B. Murgue, S. Murri, H. Triki, V. Deubel, and H. Zeller, West Nile in the Mediterranean Basin: 1950-2000, Annals of the New York Academy of Sciences, vol.7, issue.45, pp.117-143, 2001.
DOI : 10.1016/S0769-2617(87)80007-2

H. Zeller and I. Schuffenecker, West Nile Virus: An Overview of Its Spread in Europe and the Mediterranean Basin in Contrast to Its Spread in the Americas, European Journal of Clinical Microbiology & Infectious Diseases, vol.23, issue.3, pp.147-56, 2004.
DOI : 10.1007/s10096-003-1085-1

S. Moutailler, G. Krida, F. Schaffner, M. Vazeille, and A. Failloux, Potential Vectors of Rift Valley Fever Virus in the Mediterranean Region, Vector-Borne and Zoonotic Diseases, vol.8, issue.6, pp.749-54, 2008.
DOI : 10.1089/vbz.2008.0009

URL : https://hal.archives-ouvertes.fr/pasteur-01696142

G. Krida, L. Diancourt, A. Bouattour, A. Rhim, B. Chermiti et al., Assessment of the risk of introduction to Tunisia of the Rift Valley fever virus by the mosquito Culex pipiens, Bulletin de la Soci??t?? de pathologie exotique, vol.104, issue.4, pp.250-259, 2011.
DOI : 10.1007/s13149-010-0122-4

URL : https://hal.archives-ouvertes.fr/pasteur-00661663

A. Tber, West Nile fever in horses in Morocco, Bull OIE, vol.108, pp.867-876, 1996.

I. Schuffenecker, C. Peyrefitte, M. Harrak, S. Murri, A. Leblond et al., West Nile Virus in Morocco, 2003, Emerging Infectious Diseases, vol.11, issue.2, pp.306-309, 2003.
DOI : 10.3201/eid1102.040817

B. Hassine, T. Hammami, S. Elghoul, H. Ghram, and A. , Detection of circulation of West Nile virus in equine in the north-west of Tunisia, Bulletin de la Soci??t?? de pathologie exotique, vol.104, issue.4, pp.266-71, 2011.
DOI : 10.1007/s13149-011-0173-1

R. Hollingworth and K. Dong, The biochemical and molecular genetic basis of resistance to pesticides in arthropods. Global pesticide resistance in arthropods. Wallingford: CAB International, pp.40-89, 2008.

P. Labbé, H. Alout, L. Djogbénou, N. Pasteur, and M. Weill, Evolution of resistance to insecticide in disease vectors Genetics and evolution of infectious disease, pp.363-409, 2011.

H. Ranson, N. Guessan, R. Lines, J. Moiroux, N. Nkuni et al., Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control?, Trends in Parasitology, vol.27, issue.2, pp.91-99, 2011.
DOI : 10.1016/j.pt.2010.08.004

D. Soderlund and D. Knipple, The molecular biology of knockdown resistance to pyrethroid insecticides, Insect Biochemistry and Molecular Biology, vol.33, issue.6, pp.563-77, 2003.
DOI : 10.1016/S0965-1748(03)00023-7

D. Martinez-torres, C. Chevillon, A. Brun-barale, J. Bergé, N. Pasteur et al., L mosquitoes, Pesticide Science, vol.21, issue.10, pp.1012-1032, 1999.
DOI : 10.1002/(SICI)1096-9063(199711)51:3<265::AID-PS626>3.0.CO;2-P

URL : https://hal.archives-ouvertes.fr/halsde-00201889

Q. Xu, H. Wang, L. Zhang, and N. Liu, Kdr allelic variation in pyrethroid resistant mosquitoes, Culex quinquefasciatus (S.), Biochemical and Biophysical Research Communications, vol.345, issue.2, pp.774-80, 2006.
DOI : 10.1016/j.bbrc.2006.04.155

D. Martinez-torres, F. Chandre, M. Williamson, F. Darriet, J. Berge et al., Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s., Insect Molecular Biology, vol.7, issue.2, pp.179-84, 1998.
DOI : 10.1046/j.1365-2583.1998.72062.x

URL : https://hal.archives-ouvertes.fr/halsde-00201819

J. Scott, M. Yoshimizu, and S. Kasai, Pyrethroid resistance in Culex pipiens mosquitoes, Pesticide Biochemistry and Physiology, vol.120, pp.68-76, 2015.
DOI : 10.1016/j.pestbp.2014.12.018

J. Massoulié and S. L. Bon, acétylcholinestérase: une structure originale pour une fonction vitale In: Annales de l'Institut Pasteur. Actualités, pp.35-49, 1993.

