Serotype Distribution of Clinical Streptococcus pneumoniae Isolates before the Introduction of the 13-Valent Pneumococcal Conjugate Vaccine in Cambodia

Malin Inghammar, Youlet By, Christina Farris, Thong Phe, Laurence Borand, Alexandra Kerleguer, Sophie Goyet, Vonthanak Saphonn, Chanleakhena Phoeung, Sirenda Vong, et al.

To cite this version:

HAL Id: pasteur-01739337
https://hal-pasteur.archives-ouvertes.fr/pasteur-01739337
Submitted on 20 Mar 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Serotype Distribution of Clinical *Streptococcus pneumoniae* Isolates before the Introduction of the 13-Valent Pneumococcal Conjugate Vaccine in Cambodia

Malin Inghammar,1,2* Youlet By,3,4 Christina Farris,5 Thong Phe,6 Laurence Borand,1 Alexandre Kerleguer,1 Sophie Goyet,1 Vonthanak Saphonn,4 Chanalekhna Phoeung,4 Sirenda Vong,1 Blandine Rammaert,7 Charles Mayaud,1 Bertrand Guillard,1 Chadwick Yasuda,6 Matthew R. Kasper,5 Gavin Ford,2 Steven W. Newell,6 Ung Sam An,8 Buth Sokhal,9 Sok Touch,9 Paul Turner,10,11 Jan Jacobs,6,12,13 Méлина Messaoudi,14 Florence Komurian-Pradel,14 and Arnaud Tarantola1

1Institut Pasteur du Cambodge, Phnom Penh, Cambodia; 2Section for Infection Medicine, Department of Clinical Sciences Lund, Lund University, Skane University Hospital, Lund, Sweden; 3Fondation Mérieux, Phnom Penh, Cambodia; 4University of Health Science, Phnom Pen, Cambodia; 5Naval Medical Research Unit No. 2, Phnom Penh, Cambodia; 6Sihanouk Hospital Center of Hope, Phnom Penh, Cambodia; 7IHU de Poitiers, Service de Maladies Infectieuses et Tropicales, INSERM U1070, Université de Poitiers, Poitiers, France; 8Cambodian National Laboratory of Public Health, Phnom Penh, Cambodia; 9Cambodian Communicable Disease Control Department, Phnom Penh, Cambodia; 10Cambodia Oxford Medical Research Unit, Siem Reap, Cambodia; 11Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom; 12Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium; 13Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium; 14Emerging Pathogens Laboratory, Fondation Mérieux, Centre International de Recherche en Infectiologie, INSERM U1111, Lyon, France

Abstract. Childhood vaccination with the 13-valent pneumococcal conjugate vaccine (PCV13) was introduced in Cambodia in January 2015. Baseline data regarding circulating serotypes are scarce. All microbiology laboratories in Cambodia were contacted for identification of stored isolates of *Streptococcus pneumoniae* from clinical specimens taken before the introduction of PCV13. Available isolates were serotyped using a multiplex polymerase chain reaction method. Among 166 identified isolates available for serotyping from patients with pneumococcal disease, 4% were isolated from upper respiratory samples and 80% were from lower respiratory samples, and 16% were invasive isolates. PCV13 serotypes accounted for 60% (95% confidence interval [CI] 52–67) of all isolates; 56% (95% CI 48–64) of noninvasive and 77% (95% CI 57–89) of invasive isolates. Antibiotic resistance was more common among PCV13 serotypes. This study of clinical *S. pneumoniae* isolates supports the potential for high reduction in pneumococcal disease burden and may serve as baseline data for future monitoring of *S. pneumoniae* serotype circulation after implementation of PCV13 childhood vaccination in Cambodia.

