D. Angelis and E. T. Spiliotis, Septin Mutations in Human Cancers, Frontiers in Cell and Developmental Biology, vol.9, p.122, 2016.
DOI : 10.18632/oncotarget.11402

J. Becker, S. V. Barysch, S. Karaca, C. Dittner, H. H. Hsiao et al., Detecting endogenous SUMO targets in mammalian cells and tissues, Nature Structural & Molecular Biology, vol.10, issue.4, pp.525-531, 2013.
DOI : 10.1074/mcp.M110.005371

A. Bertin, M. A. Mcmurray, P. Grob, S. S. Park, G. Garcia et al., Saccharomyces cerevisiae septins: Supramolecular organization of heterooligomers and the mechanism of filament assembly, Proc. Natl. Acad. Sci. USA, pp.8274-82790803330105, 2008.
DOI : 10.1006/jsbi.1999.4174

G. Bossis and F. Melchior, Regulation of SUMOylation by Reversible Oxidation of SUMO Conjugating Enzymes, Molecular Cell, vol.21, issue.3, pp.349-357, 2006.
DOI : 10.1016/j.molcel.2005.12.019

S. Carter and K. H. Vousden, p53-Ubl fusions as models of ubiquitination, sumoylation and neddylation of p53, Cell Cycle, vol.7, issue.16, pp.2519-2528, 2008.
DOI : 10.4161/cc.7.16.6422

F. Caudron and Y. Barral, Septins and the Lateral Compartmentalization of Eukaryotic Membranes, Developmental Cell, vol.16, issue.4, pp.493-506, 2009.
DOI : 10.1016/j.devcel.2009.04.003

C. Cauvin and A. Echard, Phosphoinositides: Lipids with informative heads and mastermind functions in cell division, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1851, issue.6, pp.832-843, 2015.
DOI : 10.1016/j.bbalip.2014.10.013

L. Chesneau, D. Dambournet, M. Machicoane, I. Kouranti, M. Fukuda et al., An ARF6/Rab35 GTPase Cascade for Endocytic Recycling and Successful Cytokinesis, Current Biology, vol.22, issue.2, pp.147-153, 2012.
DOI : 10.1016/j.cub.2011.11.058

H. K. Choi, K. C. Choi, J. Y. Yoo, M. Song, S. J. Ko et al., Reversible SUMOylation of TBL1-TBLR1 Regulates ??-Catenin-Mediated Wnt Signaling, Molecular Cell, vol.43, issue.2, pp.203-216, 2011.
DOI : 10.1016/j.molcel.2011.05.027

I. De-almeida-marques, N. F. Valadares, W. Garcia, J. C. Damalio, J. N. Macedo et al., Septin C-Terminal Domain Interactions: Implications for Filament Stability and Assembly, Cell Biochemistry and Biophysics, vol.283, issue.2, pp.317-328, 2012.
DOI : 10.1074/jbc.M710591200

L. Dolat, Q. Hu, and E. T. Spiliotis, Septin functions in organ system physiology and pathology, Biological Chemistry, vol.395, issue.2, pp.123-141, 2014.
DOI : 10.1515/hsz-2013-0233

A. Echard, F. Jollivet, O. Martinez, J. J. Lacapère, A. Rousselet et al., Interaction of a Golgi-Associated Kinesin-Like Protein with Rab6, Science, vol.279, issue.5350, pp.580-585, 1998.
DOI : 10.1126/science.279.5350.580

N. El-amine, A. Kechad, S. Jananji, and G. R. Hickson, Opposing actions of septins and Sticky on Anillin promote the transition from contractile to midbody ring, The Journal of Cell Biology, vol.4, issue.3, pp.487-504, 2013.
DOI : 10.1083/jcb.201305053.dv

M. P. Estey, C. Di-ciano-oliveira, C. D. Froese, M. T. Bejide, and W. S. Trimble, Distinct roles of septins in cytokinesis: SEPT9 mediates midbody abscission, The Journal of Cell Biology, vol.75, issue.4, pp.741-749, 2010.
DOI : 10.1074/jbc.M710591200

H. C. Ferreira, H. Luke, V. Schober, J. Kalck, S. M. Lingner et al., The PIAS homologue Siz2 regulates perinuclear telomere position and telomerase activity in budding??yeast, Nature Cell Biology, vol.17, issue.7, pp.867-874, 2011.
DOI : 10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U

A. Flotho and F. Melchior, Sumoylation: A Regulatory Protein Modification in Health and Disease, Annual Review of Biochemistry, vol.82, issue.1, pp.357-385, 2013.
DOI : 10.1146/annurev-biochem-061909-093311

R. D. Fontijn, B. Goud, A. Echard, F. Jollivet, J. Van-marle et al., The Human Kinesin-Like Protein RB6K Is under Tight Cell Cycle Control and Is Essential for Cytokinesis, Molecular and Cellular Biology, vol.21, issue.8, pp.2944-2955, 2001.
DOI : 10.1128/MCB.21.8.2944-2955.2001

