E. Laurent, RybP-GFP 1?10 /V5-HisB in Lipofectamine 2000 according to the manufacturer's protocol (Invitrogen) After 24 h of transfection, expression was induced with 1 g/ml doxycycline After 6 h, cells were fixed for 20 min at room temperature with 4% paraformaldehyde in PBS, permeabilized with 0.5% Triton X-100 in PBS for 4 min at room temperature, and blocked in 1% BSA?PBS. Fixed cells were incubated with anti-RybP or anti-OrfX primary antibodies for 1 h and then with Alexa Fluor 350-conjugated anti-mouse or Alexa Fluor 546-conjugated anti-rabbit secondary antibody, respectively , for 30 min. Samples were mounted on glass coverslips with Fluoromount medium (Electron Microscopy Sciences) and were observed with a Zeiss Axiovert 200 M epifluorescence microscope (Carl Zeiss, Inc.) connected to a CCD camera. Images were acquired with an apochromat 63 oil immersion objective (Carl Zeiss, Inc.) and processed with Metamorph software (Universal Imaging) Protein immunoprecipitation. HEK-293 T-REx cells were cultured in T75 flasks in complete medium containing 5 g/ml blasticidin. Cells were transfected with 10 g of pCMV6/RybP-GFP, pcDNA4/TO/myc- His/lacZ, or pcDNA4/TO/myc-His/orfX= in Lipofectamine 2000 according to the manufacturer's protocol (Invitrogen) After 24 h of transfection, expression was induced with 1 g/ml doxycycline. After 6 h, cells were washed once with cold PBS and lysed in NP-40 lysis buffer consisting of 50 mM Tris-HCl, pH 7, mM NaCl, 1% NP-40, 0.25% deoxycholic acid, 1 protease cocktail (Roche-EDTA), 1 mM AEBSF [4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride], 1 PhosSTOP (Roche), 2 mM MgCl 2 , and 2 La listériose de la femme enceinte et du nouveau-né en France: évolution de, pp.14-15107, 1984.

B. Swaminathan and P. Gerner-smidt, The epidemiology of human listeriosis, Microbes and Infection, vol.9, issue.10, pp.1236-1243, 2007.
DOI : 10.1016/j.micinf.2007.05.011

P. Cossart, Illuminating the landscape of host-pathogen interactions with the bacterium Listeria monocytogenes, Proceedings of the National Academy of Sciences, vol.22, issue.3, pp.19484-19491, 2011.
DOI : 10.1016/j.smim.2010.02.002

J. Vázquez-boland, M. Kuhn, P. Berche, T. Chakraborty, G. Domínguez-bernal et al., Listeria Pathogenesis and Molecular Virulence Determinants, Clinical Microbiology Reviews, vol.14, issue.3, pp.584-640, 2001.
DOI : 10.1128/CMR.14.3.584-640.2001

J. Mengaud, S. Dramsi, E. Gouin, J. Vázquez-boland, G. Milon et al., virulence factors by a gene that is autoregulated, Molecular Microbiology, vol.30, issue.9, pp.2273-2283, 1991.
DOI : 10.1111/j.1574-6968.1989.tb03591.x

J. Gaillard, P. Berche, J. Mounier, S. Richard, and P. Sansonetti, In vitro model of penetration and intracellular growth of Listeria monocytogenes in the human enterocyte-like cell line Caco-2, Infect Immun, vol.55, pp.2822-2829, 1987.

H. Marquis, V. Doshi, and D. Portnoy, The broad-range phospholipase Listeria Nucleomodulin OrfX Promotes Infection ®, 1995.

C. Poyart, E. Abachin, I. Razafimanantsoa, and P. Berche, The zinc metalloprotease of Listeria monocytogenes is required for maturation of phosphatidylcholine phospholipase C: direct evidence obtained by gene complementation, Infect Immun, vol.61, pp.1576-1580, 1993.