INTRODUCTION

Streptococcus pneumoniae (pneumococci) cause a wide spectrum of infections, ranging from invasive disease with a high case-fatality rate to asymptomatic colonization. Despite available antibiotics, it is estimated that around 800,000 children die every year due to pneumococcal disease, especially in developing countries where timely access to adequate health care is limited.1

Pneumococci can be divided into more than 90 different serotypes, based on differences in their capsular polysaccharides, with varying ability to cause severe disease.2,3 The incidence of invasive pneumococcal disease by included vaccine types has declined significantly with the introduction of the pneumococcal conjugated vaccine (PCV).6,7 Data from low-income countries are less robust.8

In Cambodia, lower respiratory infection is estimated to be the second leading cause of morbidity and mortality.9 A new vaccination program of newborns including PCV13 (including serotypes 1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F, 23F) was launched in 2015.10 Data on the serotype distribution in Cambodia before the vaccine introduction are scarce. Two recent studies from a single center in Siem Reap have assessed the serotype distribution in colonizing and invasive strains in children.11,12 Data from other parts of Cambodia and data in adults, however, are lacking. The aim of the present study was to document the serotype distribution of *S. pneumoniae* in Cambodia before the introduction of PCV13 in the national childhood immunization program.

METHODS

All principal microbiological laboratories in Cambodia were contacted for identification of stored isolates of *S. pneumoniae* from specimens taken before January 2015 (i.e., before the introduction of PCV13). Stored strains were identified at 1 Institut Pasteur du Cambodge (IPC), Phnom Penh, as part of the Surveillance and investigation of Epidemics in South-East Asia (SISEA) project, a prospective study of lower respiratory infections in two provincial hospitals (Takeo and Kampong Cham provinces),13 as well as from routine cultures performed from 2006 to 2014; 2) Sihanouk Hospital Center of Hope (SHCH), Phnom Penh, systemically collected as part of a microbiological surveillance program “Surveillance of antimicrobial resistance among consecutive blood culture isolates in tropical settings,” 2008 through 2014; 3) Naval Medical Research Unit No. 2 (NAMRU 2), Phnom Penh, as part of a prospective surveillance study “Surveillance and Etiology of Acute Undifferentiated Febrile Illnesses in Cambodia” (Kandal, Kampong Speu, Kratie, Ratanakiri, Stung Treng, and Svay Rieng), 2005–2014. An overview of the origin of isolates and the participating microbiological laboratories are listed in Table 1. The laboratories at the following hospitals were contacted but none of them had any stored pneumococcal isolates from the study time period: National Pediatric Hospital; Kampong Chorn; Takeo; Kampot; Battambang;
Siem Reap; Calmette; Khmer Soviet; Kossamak; or Kantha Bopha.

Information was collected for each contributed sample on the following: date of culture; type of specimen; patient’s date of birth; and on clinical diagnosis and antibiotic susceptibility, if available. All individual information was anonymized before being analyzed. The study was approved by the National Ethics Committee in Cambodia (No. 460-NECHR).

Serotyping method. The isolates from the respective participating sites had been processed using standard microbiological procedures at the contributing sites and stored at −80°C. Antimicrobial susceptibility had been determined by disk diffusion at the participating laboratories according to the successive versions of Clinical and Laboratory Standards Institute (CLSI) guideline “Performance Standards for Antimicrobial Susceptibility Testing - Supplement,” CLSI M100-S21 (SHCH, NAMRU 2) and the Antibiogram Committee of the French Society for Microbiology, CA-SFM/EUCAST (IPC). Results for penicillin, ceftriaxone, cotrimoxazole, and erythromycin were reported as susceptible (S), intermediate (I), or resistant (R). The isolates were typed in the Rodolphe Mérieux Laboratory of the University of Health Sciences, using a multiplex real-time polymerase chain reaction (PCR) method as described previously. Briefly, DNA was extracted directly from 100 μL stored isolates using an easyMAG automate (bioMérieux, Lyon, France) according to the manufacturer’s recommendation and then typed using a panel of multiplex PCR, enabling the detection of the 40 most prevalent S. pneumoniae serotypes worldwide and including an internal positive control targeting the lytA gene, a gene conserved among pneumococci. A subset of the isolates from the SHCH were serotyped using latex agglutination method with Quellung confirmation of ambiguous results at Angkor Hospital for Children/Cambodia Oxford Medical Research Unit microbiology laboratory.

