B. Hinz, S. Phan, V. Thannickal, A. Galli, M. Bochaton-piallat et al., The Myofibroblast, The American Journal of Pathology, vol.170, issue.6, pp.1807-1816, 2007.
DOI : 10.2353/ajpath.2007.070112

URL : https://hal.archives-ouvertes.fr/hal-00661272

B. Hinz, Recent Developments in Myofibroblast Biology, The American Journal of Pathology, vol.180, issue.4, pp.1340-1355, 2012.
DOI : 10.1016/j.ajpath.2012.02.004

URL : https://doi.org/10.1016/j.ajpath.2012.02.004

I. Darby, O. Skalli, and G. Gabbiani, ?-Smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing, Lab Invest, vol.63, issue.1, pp.21-29, 1990.

B. Hinz, Formation and Function of the Myofibroblast during Tissue Repair, Journal of Investigative Dermatology, vol.127, issue.3, pp.526-537, 2007.
DOI : 10.1038/sj.jid.5700613

K. Sun, Y. Chang, N. Reed, and D. Sheppard, ??-Smooth muscle actin is an inconsistent marker of fibroblasts responsible for force-dependent TGF?? activation or collagen production across multiple models of organ fibrosis, American Journal of Physiology-Lung Cellular and Molecular Physiology, vol.7, issue.9, pp.824-836, 2016.
DOI : 10.1053/jhep.2003.50067

O. Skalli, Myofibroblasts from diverse pathologic settings are heterogeneous in their content of actin isoforms and intermediate filament proteins, Lab Invest, vol.60, issue.2, pp.275-285, 1989.

B. Hinz, P. Pittet, J. Smith-clerc, C. Chaponnier, and J. Meister, Myofibroblast Development Is Characterized by Specific Cell-Cell Adherens Junctions, Molecular Biology of the Cell, vol.15, issue.9
DOI : 10.1091/mbc.E04-05-0386

URL : http://www.molbiolcell.org/content/15/9/4310.full.pdf

B. Hinz, Masters and servants of the force: The role of matrix adhesions in myofibroblast force perception and transmission, European Journal of Cell Biology, vol.85, issue.3-4, pp.3-4175, 2006.
DOI : 10.1016/j.ejcb.2005.09.004

M. Travis and D. Sheppard, TGF-?? Activation and Function in Immunity, Annual Review of Immunology, vol.32, issue.1, pp.51-82, 2014.
DOI : 10.1146/annurev-immunol-032713-120257

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4010192/pdf

M. Morikawa, R. Derynck, and K. Miyazono, TGF-?? and the TGF-?? Family: Context-Dependent Roles in Cell and Tissue Physiology, Cold Spring Harbor Perspectives in Biology, vol.8, issue.5, p.21873, 2016.
DOI : 10.1101/cshperspect.a021873

L. Borthwick, T. Wynn, and A. Fisher, Cytokine mediated tissue fibrosis, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1832, issue.7, pp.1049-1060, 2013.
DOI : 10.1016/j.bbadis.2012.09.014

URL : https://doi.org/10.1016/j.bbadis.2012.09.014

R. Gieseck, M. Wilson, and T. Wynn, Type 2 immunity in tissue repair fibrosis [published online ahead of print, Nat Rev Immunol, 2017.

M. Crisan, A Perivascular Origin for Mesenchymal Stem Cells in Multiple Human Organs, Cell Stem Cell, vol.3, issue.3, pp.301-313, 2008.
DOI : 10.1016/j.stem.2008.07.003

E. Herzog and R. Bucala, Fibrocytes in health and disease, Experimental Hematology, vol.38, issue.7, pp.548-556, 2010.
DOI : 10.1016/j.exphem.2010.03.004

B. Hinz, S. Phan, V. Thannickal, A. Galli, M. Bochaton-piallat et al., The Myofibroblast, The American Journal of Pathology, vol.170, issue.6, pp.1807-1816, 2007.
DOI : 10.2353/ajpath.2007.070112

URL : https://hal.archives-ouvertes.fr/hal-00661272

J. Thiery, H. Acloque, R. Huang, and M. Nieto, Epithelial-Mesenchymal Transitions in Development and Disease, Cell, vol.139, issue.5, pp.871-890, 2009.
DOI : 10.1016/j.cell.2009.11.007

