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Introduction
Tissue damage induces a repair process aimed at restoring tissue 
architecture and function. This process involves an inflamma-
tion phase to remove dead cells and control potential pathogens, 
a remodeling/scarring phase to generate a transient collagenous 
matrix, and a regeneration phase to replace damaged paren-
chymal cells. Failure to terminate such a repair process induces 
pathological scarring, termed fibrosis, leading to dysregulated 
inflammation and excess collagen deposition. Fibrosis can affect 
most organs and become a life-threatening condition. However, 
therapeutic options remain limited. Controlling the level of scar-
ring is therefore a priority in a wide array of chronic inflammatory 
and fibrotic diseases, such as cardiovascular diseases, pulmonary 
fibrosis, kidney diseases, liver diseases, systemic sclerosis/sclero-
derma, and muscular dystrophies.

A major cause hindering therapeutic progress is the lack of 
understanding of the biological process involved in fibrosis. Tis-
sue damage can result from insults of different natures, such as 
mechanical injury, infection, ischemia/reperfusion, toxins, or 
autoimmunity. Irrespective of the initiating insult and targeted 
organ, injury induces local activation and proliferation of special-
ized subsets of mesenchymal cells, which produces extracellular 
matrix (ECM) comprising fibrillar collagens and nonstructural 
proteins with regulatory roles in ECM, proinflammatory cyto-
kines, chemokines, and growth/angiogenic factors, all of which 
are essential for repair (1, 2). These injury-induced mesenchymal 
cells have been historically referred to as “activated fibroblasts” 
or myofibroblasts, as they were initially identified in tissues by 
expression of α-smooth muscle actin (αSMA), an actin isoform 
also expressed in smooth muscle cells (3, 4). Increasing evidence 
indicates that αSMA+ myofibroblasts are only a subset of activat-
ed fibroblasts, which varies spatiotemporally after injury, and that 
other subsets of activated fibroblasts contribute to collagen depo-
sition and repair as well (3, 5, 6). Nevertheless, in the absence of 

more specific markers, expression of αSMA is commonly used to 
identify activated mesenchymal cells at sites of injury, as mesen-
chymal cells at steady state do not express it.

In addition to secreting collagen and other ECM proteins, 
myofibroblasts contribute to repair by generating contractile 
forces that are transmitted to the surrounding ECM and activate 
integrin-bound latent TGF-β, a key cytokine in wound healing 
and fibrosis (7–10). Besides active TGF-β1, other factors released 
by damaged epithelial and endothelial cells, platelets, innate 
immune cells, and lymphocytes (such as IL-25, IL-33, PDGFs, 
IL-4, and IL-13), as well as pathogen-associated molecular pat-
terns, directly or indirectly contribute to myofibroblast activation 
(11, 12). Initially beneficial, persistence or dysregulation of this 
process leads to fibrosis. The cellular origin of the matrix-produc-
ing cells is therefore a central issue. Reported potential progeni-
tors for myofibroblasts include epithelial cells and endothelial 
cells, through processes termed epithelial-mesenchymal or endo-
thelial-mesenchymal transition; circulating bone marrow–derived 
(BM-derived) fibrocytes; tissue-resident fibroblasts; and other 
mesenchymal cells related to blood vessels, such as pericytes, 
adventitial cells, and mesenchymal stem cells (MSCs) (13–16).