Data analyses. The pneumococcal serotypes were grouped into PCV13 vaccine types (1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F, 23F) and nonvaccine types (all others, including non-typeable). Groups were compared using a Wilcoxon Rank Sum test, χ2, or Fisher’s exact test, as appropriate. The distribution of serotype groups in invasive isolates (blood, cerebrospinal fluid [CSF], and pleural fluid) and noninvasive isolates (all other isolates) were compared. In case of multiple samples per patient and index date, only the first isolate was included. A sensitivity analysis was performed, including only isolates originating from prospective studies or prospective systematic sample collection (IPCSISEA, NAMRU 2 and SHCH). Analyses were made using Stata SE, version 13.1 (StataCorp, College Station, TX).

RESULTS

In total, 249 isolates were identified at the participating institutions: 215 from IPC, 16 from SHCH, and 18 from NAMRU 2. Of these, we were unable to determine the serotype of 79 (32%) isolates because of sample contamination or degradation, four isolates were excluded as they stem from the same patient and index date, leaving 166 (67%) isolates in the analysis. Of these, 133 (80%) came from IPC, 15 (9%) from SHCH, and 18 (11%) from NAMRU 2. The basic characteristics of the isolates are shown in Table 2. Information on sex was available for 166 isolates.

Twenty-six (16%) were invasive isolates (blood, CSF, and joint fluid); six (4%) were isolated in upper respiratory samples (ear, eye, and nasopharyngeal swab) and 133 (80%) were from lower respiratory samples (bronchoalveolar lavage fluid or

Table 1

<table>
<thead>
<tr>
<th>Name of institution</th>
<th>Details</th>
<th>Specimen</th>
<th>Time period</th>
<th>Number of samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institut Pasteur du Cambodge, Phnom Penh</td>
<td>Surveillance and investigation of Epidemics in South-East Asia project. Prospective study of low respiratory infections in two provincial hospitals (Takeo and Kampong Cham) Ethical approval No. 048-NECHR. Ethical approvals No: Ethical approval Nos. 009-NECHR and 0313-NECHR.</td>
<td>Blood, pleural fluid, sputum</td>
<td>2007–2009</td>
<td>75</td>
</tr>
<tr>
<td>Sihanouk Hospital Center of Hope, Phnom Penh</td>
<td>Microbiological Surveillance Study “Surveillance of antimicrobial resistance among consecutive blood culture isolates in tropical settings.” Ethical approvals No: Ethical approval Nos. 009-NECHR and 0313-NECHR.</td>
<td>Blood, bronchoalveolar lavage, sputum</td>
<td>2006–2014</td>
<td>58</td>
</tr>
</tbody>
</table>

NECHR = National Ethics Committee in Cambodia.

Table 2

<table>
<thead>
<tr>
<th>Total number</th>
<th>166 (100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age in years, median (range)</td>
<td>39 (1–84)</td>
</tr>
<tr>
<td>Age groups, N (%)</td>
<td></td>
</tr>
<tr>
<td>0–15 years</td>
<td>36 (22)</td>
</tr>
<tr>
<td>16–65 years</td>
<td>101 (61)</td>
</tr>
<tr>
<td>> 65 years</td>
<td>29 (17)</td>
</tr>
<tr>
<td>Male sex,* N (%)</td>
<td>55 (52)</td>
</tr>
<tr>
<td>Time of sampling, N (%)</td>
<td></td>
</tr>
<tr>
<td>Rainy season (May–October)</td>
<td>79 (48)</td>
</tr>
<tr>
<td>Dry season (November–April)</td>
<td>87 (52)</td>
</tr>
</tbody>
</table>

* Information on sex was available for 166 isolates.
sputum). Table 3 shows the serotype distribution per sample type.

The serotype distribution is shown in Figure 1. The three most common serotypes were 19F, 29/166 (17%), 23F, 26/166 (16%), and 34, 22/166 (13%).

Overall, PCV13 serotypes accounted for 60% (95% confidence interval [CI] 52–67) of the isolates (Table 3). Among noninvasive isolates, the proportion of PCV13 serotypes was 56% (95% CI 48–64) and among invasive isolates the proportion was 77% (95% CI 57–89) (P = 0.05). The proportion of PCV13 serotypes was similar between age groups: 25 (70%) among 36 isolates from patients ≤15 years of age; 59 (58%) among 101 isolates from patients 16–64 years old; and 15 (52%) among 29 isolates from patients aged 65 years or greater (P = 0.32).

