Specifically Expressed In Vivo and Behaves as an Adhesin, Infection and Immunity, vol.76, issue.4, pp.1368-78, 2008.
DOI : 10.1128/IAI.01519-07

P. Steffen, D. Schafer, V. David, E. Gouin, J. Cooper et al., Listeria monocytogenes ActA protein interacts with phosphatidylinositol 4,5-bisphosphate in vitro, 1<58::AID-CM6>3.0.CO;2-Y PMID, pp.58-661097, 2000.
DOI : 10.1091/mbc.6.12.1659

R. Boujemaa-paterski, E. Gouin, G. Hansen, S. Samarin, L. Clainche et al., Listeria Protein ActA Mimics WASP Family Proteins:?? It Activates Filament Barbed End Branching by Arp2/3 Complex, Biochemistry, vol.40, issue.38, pp.11390-404, 2001.
DOI : 10.1021/bi010486b

G. Lakisic, A. Lebreton, R. Pourpre, O. Wendling, E. Libertini et al., Role of the BAHD1 Chromatin-Repressive Complex in Placental Development and Regulation of Steroid Metabolism):e1005898. https, PLoS Genet, vol.12, issue.3, 2016.