N. Founounou, N. Loyer, and R. L. Borgne, Septins Regulate the Contractility of the Actomyosin Ring to Enable Adherens Junction Remodeling during Cytokinesis of Epithelial Cells, Developmental Cell, vol.24, issue.3, pp.242-255, 2013.
DOI : 10.1016/j.devcel.2013.01.008

URL : https://hal.archives-ouvertes.fr/inserm-00818891

K. Y. Fung, L. Dai, and W. S. Trimble, Cell and Molecular Biology of Septins, Int. Rev. Cell Mol. Biol, vol.310, pp.289-339, 2014.
DOI : 10.1016/B978-0-12-800180-6.00007-4

G. Garcia, A. Iii, Z. Bertin, Y. Li, M. A. Song et al., Subunit-dependent modulation of septin assembly: Budding yeast septin Shs1 promotes ring and gauze formation, The Journal of Cell Biology, vol.162, issue.6, pp.993-1004, 2011.
DOI : 10.1016/j.cub.2007.08.042

L. H. Hartwell, J. Culotti, and B. Reid, Genetic Control of the Cell-Division Cycle in Yeast, I. Detection of Mutants, Proc. Natl. Acad. Sci. USA, pp.352-359, 1970.
DOI : 10.1073/pnas.66.2.352

P. C. Havugimana, G. T. Hart, T. Nepusz, H. Yang, A. L. Turinsky et al., A Census of Human Soluble Protein Complexes, Cell, vol.150, issue.5, pp.1068-1081, 2012.
DOI : 10.1016/j.cell.2012.08.011

I. A. Hendriks and A. C. Vertegaal, A comprehensive compilation of SUMO proteomics, Nature Reviews Molecular Cell Biology, vol.15, issue.9, pp.581-595, 2016.
DOI : 10.1021/acs.jproteome.5b00062

I. A. Hendriks, R. C. Souza, J. G. Chang, M. Mann, and A. C. Vertegaal, System-wide identification of wild-type SUMO-2 conjugation sites, Nature Communications, vol.40, issue.1, p.7289, 2015.
DOI : 10.1093/nar/gkr1122

I. A. Hendriks, D. Lyon, C. Young, L. J. Jensen, A. C. Vertegaal et al., Site-specific mapping of the human SUMO proteome reveals co-modification with phosphorylation, Nature Structural & Molecular Biology, vol.24, issue.3, pp.325-336, 2017.
DOI : 10.1038/ncomms8289

Y. Hernández-rodríguez and M. Momany, Posttranslational modifications and assembly of septin heteropolymers and higher-order structures, Current Opinion in Microbiology, vol.15, issue.6, 2012.
DOI : 10.1016/j.mib.2012.09.007

E. Hill, M. Clarke, and F. A. Barr, The Rab6-binding kinesin, Rab6-KIFL, is required for cytokinesis, The EMBO Journal, vol.19, issue.21, pp.5711-5719, 2000.
DOI : 10.1093/emboj/19.21.5711

F. Impens, L. Radoshevich, P. Cossart, and D. Ribet, Mapping of SUMO sites and analysis of SUMOylation changes induced by external stimuli, Proc. Natl. Acad. Sci. USA, pp.12432-12437, 2014.
DOI : 10.1038/nmeth1109-786

URL : https://hal.archives-ouvertes.fr/pasteur-01104237

E. S. Johnson and G. Blobel, Cell Cycle???Regulated Attachment of the Ubiquitin-Related Protein Sumo to the Yeast Septins, The Journal of Cell Biology, vol.122, issue.5, pp.981-994, 1999.
DOI : 10.1073/pnas.81.15.4819

E. Joo, M. C. Surka, and W. S. Trimble, Mammalian SEPT2 Is Required for Scaffolding Nonmuscle Myosin II and Its Kinases, Developmental Cell, vol.13, issue.5, pp.677-690, 2007.
DOI : 10.1016/j.devcel.2007.09.001

M. S. Kim, C. D. Froese, M. P. Estey, and W. S. Trimble, SEPT9 occupies the terminal positions in septin octamers and mediates polymerization-dependent functions in abscission, The Journal of Cell Biology, vol.63, issue.5, pp.815-826, 2011.
DOI : 10.1002/(SICI)1097-0169(1999)43:1<52::AID-CM6>3.0.CO;2-5

M. Kinoshita, The septins, Genome Biology, vol.4, issue.11, p.236, 2003.
DOI : 10.1186/gb-2003-4-11-236

M. Kinoshita, S. Kumar, A. Mizoguchi, C. Ide, A. Kinoshita et al., Nedd5, a mammalian septin, is a novel cytoskeletal component interacting with actin-based structures., Genes & Development, vol.11, issue.12, pp.1535-1547, 1997.
DOI : 10.1101/gad.11.12.1535