The development of genetic mouse models expressing Cre 
recombinase in putative progenitor cells has allowed researchers 
to map the fate of cells in vivo without removing them from their 
normal microenvironment. Genetic fate mapping strategies rely 
on site-specific recombinase-mediated DNA excision to activate a 
silenced reporter transgene, thereby labeling selectively and perma-
nently the Cre-expressing cell population and their progeny (17). In 
this Review, we discuss insights gained from genetically engineered 
mouse models that allow more precise identification of the cell lin-
eages activated toward a myofibroblastic phenotype in repair/fibro-
sis. We also discuss common issues of genetic fate mapping that 
have caused confusion in the field, such as Cre-expressing systems 
that lack specificity or show expression in unexpected cell types. 
The emerging picture suggests that a majority of injury-activated, 
matrix-producing cells in different organs, including in the skeletal 
muscle, skin, liver, kidney, heart, lung, and spinal cord, originate 
from specific subsets of tissue-resident mesenchymal cells mainly 
localized close to blood vessels (18–21). While these findings open 
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tertiary lymphoid organs developing during chronic inflamma-
tion (32–37), suggesting an active role in the inflammatory pro-
cess. The intestinal lamina propria, which harbors a major reser-
voir of immune cells, contains an abundant population of Gp38+ 
mesenchymal cells that contribute to intestinal homeostasis and 
gut immunity (32, 38, 39).

Perivascular mesenchymal cells
The blood vasculature is organized into networks of arteries, 
veins, and interconnected capillaries. Arterioles, capillaries, and 
venules constitute the microvasculature, where most intercellu-
lar communication occurs, and are covered by vascular basement 
membrane (vBM) and pericytes to various extents (described 
below). Larger arteries and veins have three structural layers: the 
tunica intima (endothelial cells), the tunica media (smooth muscle 
cells, which express high levels of αSMA), and the tunica externa 
(called the adventitia) (40)(Figure 1).

Pericytes. In the microvasculature, endothelial cells are sur-
rounded by a discrete subset of contractile mesenchymal cells 
termed pericytes. Pericytes are embedded within the vBM and 
establish close contacts with endothelial cells through specialized 
membrane invaginations called peg-socket contacts, which con-
tain adherens junctions. Pericytes were first described by Charles 
Rouget in 1873 (41). Electron microscopy enabled the currently 
accepted definition of a mature pericyte as a mesenchymal cell 
embedded within the vBM of capillaries and venules (42). Identifi-
cation of pericytes remains challenging but can be addressed using 
a combination of criteria, including location relative to endothelial 
cells and the vBM, morphology, exclusion of the lineage markers 
CD45 and CD31, and expression of markers such as PDGFRβ, the 
cell surface glycoprotein MUC18 (CD146), GTPase signaling 5 
(RGS5), chondroitin sulfate proteoglycan 4 (NG2), or αSMAlo. How-
ever, none of these markers are unique to pericytes, and expression 
levels vary with pericyte activation state and vessel type (43, 44).

As integral constituents of blood vessels, pericytes are essen-
tial regulators of vascular development, stabilization, maturation, 
and remodeling (reviewed in ref. 45). The density of pericytes on 
vessels varies between organs, with the CNS vasculature display-
ing the highest ratio of pericyte/endothelial cell coverage (46). In 
the CNS, capillary pericytes are required for the formation and 
regulation of the blood-brain barrier, maintenance of vascular 
permeability, and regulation of cerebral blood flow (47–49). Peri-
cyte loss or dysfunction is commonly observed in diverse fibrotic 
diseases, CNS disorders such as diabetic retinopathy and neuro-
degenerative diseases, and solid tumors (50–53). Consistent with 
a major role in vascular stability, pathological microvessels that 
lack pericytes or have pericytes loosely attached to endothelial 
cells are leaky and poorly functional (50–53).

In addition to their vascular functions, pericytes regulate 
different aspects of immune responses. Stark et al. showed that 
NG2-expressing capillary and arteriolar pericytes support the 
immunosurveillance and effector function of extravasating neu-
trophils and macrophages (54). These NG2+ pericytes also express 
TNFR and various pattern recognition receptors, such as TLR2, 
TLR4, and NLRP3, as well as ICAM1 and chemoattractants such as 
CXCL1, CXCL8, MIF, and CCL2, allowing them to sense inflam-
matory stimuli and promote monocyte and neutrophil migration 

new opportunities for therapeutic treatment, they also raise a num-
ber of challenging questions related to the functional heterogeneity 
of mesenchymal cells of the perivascular niche, such as pericytes, 
adventitial cells, and MSCs, which have vascular, immune, and 
regenerative roles that are essential for repair.