URL : https://doi.org/10.1016/j.cell.2009.11.007

P. Jensen and S. Dymecki, Essentials of Recombinase-Based Genetic Fate Mapping in Mice, Methods Mol Biol, vol.1092, pp.437-454, 2014.
DOI : 10.1007/978-1-60327-292-6_26

B. Humphreys, Fate Tracing Reveals the Pericyte and Not Epithelial Origin of Myofibroblasts in Kidney Fibrosis, The American Journal of Pathology, vol.176, issue.1, pp.85-97, 2010.
DOI : 10.2353/ajpath.2010.090517

R. Kramann, Perivascular Gli1+ Progenitors Are Key Contributors to Injury-Induced Organ Fibrosis, Cell Stem Cell, vol.16, issue.1, pp.51-66, 2015.
DOI : 10.1016/j.stem.2014.11.004

URL : https://doi.org/10.1016/j.stem.2014.11.004

C. Göritz, D. Dias, N. Tomilin, M. Barbacid, O. Shupliakov et al., A Pericyte Origin of Spinal Cord Scar Tissue, Science, vol.23, issue.11, pp.238-242, 2011.
DOI : 10.1128/MCB.23.11.4013-4025.2003

S. Dulauroy, D. Carlo, S. Langa, F. Eberl, G. Peduto et al., Lineage tracing and genetic ablation of ADAM12+ perivascular cells identify a major source of profibrotic cells during acute tissue injury, Nature Medicine, vol.13, issue.8, pp.1262-1270, 2012.
DOI : 10.1093/infdis/145.1.94

URL : https://hal.archives-ouvertes.fr/pasteur-01402722

P. Kong, C. P. Saxena, A. Su, Y. Frangogiannis, and N. , Lack of specificity of fibroblast-specific protein 1 in cardiac remodeling and fibrosis, American Journal of Physiology-Heart and Circulatory Physiology, vol.145, issue.9, pp.1363-1372, 2013.
DOI : 10.1016/S0002-9440(10)61108-X

R. Herrera-molina, Thy-1-Interacting Molecules and Cellular Signaling in Cis and Trans, Int Rev Cell Mol Biol, vol.305, pp.163-216, 2013.
DOI : 10.1016/B978-0-12-407695-2.00004-4

C. Österreicher, Fibroblast-specific protein 1 identifies an inflammatory subpopulation of macrophages in the liver, Proceedings of the National Academy of Sciences, vol.33, issue.1, pp.308-313, 2011.
DOI : 10.1677/jme.0.0330001

T. Moore-morris, Resident fibroblast lineages mediate pressure overload???induced cardiac fibrosis, Journal of Clinical Investigation, vol.124, issue.7, pp.2921-2934, 2014.
DOI : 10.1172/JCI74783DS1

URL : http://www.jci.org/articles/view/74783/files/pdf

O. Kanisicak, Genetic lineage tracing defines myofibroblast origin and function in the injured heart, Nature Communications, vol.196, p.12260, 2016.
DOI : 10.1371/journal.pone.0051621

J. Rinn, C. Bondre, H. Gladstone, P. Brown, and H. Chang, Anatomic Demarcation by Positional Variation in Fibroblast Gene Expression Programs, PLoS Genetics, vol.6, issue.7, p.119, 2006.
DOI : 10.1371/journal.pgen.0020119.st001

G. Parsonage, Global gene expression profiles in fibroblasts from synovial,skin and lymphoid tissue reveals distinct cytokine and chemokine expression patterns, Thrombosis and Haemostasis, vol.90, issue.4, pp.688-697, 2003.
DOI : 10.1160/TH03-04-0208

S. Mueller and R. Germain, Stromal cell contributions to the homeostasis and functionality of the immune system, Nature Reviews Immunology, vol.171, issue.9, pp.618-629, 2009.
DOI : 10.4049/jimmunol.171.8.4359

C. Bénézech, Ontogeny of Stromal Organizer Cells during Lymph Node Development, The Journal of Immunology, vol.184, issue.8, pp.4521-4530, 2010.
DOI : 10.4049/jimmunol.0903113