I. Kouranti, M. Sachse, N. Arouche, B. Goud, and A. Echard, Rab35 Regulates an Endocytic Recycling Pathway Essential for the Terminal Steps of Cytokinesis, Current Biology, vol.16, issue.17, pp.1719-1725, 2006.
DOI : 10.1016/j.cub.2006.07.020

B. E. Kremer, T. Haystead, and I. G. Macara, Mammalian Septins Regulate Microtubule Stability through Interaction with the Microtubule-binding Protein MAP4, Molecular Biology of the Cell, vol.16, issue.10, pp.4648-4659, 2005.
DOI : 10.1091/mbc.E05-03-0267

M. B. Menon and M. Gaestel, Sep(t)arate or not - how some cells take septin-independent routes through cytokinesis, Journal of Cell Science, vol.128, issue.10, pp.1877-1886, 2015.
DOI : 10.1242/jcs.164830

URL : http://jcs.biologists.org/content/joces/128/10/1877.full.pdf

S. Mostowy and P. Cossart, Septins: the fourth component of the cytoskeleton, Nature Reviews Molecular Cell Biology, vol.22, issue.3, pp.183-194, 2012.
DOI : 10.1016/j.cub.2011.11.034

K. Nagata, A. Kawajiri, S. Matsui, M. Takagishi, T. Shiromizu et al., Filament Formation of MSF-A, a Mammalian Septin, in Human Mammary Epithelial Cells Depends on Interactions with Microtubules, Journal of Biological Chemistry, vol.9, issue.20, pp.18538-18543, 2003.
DOI : 10.1016/0003-2697(76)90527-3

T. P. Neufeld, G. M. Rubin-oegema, K. , M. S. Savoian, T. J. Mitchison et al., The Drosophila peanut gene is required for cytokinesis and encodes a protein similar to yeast putative bud neck filament proteins Functional analysis of a human homologue of the Drosophila actin binding protein anillin suggests a role in cytokinesis, Cell. J. Cell Biol, vol.771094, issue.150, pp.371-3790092, 1016.

A. Pagliuso, T. N. Tham, J. K. Stevens, T. Lagache, R. Persson et al., A role for septin 2 in Drp1???mediated mitochondrial fission, EMBO reports, vol.17, issue.6, pp.858-873, 2016.
DOI : 10.15252/embr.201541612

URL : https://hal.archives-ouvertes.fr/pasteur-01574030

F. Pan, R. L. Malmberg, and M. Momany, Analysis of septins across kingdoms reveals orthology and new motifs, BMC Evolutionary Biology, vol.7, issue.1, pp.1471-2148, 2007.
DOI : 10.1186/1471-2148-7-103

S. Röseler, K. Sandrock, I. Bartsch, A. Busse, H. Omran et al., Lethal phenotype of mice carrying a Sept11 null mutation, Biological Chemistry, vol.25, issue.8-9, pp.779-781, 2011.
DOI : 10.1111/j.1471-4159.2004.02755.x

J. Saarikangas and Y. Barral, The emerging functions of septins in metazoans, EMBO reports, vol.67, issue.11, pp.1118-1126, 2011.
DOI : 10.1016/S0960-9822(00)80115-3

M. E. Sellin, L. Sandblad, S. Stenmark, and M. Gullberg, Deciphering the rules governing assembly order of mammalian septin complexes, Molecular Biology of the Cell, vol.9, issue.6, pp.3152-3164, 2011.
DOI : 10.1038/nrm2407

M. Sirajuddin, M. Farkasovsky, F. Hauer, D. Kühlmann, I. G. Macara et al., Structural insight into filament formation by mammalian septins, Nature, vol.116, issue.7160, pp.311-3151781, 2005.
DOI : 10.1128/MCB.7.10.3678

Y. Takahashi, M. Iwase, M. Konishi, M. Tanaka, A. Toh-e et al., Smt3, a SUMO-1 Homolog, Is Conjugated to Cdc3, a Component of Septin Rings at the Mother-Bud Neck in Budding Yeast, Biochemical and Biophysical Research Communications, vol.259, issue.3, pp.582-5870821, 1999.
DOI : 10.1006/bbrc.1999.0821

M. H. Tatham, M. S. Rodriguez, D. P. Xirodimas, and R. T. Hay, Detection of protein SUMOylation in vivo, Nature Protocols, vol.8, issue.9, pp.1363-1371128, 2009.
DOI : 10.1016/j.ymeth.2005.07.020

W. S. Trimble and S. Grinstein, Barriers to the free diffusion of proteins and lipids in the plasma membrane, The Journal of Cell Biology, vol.3, issue.3, pp.259-271, 2015.
DOI : 10.1016/S0960-9822(00)80115-3

C. S. Weirich, J. P. Erzberger, and Y. Barral, The septin family of GTPases: architecture and dynamics, Nature Reviews Molecular Cell Biology, vol.4, issue.6, pp.478-489, 2008.
DOI : 10.1128/MCB.19.10.6585