Identification of tissue-resident mesenchymal 
cells at homeostasis
Although the role of the mesenchymal compartment in tissue 
homeostasis or disease is increasingly recognized, the relative 
contribution of distinct mesenchymal subsets to these process-
es remains poorly understood. The main limitation has been the 
lack of specific markers available to discriminate between dif-
ferent mesenchymal cell types. Mesenchymal cells have been 
initially isolated based on adherence and capability to expand in 
vitro. Another common feature of mesenchymal cells is the lack of 
endothelial (CD31) or hematopoietic (CD45) markers. However, 
the resulting adherent CD31–CD45– population is neither homoge-
neous nor cell type–specific. Positive selection using a number of 
markers, as well as localization relative to the vasculature, further 
allows discrimination between distinct subsets of mesenchymal 
cells (described in the following sections).

Fibroblasts
Fibroblasts are tissue-resident mesenchymal cells found in the 
interstitial space of all organs. They contribute to their structural 
framework by producing ECM. Fibroblasts are morphologically and 
functionally distinct from myofibroblasts, as they do not express 
αSMA and lack the contractile microfilamentous apparatus (i.e., 
stress fibers) observed in myofibroblasts. Markers first used to iden-
tify fibroblasts included thymocyte differentiation antigen 1 (Thy-1, 
also known as CD90) and fibroblast-specific protein 1 (FSP1, also 
known as S100A4). However, these markers are not specific, as 
CD90 and FSP1 are also expressed by immune and endothelial cells 
(22–24), leading to some confusion in lineage tracing experiments 
(25). Other mesenchymal markers include vimentin, PDGFRα, and 
type I collagen, which are more specific for mesenchymal popula-
tions but are expressed by several subsets (discussed below). Some 
mesenchymal markers are tissue-specific, such as Tcf21 and perios-
tin in cardiac fibroblasts and myofibroblasts, respectively (26).

Increasing evidence suggests that the historically defined 
fibroblast is actually not a cell type, but a general name for het-
erogeneous populations of mesenchymal cells. In the skin, initial 
experiments addressing the molecular basis of fibroblast diversity 
showed that fibroblast transcriptional profiles cluster into groups 
defined by anatomic site (27, 28), suggesting that fibroblasts have 
a transcriptionally imprinted memory that define cell position. 
Single-cell transcriptomics will most likely reveal additional het-
erogeneity, and potentially diverse function, in fibroblastic pop-
ulations. In lymphoid organs, specialized subsets of fibroblastic 
mesenchymal cells produce chemokines and growth factors that 
organize the localization, survival, and interactions of immune 
cells (29). During ontogeny, the development of lymphoid organs 
requires a specialized fibroblastic mesenchyme expressing lym-
photoxin β receptor (LTβR), ICAM1, VCAM1, and Gp38 (also 
known as podoplanin) (30, 31). Mesenchymal cells with similar 
phenotypes are induced in inflamed/fibrotic tissues as well as in 
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BM over 40 years ago as cells able to form fibroblastic colonies 
(colony-forming unit fibroblasts, CFU-F) (64), MSCs were sub-
sequently identified as CD146+CD45– cells localized close to the 
BM blood vessels (65). In mice, PDGFRα+Sca1+CD45–Ter119– or 
nestin+CD31–CD45– perivascular stromal cells isolated from BM 
were shown to be the major source for osteoblasts, adipocytes, 
and reticular cells in vivo upon transplantation into irradiat-
ed mice (66), and to contain the CFU-F activity and capacity to 
form clonal spheres (67). In addition to their progenitor functions, 
MSCs are essential regulators of the hematopoietic stem cell niche 
(reviewed in ref. 68). Currently, several surface markers allow for 
the prospective isolation of MSCs from the BM, including CD146, 
CD105, alkaline phosphatase, Stro-1, and VCAM1 in humans, 
and CD105, PDGFRα, Sca1, CD44, CD29, and VCAM1 in mouse. 
At the transcriptomic level, MSCs express genes characteristic 
of committed early osteogenic cells, such as RUNX2, and genes 
characteristic of perivascular mesenchymal cells, such as angio-
poietin-1 (65). However, most of these markers are not stable in 
culture, which increases the difficulty of studying these cells in 
vitro. In the past few years, evidence emerged that mesenchy-
mal cells similar to MSCs are found in most organs, localized in 
the perivascular niche of small and larger blood vessels in a posi-
tion compatible with pericytes and adventitial cells (13, 69, 70). 
Whether MSCs from the BM and perivascular mesenchymal cells 
from other organs that express the same markers have a similar 
progenitor potential remains controversial (71). Also, it remains 
unclear whether MSCs and pericytes have a lineage relationship, 
such as that one generates the other one during development/
injury, or whether they represent functionally distinct mesenchy-
mal populations that share a perivascular location. Identification 
of more specific markers and development of novel fate mapping 
strategies might help in answering this question. Nevertheless, 