R. Mebius, Erratum: Organogenesis of lymphoid tissues, Nature Reviews Immunology, vol.167, issue.4, pp.292-303, 2003.
DOI : 10.4049/jimmunol.167.4.1909

L. Peduto, Inflammation Recapitulates the Ontogeny of Lymphoid Stromal Cells, The Journal of Immunology, vol.182, issue.9, pp.5789-5799, 2009.
DOI : 10.4049/jimmunol.0803974

URL : https://hal.archives-ouvertes.fr/pasteur-00429028

C. Buckley, F. Barone, S. Nayar, C. Bénézech, and J. Caamaño, Stromal Cells in Chronic Inflammation and Tertiary Lymphoid Organ Formation, Annual Review of Immunology, vol.33, issue.1, pp.715-7451094, 2010.
DOI : 10.1146/annurev-immunol-032713-120252

A. Armulik, Pericytes regulate the blood???brain barrier, Nature, vol.57, issue.7323, pp.557-561, 2010.
DOI : 10.1038/nature09522

R. Daneman, L. Zhou, A. Kebede, and B. Barres, Pericytes are required for blood???brain barrier integrity during embryogenesis, Nature, vol.43, issue.7323, pp.562-566, 2010.
DOI : 10.1371/journal.pbio.0000052

C. Hall, Capillary pericytes regulate cerebral blood flow in health and disease, Nature, vol.264, issue.7494, pp.55-60, 2014.
DOI : 10.1073/pnas.1007239107

E. Winkler, R. Bell, and B. Zlokovic, Central nervous system pericytes in health and disease, Nature Neuroscience, vol.154, issue.11, pp.1398-1405, 2011.
DOI : 10.1038/ncb1819

S. Lange, Brain pericyte plasticity as a potential drug target in CNS repair, Drug Discovery Today, vol.18, issue.9-10, pp.9-10456, 2013.
DOI : 10.1016/j.drudis.2012.12.007

P. Carmeliet and R. Jain, Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases, Nature Reviews Drug Discovery, vol.7, issue.6, pp.417-427, 2011.
DOI : 10.1038/nmeth.1475

C. Schrimpf, O. Teebken, M. Wilhelmi, and J. Duffield, The Role of Pericyte Detachment in Vascular Rarefaction, Journal of Vascular Research, vol.51, issue.4, pp.247-258, 2014.
DOI : 10.1159/000365149

K. Stark, Capillary and arteriolar pericytes attract innate leukocytes exiting through venules and 'instruct' them with pattern-recognition and motility programs, Nature Immunology, vol.107, issue.1, pp.41-51, 2013.
DOI : 10.1073/pnas.1008737107

D. Proebstl, Pericytes support neutrophil subendothelial cell crawling and breaching of venular walls in vivo, The Journal of Experimental Medicine, vol.90, issue.6, pp.1219-1234, 2012.
DOI : 10.1634/stemcells.2004-0346

I. Leaf, Pericyte MyD88 and IRAK4 control inflammatory and fibrotic responses to tissue injury, Journal of Clinical Investigation, vol.127, issue.1, pp.321-334, 2017.
DOI : 10.1172/JCI87532DS1

L. Olson and P. Soriano, PDGFR?? Signaling Regulates Mural Cell Plasticity and Inhibits Fat Development, Developmental Cell, vol.20, issue.6, pp.815-826, 2011.
DOI : 10.1016/j.devcel.2011.04.019

URL : https://doi.org/10.1016/j.devcel.2011.04.019

K. Stenmark, The Adventitia: Essential Regulator of Vascular Wall Structure and Function, Annual Review of Physiology, vol.75, issue.1, pp.23-47, 2013.
DOI : 10.1146/annurev-physiol-030212-183802

J. Jongstra-bilen, M. Haidari, S. Zhu, M. Chen, D. Guha et al., Low-grade chronic inflammation in regions of the normal mouse arterial intima predisposed to atherosclerosis, The Journal of Experimental Medicine, vol.95, issue.9, pp.2073-2083, 2006.
DOI : 10.1038/labinvest.3700208

B. Tieu, An adventitial IL-6/MCP1 amplification loop accelerates macrophage-mediated vascular inflammation leading to aortic dissection in mice, Journal of Clinical Investigation, vol.119, issue.12, pp.3637-3651, 2009.
DOI : 10.1172/JCI38308DS1