C. Kocks, E. Gouin, M. Tabouret, P. Berche, H. Ohayon et al., L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein, Cell, vol.68, issue.3, pp.521-5310092, 1992.
DOI : 10.1016/0092-8674(92)90188-I

T. Chakraborty, M. Leimeister-wächter, E. Domann, M. Hartl, W. Goebel et al., Coordinate regulation of virulence genes in Listeria monocytogenes requires the product of the prfA gene., Journal of Bacteriology, vol.174, issue.2, 1992.
DOI : 10.1128/jb.174.2.568-574.1992

E. Domann, J. Wehland, M. Rohde, S. Pistor, M. Hartl et al., A novel bacterial virulence gene in Listeria monocytogenes required for host cell microfilament interaction with homology to the proline-rich region of vinculin, EMBO J, vol.11, pp.1981-1990, 1992.

J. Gaillard, P. Berche, and P. Sansonetti, Transposon mutagenesis as a tool to study the role of hemolysin in the virulence of Listeria monocytogenes, Infect Immun, vol.52, pp.50-55, 1986.

G. Smith, H. Marquis, S. Jones, N. Johnston, D. Portnoy et al., The two distinct phospholipases C of Listeria monocytogenes have overlapping roles in escape from a vacuole and cell-to-cell spread, Infect Immun, vol.63, pp.4231-4237, 1995.

T. Chakraborty, T. Hain, and E. Domann, Genome organization and the evolution of the virulence gene locus in Listeria species, International Journal of Medical Microbiology, vol.290, issue.2, pp.167-174, 2000.
DOI : 10.1016/S1438-4221(00)80086-7

E. Gouin, J. Mengaud, and P. Cossart, The virulence gene cluster of Listeria monocytogenes is also present in Listeria ivanovii, an animal pathogen, and Listeria seeligeri, a nonpathogenic species, Infect Immun, vol.62, pp.3550-3553, 1994.

J. Johnson, K. Jinneman, G. Stelma, B. Smith, D. Lye et al., Natural Atypical Listeria innocua Strains with Listeria monocytogenes Pathogenicity Island 1 Genes, Applied and Environmental Microbiology, vol.70, issue.7, pp.4256-42664256, 2004.
DOI : 10.1128/AEM.70.7.4256-4266.2004

D. Volokhov, S. Duperrier, A. Neverov, J. George, C. Buchrieser et al., The Presence of the Internalin Gene in Natural Atypically Hemolytic Listeria innocua Strains Suggests Descent from L. monocytogenes, Applied and Environmental Microbiology, vol.73, issue.6, 1928.
DOI : 10.1128/AEM.01796-06

J. Vázquez-boland, C. Kocks, S. Dramsi, H. Ohayon, C. Geoffroy et al., Nucleotide sequence of the lecithinase operon of Listeria monocytogenes and possible role of lecithinase in cell-to-cell spread, Infect Immun, vol.60, pp.219-230, 1992.

A. Toledo-arana, O. Dussurget, G. Nikitas, N. Sesto, H. Guet-revillet et al., The Listeria transcriptional landscape from saprophytism to virulence, Nature, vol.99, issue.7249, pp.950-956, 2009.
DOI : 10.1016/S1438-4221(00)80086-7

S. Chatterjee, H. Hossain, S. Otten, C. Kuenne, K. Kuchmina et al., Intracellular Gene Expression Profile of Listeria monocytogenes, Infection and Immunity, vol.74, issue.2, pp.1323-1338, 2006.
DOI : 10.1128/IAI.74.2.1323-1338.2006

T. Hain, R. Ghai, A. Billion, C. Kuenne, C. Steinweg et al., Comparative genomics and transcriptomics of lineages I, II, and III strains of Listeria monocytogenes, BMC Genomics, vol.13, issue.1, p.144, 2012.
DOI : 10.1093/bioinformatics/btl466

URL : https://hal.archives-ouvertes.fr/pasteur-00724699

E. García, C. Marcos-gutiérrez, M. Del-mar-lorente, J. Moreno, and M. Vidal, RYBP, a new repressor protein that interacts with components of the mammalian Polycomb complex, and with the transcription factor YY1, The EMBO Journal, vol.18, issue.12, pp.3404-3418, 1999.
DOI : 10.1093/emboj/18.12.3404