In the sensitivity analyses among 108 isolates systematically collected as part of surveillance studies (NAMRU 2, SHCH, IPC-SISEA), the proportion of PCV13 serotypes was 50% (95% CI 32–53) and 76% (95% CI 55–89) among noninvasive and invasive isolates, respectively.

Data on antibiotic susceptibility were available for 127–165 of the isolates. Of these, 95/165 (58%) were reported susceptible for penicillin G and 70/165 (42%) were reported nonsusceptible (intermediate or resistant); 127/137 (77%) were reported susceptible to ceftriaxone; 15/164 (9%) were reported susceptible to amoxicillin, 149/157 (95%) were reported susceptible to cotrimoxazole; and 81/165 (49%) were reported susceptible to ceftriaxone. Furthermore, PCV13-covered serotypes were significantly less susceptible to penicillin, cotrimoxazole and erythromycin, as compared with the nonvaccine serotypes, whereas there was no significant difference in the frequency of susceptibility to amoxicillin or ceftriaxone. Nevertheless, this serotype may become important in the post-PCV introduction era.

The frequency of antibiotic resistance was high in our sample set; overall 60% of the isolates were penicillin-susceptible. PCV13-covered serotypes were significantly more susceptible to penicillin, cotrimoxazole and erythromycin, as compared with the nonvaccine serotypes, whereas there was no significant difference in the frequency of susceptibility to amoxicillin or ceftriaxone. Consequently, PCV13-covered serotypes were more likely to express resistance to more than one antibiotic class than non-PCV13 serotypes. This finding further supports a potential benefit of PCV13, reducing the incidence of infections caused by penicillin-resistant pneumococci or multidrug-resistant pneumococci.

This study has many limitations. The pre-hospitalization use of antibiotics is widespread in Cambodia, which explains why microbiological yield in cultures is generally low. Furthermore, we relied on retrospective data on antimicrobial susceptibility testing collected over a long timeframe and at

Table 3

<table>
<thead>
<tr>
<th>Serotype distribution per specimen</th>
<th>Total number of samples</th>
<th>Samples included in PCV13* number (%)</th>
<th>Serotypes (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerebrospinal fluid</td>
<td>4</td>
<td>1 (25)</td>
<td>18C (1), 24F (2), 34 (1)</td>
</tr>
<tr>
<td>Joint fluid</td>
<td>1</td>
<td>1 (100)</td>
<td>23F (1)</td>
</tr>
<tr>
<td>Upper respiratory samples†</td>
<td>6</td>
<td>4 (67)</td>
<td>11A (1), 14 (1), 19A (2), 19F (1), 23F (1), 35B (1)</td>
</tr>
</tbody>
</table>

* Serotypes included in PCV13—13-valent pneumococcal conjugate vaccine.
† Serotypes included in PCV13 are marked in bold.
‡ Upper respiratory samples: ear, eye, and nasopharyngeal swab.
§ Lower respiratory samples: sputum or bronchoalveolar fluid.
different centers; despite internal and external quality manage-
ment at the participating laboratories, we cannot exclude
errors at the time of assessment. Pre-hospitalization antimicro-
bial use effective against susceptible nonvaccine sero-
types could potentially have biased our results toward a higher
proportion of antimicrobial nonsusceptible serotypes. Despite
researchers’ efforts to contact all available microbiological
laboratories in Cambodia, the study size remained small, with
a limited number of invasive isolates. None of the public mi-
crobiology laboratories store cultured isolates. We were,
however, able to identify isolates from patients with severe
pneumococcal infections from five different geographical re-

gions in Cambodia, prospectively and systematically col-
clected as part of well-conducted epidemiological studies on
lower and/or severe respiratory infections. We, therefore, are
confident that our results may still be generalizable to the
general population. Furthermore, results were very similar to
the two previously published studies from Cambodia, despite
differences in the targeted age group and geographical areas.