and survival. Confocal intravital microscopy studies of direct peri-
cyte-neutrophil interaction demonstrated that neutrophils trans-
migrate through gaps regulated by pericyte shape and activation 
(55). In the kidney, pericytes mediate a TLR2/4- and MyD88- 
dependent proinflammatory program, thereby regulating profi-
brotic responses to acute renal injury (56). Conditional knock-
in mice with activating mutations at the PDGFRβ locus, which 
increases PDGFRβ signaling, have enhanced proinflammatory 
genes in pericytes and mesenchymal cells (57), further suggesting 
a role for pericytes in immune response.

Adventitial cells. The outer covering of arteries and veins 
is composed of a connective tissue termed the adventitia. The 
adventitia is the most complex and heterogeneous compartment 
of blood vessels, containing a collagen-rich matrix and different 
cell types including mesenchymal cells (expressing CD34, Sca1, 
and PDGFRα), small blood vessels (also called vasa vasorum), 
lymphatic vessels, nerve fibers, and immune cells. The adven-
titia has essential roles in vascular structure and function (58). 
Adventitial mesenchymal cells are the primary sensors of vascular 
stress/injury and contribute to vascular remodeling and low-grade 
chronic inflammation by stimulating expansion of microvessels 
and producing chemokines such as CCL2, which recruit BM- 
derived monocytes and other immune cells to the vessel wall 
(58–60). In chronic inflammatory settings such as atherosclerosis, 
vascular adventitial inflammation is involved in the local genera-
tion of tertiary lymphoid organs in the vessel wall, which perpetu-
ate inflammation (61, 62). Adventitial-like cells, termed veil cells, 
have been described around dermal microvessels (63).

MSCs. MSCs are multipotent, self-renewing cells that are 
capable of generating, in single-cell assays, a complete hetero-
topic BM organ, including bone, cartilage, adipocyte, fibroblasts, 
and a hematopoiesis-supporting stroma. First identified in the 

Figure 1. The perivascular niche. At steady state, 
the perivascular niche contains different subsets 
of mesenchymal cells, depending on the vessel 
type and size. In the microvasculature, pericytes 
are embedded within the vascular basement 
membrane and are essential for vascular devel-
opment and stability. The outer covering of larger 
vessels (the adventitia) contains adventitial 
mesenchymal cells in a collagenous matrix. Other 
mesenchymal subsets such as FAPs and MSCs 
are localized in close proximity to blood vessels. 
At steady state, perivascular mesenchymal cells 
have essential roles in maintenance of tissue 
homeostasis. SMC: smooth muscle cells.
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wrap around sinusoids between endothelial cells and hepatocytes, 
allowing them to sense and rapidly adapt to the microenvironment. 
HSCs are abundant, constituting one-third of the nonparenchymal 
CD31–CD45– population in the liver. They do not express αSMA at 
homeostasis and can be identified by expression of glial fibrillary 
acidic protein (GFAP), nerve growth factor receptor (NGFR; p75), 
desmin, and PDGFRβ. Similar cells are found in the pancreas (79). 
The close proximity of this perivascular cell type to collagen fibers 
in injured liver was described over 40 years ago (80, 81), suggesting 
an important role in liver fibrosis. These early discoveries leading 
to the identification of HSCs as major contributors to liver fibrosis 
were subsequently confirmed by many other studies (82).