M. Gearhart, C. Corcoran, J. Wamstad, and V. Bardwell, Polycomb Group and SCF Ubiquitin Ligases Are Found in a Novel BCOR Complex That Is Recruited to BCL6 Targets, Molecular and Cellular Biology, vol.26, issue.18, pp.6880-688900630, 2006.
DOI : 10.1128/MCB.00630-06

S. Schlisio, T. Halperin, M. Vidal, and J. Nevins, Interaction of YY1 with E2Fs, mediated by RYBP, provides a mechanism for specificity of E2F function, The EMBO Journal, vol.21, issue.21, pp.5775-5786, 2002.
DOI : 10.1093/emboj/cdf577

D. Chen, J. Zhang, M. Li, E. Rayburn, H. Wang et al., RYBP stabilizes p53 by modulating MDM2, EMBO reports, vol.10, issue.2, pp.166-172, 2009.
DOI : 10.1074/jbc.M102799200

URL : http://embor.embopress.org/content/embor/10/2/166.full.pdf

L. Zheng, O. Schickling, M. Peter, and M. Lenardo, The Death Effector Domain-associated Factor Plays Distinct Regulatory Roles in the Nucleus and Cytoplasm, Journal of Biological Chemistry, vol.268, issue.34, pp.31945-31952, 2001.
DOI : 10.1046/j.1365-2958.2000.01824.x

S. Stanton, J. Blanck, J. Locker, and N. Schreiber-agus, Rybp interacts with Hippi and enhances Hippi-mediated apoptosis, Apoptosis, vol.12, issue.3, pp.2197-2206, 2007.
DOI : 10.1080/713803693

W. Ma, X. Zhang, M. Li, X. Ma, B. Huang et al., Proapoptotic RYBP interacts with FANK1 and induces tumor cell apoptosis through the AP-1 signaling pathway, Cellular Signalling, vol.28, issue.8, pp.779-787, 2016.
DOI : 10.1016/j.cellsig.2016.03.012

A. Danen-van-oorschot, P. Voskamp, M. Seelen, V. Miltenburg, M. Bolk et al., Human death effector domain-associated factor interacts with the viral apoptosis agonist Apoptin and exerts tumor-preferential cell killing, Cell Death and Differentiation, vol.11, issue.5, pp.564-573, 2004.
DOI : 10.1038/sj.cdd.4401391

R. Aparicio, C. Neyen, B. Lemaitre, and A. Busturia, dRYBP Contributes to the Negative Regulation of the Drosophila Imd Pathway, PLoS ONE, vol.109, issue.4, p.62052
DOI : 10.1371/journal.pone.0062052.s002

P. Glaser, L. Frangeul, C. Buchrieser, C. Rusniok, A. Amend et al., Comparative genomics of Listeria species, Science, vol.294, pp.849-852, 2001.

M. Ripio, G. Domínguez-bernal, M. Lara, M. Suárez, and J. Vázquez-boland, A Gly145Ser substitution in the transcriptional activator PrfA causes constitutive overexpression of virulence factors in Listeria monocytogenes., Journal of Bacteriology, vol.179, issue.5, pp.1533-1540, 1997.
DOI : 10.1128/jb.179.5.1533-1540.1997

R. Flannagan, G. Cosío, and S. Grinstein, Antimicrobial mechanisms of phagocytes and bacterial evasion strategies, Nature Reviews Microbiology, vol.69, issue.5, pp.355-366, 2009.
DOI : 10.4049/jimmunol.179.2.1178

C. Yang, J. Lee, M. Rodgers, C. Min, J. Lee et al., Autophagy Protein Rubicon Mediates Phagocytic NADPH Oxidase Activation in Response to Microbial Infection or TLR Stimulation, Cell Host & Microbe, vol.11, issue.3, pp.264-276, 2012.
DOI : 10.1016/j.chom.2012.01.018

A. Lingnau, T. Chakraborty, K. Niebuhr, E. Domann, and J. Wehland, Identification and purification of novel internalin-related proteins in Listeria monocytogenes and Listeria ivanovii, Infect Immun, vol.64, pp.1002-1006, 1996.