R. Gräbner, mice, The Journal of Experimental Medicine, vol.57, issue.1, pp.233-248, 2009.
DOI : 10.1074/jbc.M609578200

G. Hansson and A. Hermansson, The immune system in atherosclerosis, Nature Immunology, vol.177, issue.3, pp.204-212, 2011.
DOI : 10.1056/NEJM200003233421202

I. Braverman, The Cutaneous Microcirculation, Journal of Investigative Dermatology Symposium Proceedings, vol.5, issue.1, pp.3-9, 2000.
DOI : 10.1046/j.1087-0024.2000.00010.x

A. Friedenstein, K. Petrakova, A. Kurolesova, and G. Frolova, HETEROTOPIC TRANSPLANTS OF BONE MARROW, Transplantation, vol.6, issue.2, pp.230-247, 1968.
DOI : 10.1097/00007890-196803000-00009

B. Sacchetti, Self-Renewing Osteoprogenitors in Bone Marrow Sinusoids Can Organize a Hematopoietic Microenvironment, Cell, vol.131, issue.2, pp.324-336, 2007.
DOI : 10.1016/j.cell.2007.08.025

S. Morikawa, Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow, The Journal of Experimental Medicine, vol.14, issue.11, pp.2483-2496, 2009.
DOI : 10.1182/blood-2005-02-0582

S. Méndez-ferrer, Mesenchymal and haematopoietic stem cells form a unique bone marrow niche, Nature, vol.8, issue.7308, pp.829-834, 2010.
DOI : 10.4161/cc.6.17.4593

P. Boulais and P. Frenette, Making sense of hematopoietic stem cell niches, Blood, vol.125, issue.17, pp.2621-2629, 2015.
DOI : 10.1182/blood-2014-09-570192

M. Crisan, C. Chen, M. Corselli, G. Andriolo, L. Lazzari et al., Perivascular Multipotent Progenitor Cells in Human Organs, Annals of the New York Academy of Sciences, vol.36, issue.1, pp.118-123, 2009.
DOI : 10.1111/j.1749-6632.2009.04967.x

M. Corselli, C. Chen, B. Sun, S. Yap, J. Rubin et al., The Tunica Adventitia of Human Arteries and Veins As a Source of Mesenchymal Stem Cells, Stem Cells and Development, vol.21, issue.8, pp.1299-1308, 2012.
DOI : 10.1089/scd.2011.0200

P. Bianco, The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine, Nature Medicine, vol.24, issue.1, pp.35-42, 2013.
DOI : 10.1016/j.stem.2009.05.003

C. Chen, Human Pericytes for Ischemic Heart Repair, STEM CELLS, vol.92, issue.2, pp.305-316, 2013.
DOI : 10.1016/j.athoracsur.2011.07.012

M. Hayes, G. Curley, and J. Laffey, Mesenchymal stem cells ? a promising therapy for Acute Respiratory Distress Syndrome, F1000 Med Rep, vol.4, issue.2, 2012.

A. Nauta and W. Fibbe, Immunomodulatory properties of mesenchymal stromal cells, Blood, vol.110, issue.10, pp.3499-3506, 2007.
DOI : 10.1182/blood-2007-02-069716

M. Murphy, K. Moncivais, and A. Caplan, Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine, Experimental & Molecular Medicine, vol.154, issue.11, p.54, 2013.
DOI : 10.3324/haematol.11869

A. Joe, Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis, Nature Cell Biology, vol.439, issue.2, pp.153-163, 2010.
DOI : 10.1046/j.1469-7580.2003.00171.x

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4580288/pdf

A. Uezumi, S. Fukada, N. Yamamoto, S. Takeda, and K. Tsuchida, P72. Mesenchymal progenitors distinct from muscle satellite cells contribute to ectopic fat cell formation in skeletal muscle, Differentiation, vol.80, issue.2, pp.143-152, 2010.
DOI : 10.1016/j.diff.2010.09.078

S. Friedman, Hepatic Stellate Cells: Protean, Multifunctional, and Enigmatic Cells of the Liver, Physiological Reviews, vol.88, issue.1, pp.125-172, 2008.
DOI : 10.1002/hep.510270427