Origin of collagen-producing mesenchymal cells 
in repair/fibrosis
Activated mesenchymal cells such as myofibroblasts are not usually 
present in normal tissues, except in a few organs that require local-
ized contractile force, such as the uterine submucosa, the intestinal 

putative MSCs isolated and expanded in vitro from diverse organs, 
particularly from the adipose tissue, where they are abundant, 
can efficiently promote repair and tissue regeneration in several 
organs, including the heart, bone, and lung (44, 72, 73). Although 
the underlying mechanism(s) remain unclear, MSCs have para-
crine immunomodulatory and angiogenic functions that are like-
ly essential for their beneficial role in repair (reviewed in refs. 74, 
75). Some tissue-specific perivascular mesenchymal progenitors 
have a restricted potential, such as the fibro-adipogenic progeni-
tors (FAPs, not to be confused with fibroblast-activating protein) 
initially described in the skeletal muscle (76, 77). FAPs express  
PDGFRα, Sca1, and CD34, and have an essential role in muscle 
repair (described in the following section).

Stellate cells. The liver contains a specific subset of perivas-
cular mesenchymal cells called hepatic stellate cells (HSCs) (78). 
HSCs are located in the perisinusoidal space, between the baso-
lateral surface of hepatocytes and the antiluminal side of sinu-
soidal endothelial cells. They have subendothelial processes that 

Figure 2. The perivascular niche after injury. 
Injury induces activation and differentiation of 
specific subsets of perivascular mesenchymal 
cells toward a myofibroblastic phenotype, which 
regulate scar tissue formation and immune cells 
recruitment/activity through production of ECM, 
chemokines and growth factors. Whether all 
perivascular mesenchymal cell types are similarly 
involved in this process remain unclear. Signals 
produced by damaged epithelial cells, endothelial 
cells, and inflammatory cells further contribute 
to this transition. Failure to terminate this repair 
program leads to fibrosis.
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location. The neural crest gives rise to the mesenchyme of the 
head, and the lateral plate mesoderm and dermomyotome gener-
ate ventral and dorsal body skin mesenchyme, respectively.

Using lineage tracing experiments in murine dorsal skin, Dris-
kell et al. reported that further lineage restriction occurs a few 
days before birth, so that mesenchymal cells expressing BLIMP1 
and IRIG give rise to the upper papillary dermis and CD26+ pap-
illary fibroblasts after birth, while DLK1+Sca1+ mesenchymal cells 
generate the lower reticular dermis and dermal adipose tissue 
(83). In a full-thickness wound model, the DLK1+Sca1+ reticular 
lineage, which also expresses PDGFRα, generated the ECM-pro-
ducing myofibroblasts that mediated the initial phase of wound 
repair (83) in a TGF-β–dependent process (84). More recently, 
lineage tracing of Engrailed-1–positive (EN1-positive) embryonic 
fibroblasts, which migrate during development from the somites 
to the dorsal dermis, indicated that these cells are major contrib-
utors to ECM production during wounding, radiation fibrosis, or 
skin cancer (85). These data are consistent with studies performed 
about 50 years ago showing that myofibroblasts in skin wounds 
derive not from circulating cells, but rather from tissue-resident 
mesenchymal cells (86, 87). Using a K14-CreERT2 mouse line, our 
group confirmed that keratinocytes are not involved in the gen-
eration of mesenchymal cells expanding in the ear skin follow-
ing CFA-induced injury (32). We further showed that a subset of 
PDGFRα+ perivascular mesenchymal cells expressing ADAM12, 
a membrane-bound metalloprotease normally expressed during 
organ morphogenesis, generate a major fraction of myofibroblasts 
after CFA-induced injury (21). ADAM12+ cells in the ear originate 
from the cranial neural crest and uniformly express PDGFRα and 