C. Archambaud, E. Gouin, J. Pizarro-cerdá, P. Cossart, and O. Dussurget, Translation elongation factor EF-Tu is a target for Stp, a serine-threonine phosphatase involved in virulence of Listeria monocytogenes, Molecular Microbiology, vol.20, issue.Part 3, pp.383-396, 2005.
DOI : 10.1128/jb.174.3.947-952.1992

K. Tan, X. Zhang, X. Cong, B. Huang, H. Chen et al., Tumor suppressor RYBP harbors three nuclear localization signals and its cytoplasm-located mutant exerts more potent anti-cancer activities than corresponding wild type, Cellular Signalling, vol.29, pp.127-137, 2017.
DOI : 10.1016/j.cellsig.2016.10.011

H. Bierne and P. Cossart, When bacteria target the nucleus: the emerging family of nucleomodulins, Cellular Microbiology, vol.71, issue.5, pp.622-633, 2012.
DOI : 10.1111/j.1365-2958.2008.06524.x

A. Lebreton, G. Lakisic, V. Job, L. Fritsch, T. Tham et al., A Bacterial Protein Targets the BAHD1 Chromatin Complex to Stimulate Type III Interferon Response, Science, vol.11, issue.6, pp.1319-1321, 2011.
DOI : 10.1111/j.1469-0691.2005.01146.x

URL : https://hal.archives-ouvertes.fr/cea-00819299

I. González and A. Busturia, High levels of dRYBP induce apoptosis in Drosophila imaginal cells through the activation of reaper and the requirement of trithorax, dredd and dFADD, Cell Research, vol.118, issue.6, pp.747-757, 2009.
DOI : 10.1016/j.devcel.2006.05.009

S. Sinclair, K. Rennoll-bankert, and J. Dumler, Effector bottleneck: microbial reprogramming of parasitized host cell transcription by epigenetic remodeling of chromatin structure, Frontiers in Genetics, vol.79, issue.e1000995, p.274, 2014.
DOI : 10.1128/IAI.05422-11

N. Silmon-de-monerri and K. Kim, Pathogens Hijack the Epigenome, The American Journal of Pathology, vol.184, issue.4, pp.897-911, 2014.
DOI : 10.1016/j.ajpath.2013.12.022

J. Garcia-garcia, K. Bankert, S. Pelly, A. Milstone, and J. Dumler, Silencing of Host Cell CYBB Gene Expression by the Nuclear Effector AnkA of the Intracellular Pathogen Anaplasma phagocytophilum, Infection and Immunity, vol.77, issue.6, pp.2385-239100023, 2009.
DOI : 10.1128/IAI.00023-09

M. Pennini, S. Perrinet, A. Dautry-varsat, and A. Subtil, Histone Methylation by NUE, a Novel Nuclear Effector of the Intracellular Pathogen Chlamydia trachomatis, PLoS Pathogens, vol.39, issue.7, p.1000995, 2010.
DOI : 10.1371/journal.ppat.1000995.s001

URL : https://hal.archives-ouvertes.fr/pasteur-00531755

M. Rolando, S. Sanulli, C. Rusniok, L. Gomez-valero, C. Bertholet et al., Legionella pneumophila Effector RomA Uniquely Modifies Host Chromatin to Repress Gene Expression and Promote Intracellular Bacterial Replication, Cell Host & Microbe, vol.13, issue.4, pp.395-405, 2013.
DOI : 10.1016/j.chom.2013.03.004

URL : https://hal.archives-ouvertes.fr/pasteur-01336636

H. Li, H. Xu, Y. Zhou, J. Zhang, C. Long et al., The Phosphothreonine Lyase Activity of a Bacterial Type III Effector Family, Science, vol.315, issue.5814, pp.1000-1003, 2007.
DOI : 10.1126/science.1138960

L. Arbibe, D. Kim, E. Batsche, T. Pedron, B. Mateescu et al., An injected bacterial effector targets chromatin access for transcription factor NF-??B to alter transcription of host genes involved in immune responses, Nature Immunology, vol.98, issue.1, pp.47-56, 2007.
DOI : 10.1073/pnas.98.1.31