M. Apte, R. Pirola, and J. Wilson, Pancreatic stellate cells: a starring role in normal and diseased pancreas, Frontiers in Physiology, vol.3, p.344, 2012.
DOI : 10.3389/fphys.2012.00344

G. Kent, S. Gay, T. Inouye, R. Bahu, O. Minick et al., Vitamin A-containing lipocytes and formation of type III collagen in liver injury., Proceedings of the National Academy of Sciences, vol.73, issue.10, pp.3719-3722, 1976.
DOI : 10.1073/pnas.73.10.3719

J. Mcgee and R. Patrick, The role of perisinusoidal cells in hepatic fibrogenesis. An electron microscopic study of acute carbon tetrachloride liver injury, Lab Invest, vol.26, issue.4, pp.429-440, 1972.

T. Higashi, S. Friedman, and Y. Hoshida, Hepatic stellate cells as key target in liver fibrosis [published online ahead of print, 2017.

R. Driskell, Distinct fibroblast lineages determine dermal architecture in skin development and repair, Nature, vol.23, issue.7479, pp.277-281, 2013.
DOI : 10.1128/MCB.23.11.4013-4025.2003

B. Lichtenberger, M. Mastrogiannaki, and F. Watt, Epidermal ??-catenin activation remodels the dermis via paracrine signalling to distinct fibroblast lineages, Nature Communications, vol.23, p.10537, 2016.
DOI : 10.1128/MCB.23.11.4013-4025.2003

Y. Rinkevich, Identification and isolation of a dermal lineage with intrinsic fibrogenic potential, Science, vol.33, issue.1, p.2151, 2015.
DOI : 10.1016/j.biomaterials.2011.09.041

H. Grillo, Origin of fibroblasts in wound healing: An autoradiographic study of inhibition of cellular proliferation by local x-irradiation, Plastic and Reconstructive Surgery, vol.32, issue.2, pp.453-467, 1963.
DOI : 10.1097/00006534-196308000-00026

R. Ross, N. Everett, and R. Tyler, WOUND HEALING AND COLLAGEN FORMATION: VI. The Origin of the Wound Fibroblast Studied in Parabiosis, The Journal of Cell Biology, vol.44, issue.3, pp.645-654, 1970.
DOI : 10.1083/jcb.44.3.645

C. Sundberg, M. Ivarsson, B. Gerdin, and K. Rubin, Pericytes as collagen-producing cells in excessive dermal scarring, Lab Invest, vol.74, issue.2, pp.452-466, 1996.

X. Shi-wen, Endogenous endothelin-1 signaling contributes to type I collagen and CCN2 overexpression in fibrotic fibroblasts, Matrix Biology, vol.26, issue.8, pp.625-632, 2007.
DOI : 10.1016/j.matbio.2007.06.003

P. Cipriani, Perivascular Cells in Diffuse Cutaneous Systemic Sclerosis Overexpress Activated ADAM12 and Are Involved in Myofibroblast Transdifferentiation and Development of Fibrosis, The Journal of Rheumatology, vol.43, issue.7
DOI : 10.3899/jrheum.150996

C. Soudais, Stable and functional lymphoid reconstitution of common cytokine receptor ? chain deficient mice by retroviral-mediated gene transfer, Blood, vol.95, issue.10, pp.3071-3077, 2000.

T. Taniguchi, Serum levels of ADAM12-S: possible association with the initiation and progression of dermal fibrosis and interstitial lung disease in patients with systemic sclerosis, Journal of the European Academy of Dermatology and Venereology, vol.285, issue.6, pp.747-753, 2013.
DOI : 10.1074/jbc.M110.133314

R. Marangoni, Myofibroblasts in Murine Cutaneous Fibrosis Originate From Adiponectin-Positive Intradermal Progenitors, Arthritis & Rheumatology, vol.19, issue.4, pp.1062-1073, 2015.
DOI : 10.1038/nm.3218

V. Béréziat, LMNA Mutations Induce a Non-Inflammatory Fibrosis and a Brown Fat-Like Dystrophy of Enlarged Cervical Adipose Tissue, The American Journal of Pathology, vol.179, issue.5, pp.2443-2453, 2011.
DOI : 10.1016/j.ajpath.2011.07.049