Importantly, the present study is the first to include adult data.

It has clearly been demonstrated in high-income countries
that the incidence of invasive pneumococcal disease due to
serotypes included in PCV significantly decreased with the
introduction of the vaccine into the childhood vaccination
schedule due to a direct effect in vaccinated children as well as
an indirect herd effect among older age groups. However,
after the introduction of the vaccine, an increase of non-
vaccine serotypes by either selection or replacement has been
observed in many countries. If nonvaccine serotypes carry an-
tibiotic resistance genes, serotype shifting may potentially lead
to an increase of the prevalence of antibiotic-resistant pneu-
mococcal clones. For these reasons, pre-vaccination data are
needed to monitor effects of the introduction of PCV. In low-
income settings, data are scarce and accurate prediction is often
hampered by low-quality epidemiological, biological, or clinical
data. Despite the limited study size, our study based on isolates

TABLE 4

Antimicrobial susceptibility data of the isolates according to vaccine coverage of serotypes

<table>
<thead>
<tr>
<th></th>
<th>Overall N (%)</th>
<th>PCV13 isolates N (%)</th>
<th>Non-vaccine isolates N (%)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penicillin G*</td>
<td>95 (58)</td>
<td>50 (51)</td>
<td>45 (68)</td>
<td>0.02</td>
</tr>
<tr>
<td>Susceptible</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amoxicillin†</td>
<td>127 (93)</td>
<td>68 (91)</td>
<td>59 (95)</td>
<td>0.31</td>
</tr>
<tr>
<td>Susceptible</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceftriaxone‡</td>
<td>149 (94)</td>
<td>87 (93)</td>
<td>62 (98)</td>
<td>0.10</td>
</tr>
<tr>
<td>Susceptible</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cotrimoxazole§</td>
<td>15 (9)</td>
<td>4 (4)</td>
<td>11 (17)</td>
<td>0.005</td>
</tr>
<tr>
<td>Susceptible</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erythromycin§</td>
<td>81 (49)</td>
<td>40 (40)</td>
<td>41 (62)</td>
<td>0.006</td>
</tr>
</tbody>
</table>

*PCV13 = 13-valent pneumococcal conjugate vaccine.

* Antibiotic susceptibility testing data were available for 165/166 isolates.

† 157/166 isolates tested.

‡ 164/166 isolates tested.

§ 165/166 isolates tested.
prospectively collected as part of either epidemiological studies or routine care, from patients with severe pneumococcal infections of all ages and from five geographical regions, provides a good baseline pre-vaccination assessment of the epidemiology of pneumococcal strains in Cambodia.

In conclusion, our study supports the potential for high reduction in pneumococcal disease burden with the introduction of PCV13 in childhood vaccination program. Multidrug resistance was higher among strains included in PCV13, which further supports likely vaccine impact of the now implemented vaccine program.

Received September 1, 2017. Accepted for publication December 2, 2017.

Published online January 8, 2018.

Acknowledgments: We acknowledge patients who agreed to participate in the studies. We also acknowledge the medical staff at the hospitals and microbiological laboratories for taking care of the patients, and for collecting and processing the samples.

Financial support: The SISEA study was funded through a grant from the Agence Française de Développement, Paris, France. The surveillance program at SHCH was funded through the Belgian Development Cooperation. The studies at NAMRU-2 were funded by Global Emerging Infectious Surveillance section of the Armed Forces Health Surveillance Branch, work unit #D1310 and #D1409. The serotyping was supported by grants from Fondation Mérieux, the Swedish Government Funds for Clinical Research, and The Royal Physiographic Society in Lund. Serotyping work at COMRU was supported by Li Ka Shing University of Oxford Global Health Programme (Grant No. LG25 to P. T.) and by the Wellcome Trust as part of the Wellcome Trust-Mahidol University-Oxford Tropical Medicine Research Program. The funders played no role in the design of the study, data collection or analysis, decision to publish, or preparation of the manuscript.

Disclaimer: The opinions and assertions contained herein are those of the original author and source are credited.

REFERENCES