P. Mazurkiewicz, J. Thomas, J. Thompson, M. Liu, L. Arbibe et al., SpvC is a Salmonella effector with phosphothreonine lyase activity on host mitogen-activated protein kinases, Molecular Microbiology, vol.28, issue.7, pp.1371-1383, 2008.
DOI : 10.1016/S1286-4579(01)01489-7

R. Kramer, N. Slagowski, N. Eze, K. Giddings, M. Morrison et al., Yeast Functional Genomic Screens Lead to Identification of a Role for a Bacterial Effector in Innate Immunity Regulation, PLoS Pathogens, vol.55, issue.2, 2007.
DOI : 10.1371/journal.ppat.0030021.st004

F. Bejarano, I. González, M. Vidal, and A. Busturia, The Drosophila RYBP gene functions as a Polycomb-dependent transcriptional repressor, Mechanisms of Development, vol.122, issue.10, pp.1118-1129, 2005.
DOI : 10.1016/j.mod.2005.06.001

L. Morey, L. Aloia, L. Cozzuto, S. Benitah, D. Croce et al., RYBP and Cbx7 Define Specific Biological Functions of Polycomb Complexes in Mouse Embryonic Stem Cells, Cell Reports, vol.3, issue.1, pp.60-69, 2013.
DOI : 10.1016/j.celrep.2012.11.026

Z. Gao, J. Zhang, R. Bonasio, F. Strino, A. Sawai et al., PCGF Homologs, CBX Proteins, and RYBP Define Functionally Distinct PRC1 Family Complexes, Molecular Cell, vol.45, issue.3, pp.344-356, 2012.
DOI : 10.1016/j.molcel.2012.01.002

URL : https://doi.org/10.1016/j.molcel.2012.01.002

L. Tavares, E. Dimitrova, D. Oxley, J. Webster, R. Poot et al., RYBP-PRC1 Complexes Mediate H2A Ubiquitylation at Polycomb Target Sites Independently of PRC2 and H3K27me3, Cell, vol.148, issue.4, pp.664-678, 2012.
DOI : 10.1016/j.cell.2011.12.029

M. Pirity, J. Locker, and N. Schreiber-agus, Rybp/DEDAF Is Required for Early Postimplantation and for Central Nervous System Development, Molecular and Cellular Biology, vol.25, issue.16, pp.7193-7202, 2005.
DOI : 10.1128/MCB.25.16.7193-7202.2005

K. Hisada, C. Sánchez, T. Endo, M. Endoh, M. Román-trufero et al., RYBP Represses Endogenous Retroviruses and Preimplantation- and Germ Line-Specific Genes in Mouse Embryonic Stem Cells, Molecular and Cellular Biology, vol.32, issue.6, pp.1139-114906441, 2012.
DOI : 10.1128/MCB.06441-11

Y. Zhang, L. Endam, A. Filali-mouhim, L. Zhao, M. Desrosiers et al., Polymorphisms in RYBP and AOAH Genes Are Associated with Chronic Rhinosinusitis in a Chinese Population: A Replication Study, PLoS ONE, vol.32, issue.6, 2012.
DOI : 10.1371/journal.pone.0039247.t007

J. Lowe, M. Shatz, M. Resnick, and D. Menendez, Modulation of immune responses by the tumor suppressor p53, BioDiscovery, vol.8, issue.8, 2013.
DOI : 10.7750/BioDiscovery.2013.8.2

C. Siegl, B. Prusty, K. Karunakaran, J. Wischhusen, and T. Rudel, Tumor Suppressor p53 Alters Host Cell Metabolism to Limit Chlamydia trachomatis Infection, Cell Reports, vol.9, issue.3, pp.918-929, 2014.
DOI : 10.1016/j.celrep.2014.10.004

J. Miciak and F. Bunz, Long story short: p53 mediates innate immunity, Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, vol.1865, issue.2, pp.220-227, 2016.
DOI : 10.1016/j.bbcan.2016.03.001