lamina propria, and the lung septa. When present in normal organs, 
localization and numbers of myofibroblasts are strictly controlled, 
suggesting that proper regulation of these cells is required to main-
tain tissue homeostasis. In contrast, tissue damage induces mas-
sive development of αSMAmed myofibroblasts and other collagen- 
producing mesenchymal cells at the site of injury (Figure 2). Below, 
we discuss a number of reports investigating the cellular origin of 
injury-induced mesenchymal cells in different organs as well as the 
ontogeny of these lineages (summarized in Table 1). Most studies 
relied on expression of αSMA to identify myofibroblasts or upon 
collagen to identify collagen-producing cells. Strikingly, the two 
populations do not always overlap, suggesting that nonmyofibro-
blastic mesenchymal populations produce a substantial amount of 
collagen, or that production of collagen and expression of αSMA 
in the myofibroblastic lineage are variable over time (5, 21). A few 
functional studies further quantified the amount of matrix in the 
absence of specific mesenchymal types, providing compelling evi-
dence of the role of these specific mesenchymal subsets in repair or 
fibrosis. Details are provided in the sections below.

Skin fibrosis
Mammalian skin is composed of the epidermis, which consists of a 
multilayered epithelium and associated hair follicles; the dermis, 
a connective tissue rich in collagen fibers; and a thin intradermal 
adipose layer. The dermal ECM is heterogeneous, harboring thin 
collagen fibers in the region closest to the epidermis, known as the 
papillary dermis, and dense collagen fibers in the lower layer close 
to the intradermal adipose tissue, known as the reticular dermis. 
The embryonic origin of dermal fibroblasts depends on their body 

Table 1. Lineage tracing strategies used in different organs to identify tissue-resident/perivascular mesenchymal progenitors for 
myofibroblasts, and described markers for these cells

Organ MarkersA Lineage tracing Mesenchymal cell type Model Ref.
Skin PDGFRα+, Dlk1+, Sca1+ PDGFRα-CreERT2, Dlk1-CreERT2 Fetal reticular/hypodermis Skin wound 83

CD26+ En1-Cre Fetal En1+ lineage,  
tissue-resident

Skin wound; radiation-induced fibrosis; 
melanoma

85

ADAM12+, PDGFRα+, Sca1+ Adam12-tTA Perivascular Injury (CFA) 21
Adiponectin+ Adiponectin-Cre Intradermal adipocyte Bleomycin-induced skin fibrosis 93

Skeletal muscle PDGFRα+, Sca1+, CD34+, α7 integrin– – Perivascular Injury (CX), fatty degeneration 76, 77
ADAM12+, PDGFRα+, Sca1+ Adam12-tTA Perivascular Injury (CX) 21

Heart Tcf21+, vimentin+, PDGFRα+ PostnMCM, Tcf21MCM Tissue-resident MI, I/R, pressure overload–induced 
myocardial fibrosis

26

Gli1+, PDGFRβ+, PDGFRα+ Gli1-CreERT2 Perivascular AT2-induced myocardial fibrosis 19
Kidney PDGFRβ+, CD73+ FoxD1-CreERT2 Fetal FoxD1 lineage,  

perivascular/tissue-resident
UUO, I/R injury 18

Gli1+, PDGFRβ+, PDGFRα+ Gli1-CreERT2 Perivascular UUO, I/R injury 19
Liver PDGFRβ+, desmin+ Lrat-Cre Perivascular CCl4-, TAA-, or cholestasis-induced liver 

fibrosis, fatty liver disease
128

Lung PDGFRβ+, NG2+ NG2-CreERTM Perivascular Bleomycin-induced lung fibrosis 118
Axin2+, PDGFRα– Axin2-CreERT2 Perivascular/peribronchial Bleomycin-induced lung fibrosis 120
PDGFRβ+, NG2+ FoxD1-Cre ERT2 Fetal FoxD1 lineage,  