A. Garg and A. Agarwal, Lipodystrophies: Disorders of adipose tissue biology, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1791, issue.6, pp.507-513, 2009.
DOI : 10.1016/j.bbalip.2008.12.014

Y. Allanore, Systemic sclerosis, Nature Reviews Disease Primers, vol.1, p.15002, 2015.
DOI : 10.1038/nrdp.2015.2

URL : https://hal.archives-ouvertes.fr/inserm-00827903

N. Scuderi, Human Adipose-Derived Stromal Cells for Cell-Based Therapies in the Treatment of Systemic Sclerosis, Cell Transplantation, vol.7, issue.32, pp.779-795, 2013.
DOI : 10.1091/mbc.E02-02-0105

J. Chia, Dendritic cells maintain dermal adipose???derived stromal cells in skin fibrosis, Journal of Clinical Investigation, vol.126, issue.11
DOI : 10.1172/JCI85740DS1

H. Yin, F. Price, and M. Rudnicki, Satellite Cells and the Muscle Stem Cell Niche, Physiological Reviews, vol.12, issue.1, pp.23-67, 2013.
DOI : 10.1016/j.conb.2008.05.002

A. Brack, Increased Wnt Signaling During Aging Alters Muscle Stem Cell Fate and Increases Fibrosis, Science, vol.235, issue.3, pp.807-810, 2007.
DOI : 10.1002/dvdy.20672

Y. Li, Transforming Growth Factor-??1 Induces the Differentiation of Myogenic Cells into Fibrotic Cells in Injured Skeletal Muscle, The American Journal of Pathology, vol.164, issue.3, pp.1007-1019, 2004.
DOI : 10.1016/S0002-9440(10)63188-4

A. Uezumi, Fibrosis and adipogenesis originate from a common mesenchymal progenitor in skeletal muscle, Journal of Cell Science, vol.124, issue.21, pp.3654-3664, 2011.
DOI : 10.1242/jcs.086629

J. Heredia, Type 2 Innate Signals Stimulate Fibro/Adipogenic Progenitors to Facilitate Muscle Regeneration, Cell, vol.153, issue.2, pp.376-388, 2013.
DOI : 10.1016/j.cell.2013.02.053

W. Kuswanto, Poor repair of skeletal muscle Downloaded from http://www.jci.org on February 13, 2018.

L. Olson and P. Soriano, Increased PDGFR?? Activation Disrupts Connective Tissue Development and Drives Systemic Fibrosis, Developmental Cell, vol.16, issue.2, pp.303-313, 2009.
DOI : 10.1016/j.devcel.2008.12.003

URL : https://doi.org/10.1016/j.devcel.2008.12.003

N. Ieronimakis, A. Hays, A. Prasad, K. Janebodin, J. Duffield et al., PDGFR?? signalling promotes fibrogenic responses in collagen-producing cells in Duchenne muscular dystrophy, The Journal of Pathology, vol.20, issue.4, pp.410-424, 2016.
DOI : 10.3324/haematol.2011.058776

L. Jørgensen, C. Jensen, U. Wewer, and H. Schrøder, Transgenic Overexpression of ADAM12 Suppresses Muscle Regeneration and Aggravates Dystrophy in Aged mdx Mice, The American Journal of Pathology, vol.171, issue.5, pp.1599-1607, 2007.
DOI : 10.2353/ajpath.2007.070435

A. Acharya, The bHLH transcription factor Tcf21 is required for lineage-specific EMT of cardiac fibroblast progenitors, Development, vol.139, issue.12, pp.2139-2149, 2012.
DOI : 10.1242/dev.079970

B. Clausen, C. Burkhardt, W. Reith, R. Renkawitz, and I. Förster, Conditional gene targeting in macrophages and granulocytes using LysMcre mice, Transgenic Research, vol.8, issue.4, pp.265-277, 1999.
DOI : 10.1023/A:1008942828960

J. Van-berlo, c-kit+ cells minimally contribute cardiomyocytes to the heart, Nature, vol.17, issue.7500, pp.337-341, 2014.
DOI : 10.7554/eLife.00772

S. Ali, Developmental Heterogeneity of Cardiac Fibroblasts Does Not Predict Pathological Proliferation and Activation, Circulation Research, vol.115, issue.7, pp.625-635, 2014.
DOI : 10.1161/CIRCRESAHA.115.303794