A. Mutero, M. Pralavorio, J. Bride, and D. Fournier, Resistance-associated point mutations in insecticide-insensitive acetylcholinesterase., Proceedings of the National Academy of Sciences, vol.91, issue.13, pp.5922-5928, 1994.
DOI : 10.1073/pnas.91.13.5922

M. Weill, G. Lutfalla, K. Mogensen, F. Chandre, A. Berthomieu et al., Insecticide resistance in mosquito vectors, Nature, vol.55, issue.6936, pp.136-143, 2003.
DOI : 10.1006/pest.1996.0041

URL : https://hal.archives-ouvertes.fr/halsde-00186375

H. Alout, L. Djogbénou, C. Berticat, F. Chandre, and M. Weill, Comparison of Anopheles gambiae and Culex pipiens acetycholinesterase 1 biochemical properties, Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, vol.150, issue.3, pp.271-278, 2008.
DOI : 10.1016/j.cbpb.2008.03.008

URL : https://hal.archives-ouvertes.fr/halsde-00454638

E. Ouali, L. El-akhal, F. , E. Amri, N. Maniar et al., État de la résistance du moustique Culex pipiens vis-à-vis du téméphos au centre du Maroc, Bull Société Pathol Exot, vol.107, pp.194-202, 2014.

M. Bkhache, F. Tmimi, O. Charafeddine, C. Faraj, A. Failloux et al., First report of L1014F-kdr mutation in Culex pipiens complex from Morocco, Parasites & Vectors, vol.5, issue.1, p.644, 2016.
DOI : 10.1371/journal.pone.0011681

URL : https://hal.archives-ouvertes.fr/pasteur-01468112

J. Brunhes, A. Rhaim, B. Geoffroy, G. Angel, and J. Hervy, Les moustiques de l'Afrique méditerranéenne: logiciel d'identification et d'enseignement. IRD & IPT, CD-Rom collection didactique, 2000.

C. Bahnck and D. Fonseca, Rapid assay to identify the two genetic forms of Culex (Culex) pipiens L, Diptera: Culicidae) and hybrid populations

M. Weill, C. Malcolm, F. Chandre, K. Mogensen, A. Berthomieu et al., The unique mutation in ace-1 giving high insecticide resistance is easily detectable in mosquito vectors, Insect Molecular Biology, vol.17, issue.1, pp.1-7, 2004.
DOI : 10.1038/423136b

URL : https://hal.archives-ouvertes.fr/halsde-00193166

M. Zaim, A. Aitio, and N. Nakashima, Safety of pyrethroid-treated mosquito nets, Medical and Veterinary Entomology, vol.93, issue.1, pp.1-5, 2000.
DOI : 10.1016/0001-706X(91)90056-P

C. Brengues, N. Hawkes, F. Chandre, L. Mccarroll, S. Duchon et al., Pyrethroid and DDT cross-resistance in Aedes aegypti is correlated with novel mutations in the voltage-gated sodium channel gene, Medical and Veterinary Entomology, vol.443, issue.1, pp.87-94, 2003.
DOI : 10.1007/s004389670006

A. Enayati, H. Vatandoost, H. Ladonni, H. Townson, and J. Hemingway, Molecular evidence for a kdr-like pyrethroid resistance mechanism in the malaria vector mosquito Anopheles stephensi, Medical and Veterinary Entomology, vol.240, issue.2, pp.138-182, 2003.
DOI : 10.1016/S0965-1748(00)00074-6

V. Gnanguenon, F. Agossa, K. Badirou, R. Govoetchan, R. Anagonou et al., Malaria vectors resistance to insecticides in Benin: current trends and mechanisms involved, Parasites & Vectors, vol.79, issue.1, p.223, 2015.
DOI : 10.5772/56117

H. Niangel, L. Konaté, M. Diallo, O. Faye, and D. I. , Patterns of insecticide resistance and knock down resistance (kdr) in malaria vectors An. arabiensis, An. coluzzii and An. gambiae from sympatric areas in Senegal, Parasites & Vectors, vol.38, issue.1, p.71, 2016.
DOI : 10.2307/2408641

B. Brooke, kdr: can a single mutation produce an entire insecticide resistance phenotype?, Transactions of the Royal Society of Tropical Medicine and Hygiene, vol.345, issue.6, pp.524-529, 2008.
DOI : 10.1016/j.bbrc.2006.04.155

S. Ibrahim, Y. Manu, Z. Tukur, H. Irving, and C. Wondji, High frequency of kdr L1014F is associated with pyrethroid resistance in Anopheles coluzzii in Sudan savannah of northern Nigeria, BMC Infectious Diseases, vol.5, issue.7, pp.441-450, 2014.
DOI : 10.1371/journal.pone.0011872