URL : http://europepmc.org/articles/pmc4860023?pdf=render

A. Hock and K. Vousden, The role of ubiquitin modification in the regulation of p53, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1843, issue.1, pp.137-149, 2014.
DOI : 10.1016/j.bbamcr.2013.05.022

X. Wang and X. Jiang, Mdm2 and MdmX partner to regulate p53, FEBS Letters, vol.133, issue.10, pp.1390-1396, 2012.
DOI : 10.1016/j.cell.2008.03.025

URL : http://onlinelibrary.wiley.com/doi/10.1016/j.febslet.2012.02.049/pdf

S. Wang, P. Liu, J. Wei, Z. Zhu, Z. Shi et al., Tumor suppressor p53 protects mice against Listeria monocytogenes infection. Sci Rep 6:33815. https, 2016.
DOI : 10.1038/srep33815

URL : http://www.nature.com/articles/srep33815.pdf

C. Archambaud, M. Nahori, J. Pizarro-cerdá, P. Cossart, and O. Dussurget, Superoxide Dismutase by Phosphorylation, Journal of Biological Chemistry, vol.164, issue.4, pp.31812-31822, 2006.
DOI : 10.1164/ajrccm.164.12.2106093

G. Lam, R. Fattouh, A. Muise, S. Grinstein, D. Higgins et al., Listeriolysin O Suppresses Phospholipase C-Mediated Activation of the Microbicidal NADPH Oxidase to Promote Listeria monocytogenes Infection, Cell Host & Microbe, vol.10, issue.6, pp.627-634, 2011.
DOI : 10.1016/j.chom.2011.11.005

F. Kruiswijk, C. Labuschagne, and K. Vousden, p53 in survival, death and metabolic health: a lifeguard with a licence to kill, Nature Reviews Molecular Cell Biology, vol.520, issue.7, pp.393-405
DOI : 10.1038/nature14344

T. Cooks, C. Harris, and M. Oren, Caught in the cross fire: p53 in inflammation, Carcinogenesis, vol.99, issue.8, pp.1680-1690, 2014.
DOI : 10.1073/pnas.152333199

C. Bécavin, C. Bouchier, P. Lechat, C. Archambaud, S. Creno et al., Comparison of Widely Used Listeria monocytogenes Strains EGD, 10403S, and EGD-e Highlights Genomic Differences Underlying Variations in Pathogenicity, mBio, vol.5, issue.2, pp.969-1400969, 2014.
DOI : 10.1128/mBio.00969-14

M. Arnaud, A. Chastanet, and M. Débarbouillé, New Vector for Efficient Allelic Replacement in Naturally Nontransformable, Low-GC-Content, Gram-Positive Bacteria, Applied and Environmental Microbiology, vol.70, issue.11, pp.6887-6891, 2004.
DOI : 10.1128/AEM.70.11.6887-6891.2004

I. Monk, C. Gahan, and C. Hill, Tools for Functional Postgenomic Analysis of Listeria monocytogenes, Applied and Environmental Microbiology, vol.74, issue.13, pp.3921-3934, 2008.
DOI : 10.1128/AEM.00314-08

F. Impens, N. Rolhion, L. Radoshevich, C. Bécavin, M. Duval et al., N-terminomics identifies Prli42 as a membrane miniprotein conserved in Firmicutes and critical for stressosome activation in Listeria monocytogenes, Nature Microbiology, vol.31, p.17005, 2017.
DOI : 10.1093/nar/gkh381

URL : https://hal.archives-ouvertes.fr/pasteur-01574963

C. Kocks, R. Hellio, P. Gounon, H. Ohayon, and P. Cossart, Polarized distribution of Listeria monocytogenes surface protein ActA at the site of directional actin assembly, J Cell Sci, vol.105, pp.699-710, 1993.

E. Gouin, M. Adib-conquy, D. Balestrino, M. Nahori, V. Villiers et al., The Listeria monocytogenes InlC protein interferes with innate immune responses by targeting the I??B kinase subunit IKK??, Proceedings of the National Academy of Sciences, vol.9, issue.10, pp.17333-17338, 2010.
DOI : 10.1016/j.micinf.2007.05.005