P. Snider, K. Standley, J. Wang, M. Azhar, T. Doetschman et al., Origin of Cardiac Fibroblasts and the Role of Periostin, Circulation Research, vol.105, issue.10, pp.934-947, 2009.
DOI : 10.1161/CIRCRESAHA.109.201400

R. Kramann, J. Wongboonsin, M. Chang-panesso, F. Machado, and B. Humphreys, Pericyte Loss Induces Capillary Rarefaction and Proximal Tubular Injury, Journal of the American Society of Nephrology, vol.28, issue.3, pp.776-784, 2017.
DOI : 10.1681/ASN.2016030297

V. Lebleu, Origin and function of myofibroblasts in kidney fibrosis, Nature Medicine, vol.6, issue.8, pp.1047-1053, 2013.
DOI : 10.1080/14653240410004943

J. Duffield, Cellular and molecular mechanisms in kidney fibrosis, Journal of Clinical Investigation, vol.124, issue.6, pp.2299-2306, 2014.
DOI : 10.1172/JCI72267

M. Zeisberg and R. Kalluri, Fibroblasts emerge via epithelial-mesenchymal transition in chronic kidney fibrosis, Frontiers in Bioscience, vol.Volume, issue.13, pp.6991-6998, 2008.
DOI : 10.2741/3204

S. Lovisa, Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis, Nature Medicine, vol.19, issue.9, pp.998-1009, 2015.
DOI : 10.1038/nprot.2006.5

J. Rock, Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition, Proceedings of the National Academy of Sciences, vol.4, issue.6, pp.1475-1483, 2011.
DOI : 10.2353/ajpath.2010.090517

C. Hung, Role of Lung Pericytes and Resident Fibroblasts in the Pathogenesis of Pulmonary Fibrosis, American Journal of Respiratory and Critical Care Medicine, vol.8, issue.7, pp.820-830, 2013.
DOI : 10.1089/scd.2012.0415

J. Zepp, Distinct Mesenchymal Lineages and Niches Promote Epithelial Self-Renewal and Myofibrogenesis in the Lung, Cell, vol.170, issue.6, pp.1134-1148, 2017.
DOI : 10.1016/j.cell.2017.07.034

N. Henderson, Targeting of ??v integrin identifies a core molecular pathway that regulates fibrosis in several organs, Nature Medicine, vol.261, issue.12, pp.1617-1624, 2013.
DOI : 10.1023/B:CLIN.0000024764.93092.5f

D. Scholten, Genetic Labeling Does Not Detect Epithelial-to-Mesenchymal Transition of Cholangiocytes in Liver Fibrosis in Mice, Gastroenterology, vol.139, issue.3, pp.987-998, 2010.
DOI : 10.1053/j.gastro.2010.05.005

K. Taura, Hepatocytes do not undergo epithelial-mesenchymal transition in liver fibrosis in mice, Hepatology, vol.48, issue.3, pp.1027-1036, 2010.
DOI : 10.1172/JCI0215518

A. Chu, Lineage tracing demonstrates no evidence of cholangiocyte epithelial-to-mesenchymal transition in murine models of hepatic fibrosis, Hepatology, vol.44, issue.Suppl 1, pp.1685-1695, 2011.
DOI : 10.1016/j.jhep.2005.09.023

T. Kisseleva, Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis, Proceedings of the National Academy of Sciences, vol.447, issue.3, pp.9448-9453, 2012.
DOI : 10.1007/978-1-59745-242-7_3

V. Hernandez-gea and S. Friedman, Pathogenesis of Liver Fibrosis, Annual Review of Pathology: Mechanisms of Disease, vol.6, issue.1, pp.425-456, 2011.
DOI : 10.1146/annurev-pathol-011110-130246

L. Yang, Fate-Mapping Evidence That Hepatic Stellate Cells Are Epithelial Progenitors in Adult Mouse Livers, Stem Cells, vol.45, issue.8, pp.2104-2113, 2008.
DOI : 10.3181/00379727-204-43661

I. Mederacke, Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology, Nature Communications, vol.279, p.2823, 2013.
DOI : 10.1074/jbc.M312410200