B. Samb, L. Konate, H. Irving, J. Riveron, I. Dia et al., Investigating molecular basis of lambda-cyhalothrin resistance in an Anopheles funestus population from Senegal, Parasites & Vectors, vol.10, issue.4, p.449, 2016.
DOI : 10.4238/2011.December.21.4

Q. Xu, L. Tain, L. Zhang, and N. Liu, Sodium channel genes and their differential genotypes at the L-to-F kdr locus in the mosquito Culex quinquefasciatus, Biochemical and Biophysical Research Communications, vol.407, issue.4, pp.645-654, 2011.
DOI : 10.1016/j.bbrc.2011.03.060

N. Liu, Q. Xu, T. Li, L. Zhang, and L. , in Alabama, Journal of Medical Entomology, vol.46, issue.6, pp.1424-1433, 2009.
DOI : 10.1016/S1471-4922(01)02220-6

Z. Wang, C. Li, D. Xing, Y. Yu, N. Liu et al., Detection and widespread distribution of sodium channel alleles characteristic of insecticide resistance in Culex pipiens complex mosquitoes in China, Medical and Veterinary Entomology, vol.46, issue.2, pp.228-260, 2012.
DOI : 10.1603/033.046.0217

A. Diabate, C. Brengues, T. Baldet, K. Dabiré, J. Hougard et al., The spread of the Leu-Phe kdr mutation through Anopheles gambiae complex in Burkina Faso: genetic introgression and de novo phenomena, Tropical Medicine and International Health, vol.240, issue.12, pp.1267-73, 2004.
DOI : 10.1046/j.0962-1075.2001.00306.x

D. Syafruddin, A. Hidayati, P. Asih, W. Hawley, S. Sukowati et al., Detection of 1014F kdr mutation in four major Anopheline malaria vectors in Indonesia, Malaria Journal, vol.9, issue.1, p.315, 2010.
DOI : 10.1186/1475-2875-9-315

W. Tan, Z. Wang, C. Li, H. Chu, Y. Xu et al., First Report on Co-Occurrence Knockdown Resistance Mutations and Susceptibility to Beta-Cypermethrin in Anopheles sinensis from Jiangsu Province, China, PLoS ONE, vol.6, issue.1, p.29242, 2012.
DOI : 10.1371/journal.pone.0029242.t005

M. Burton, I. Mellor, I. Duce, T. Davies, L. Field et al., Differential resistance of insect sodium channels with kdr mutations to deltamethrin, permethrin and DDT, Insect Biochemistry and Molecular Biology, vol.41, issue.9, pp.723-732, 2011.
DOI : 10.1016/j.ibmb.2011.05.004

J. Kooli and A. Rhaiem, Sensibilité des larves de moustiques aux insecticides dans la région de Tunis de 1984 à 1988, Arch Inst Pasteur Tunis, vol.66, pp.61-71, 1989.

C. Dong and A. Young-joon, Laboratory and simulated field bioassays to evaluate larvicidal activity of Pinus densiflora hydrodistillate, its constituents and structurally related compounds against Aedes albopictus, Aedes aegypti and Culex pipiens pallens in relation to their inhibitory effects on acetylcholinesterase, Activity. Insects, vol.4, pp.217-246, 2013.

G. Sinegre, B. Gaven, and J. Jullien, Activité comparée de 31 insecticides sur des larves de Culex pipiens (L.) sensibles et résistantes au chlorpyriphos dans le midi de la France, Parassitologia, vol.19, pp.63-72, 1977.

D. Chavasse and H. Yop, Chemical methods for the control of vectors and pests of public health importance, WHOPES, vol.2, p.129, 1997.

G. Sinegre, J. Jullien, and G. B. , Acquisition progressive de la résistance au chlorpyriphos chez les larves de Culex pipiens (L.) dans le midi de la France, Parasitologia, vol.19, pp.1-2, 1977.

G. Sinegre, La résistance des diptères culicides en France Quatrième colloque organisé par la commission d'étude des conséquences de la protection des plantes sur les biocénoses de la société française de phytiatrie et phytopharmacie, 1984.

A. Yadouléton, K. Badirou, R. Agbanrin, H. Jöst, R. Attolou et al., Insecticide resistance status in Culex quinquefasciatus in Benin, Parasites & Vectors, vol.8, issue.1, p.17, 2015.
DOI : 10.1186/1475-2875-7-189

C. Antonio-nkondjio, R. Poupardin, B. Tene, E. Kopya, C. Costantini et al., Investigation of mechanisms of bendiocarb resistance in Anopheles gambiae populations from the city of Yaound??, Cameroon, Malaria Journal, vol.14, issue.1, pp.424-459, 2016.
DOI : 10.1186/s12936-015-0675-6