perivascular/tissue-resident
Bleomycin-induced lung fibrosis 119

Spinal cord PDGFRβ+, desmin– Glast-CreER Perivascular Spinal cord injury 20

In all cases, mesenchymal progenitors were identified as lineage negative (CD45–CD31–) and nonmyofibroblastic (αSMA–). AAdditional markers of the 
mesenchymal progenitors are indicated in the Markers column. AT2, angiotensin-2; CCl4, carbon tetrachloride; CX, cardiotoxin; I/R, ischemia/reperfusion; 
MI, myocardial infarction; TAA, thioacetamide; UUO, unilateral ureteral obstruction.
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Sca1, suggesting a developmental relationship with the lower 
reticular skin lineage. Interestingly, immunohistochemistry stud-
ies performed two decades ago suggested that subsets of perivas-
cular mesenchymal cells migrate from their perivascular location 
and become myofibroblasts, synthesizing collagen in patients with 
excessive dermal scarring (88). Consistent with this hypothesis, 
increased numbers of PDGFRβ+ perivascular cells are found in 
patients with early systemic sclerosis, and expression of ADAM12 
in the dermis, as well as serum levels of soluble ADAM12, is 
increased in scleroderma patients (89–92).

During skin fibrosis, a loss of intradermal adipocytes precedes 
expansion of fibrous tissue. In the bleomycin model for skin fibro-
sis, cell fate mapping studies using adiponectin-Cre transgenic 
mice showed that the adiponectin+ adipocyte lineage is capable 
of generating myofibroblasts (93). As expression of adiponectin is 
restricted to mature adipocytes, it will be interesting to determine 
whether perivascular adipocyte mesenchymal progenitors, which 
express PDGFRα, Sca, and CD34, are involved in the generation 
of myofibroblasts after injury. Consistent with a close interaction 
between adipose tissue and fibrous tissue, a loss of adipose tis-
sue is observed in a variety of human fibrotic diseases, including 
systemic sclerosis, laminopathies, and lipodystrophies (94–96). 
Accordingly, injection of the adipose stromal vascular fraction is 
being tried out as antifibrotic therapy in scleroderma (97). In mice, 
stimulation of LTβR improves engraftment of adipose-derived 
stromal cells and partially reverses fibrosis, further reflecting the 
heterogeneity of the adipose vascular fraction and an essential 
crosstalk with lymphotoxin-expressing immune cells (98).

Skeletal muscle
Skeletal muscle has a remarkable ability to repair after injury. 
Regeneration of skeletal muscle is a highly orchestrated process 
involving muscle stem cells and other cell types (99). In muscular 
pathologies such as dystrophies and chronic injuries, continuous 
cycles of degeneration and regeneration result in uncontrolled 
expansion of fibrous/adipogenic tissue, which impairs muscle 
repair and function. Such fibrous tissue was suggested to originate 
from muscle stem cells exposed to environmental modifications 
associated with injury or aging (100, 101). In 2010, two groups 
reported that PDGFRα+Sca1+ mesenchymal cells of the skeletal 
muscle, localized in proximity to blood vessels, are major pro-
genitors for fibrogenic and adipogenic cells (therefore termed 
fibro-adipogenic progenitors, or FAPs) when transplanted into 
mice with injured muscle, as well as in clonal assays in vitro (76, 77, 
102). FAPs are abundant in the normal muscle and further expand 
after injury to facilitate myogenesis (76, 77), in a process depen-
dent on type 2 innate signals such as IL-4 and IL-33 (103, 104). 
Consistent with an essential role for PDGFRα in FAPs, chronic 
activation of PDGFRα is sufficient to generate widespread organ 
fibrosis in mice (105), and conditional expression of a constitu-
tively active mutant of PDGFRα in PDGFRα+ mesenchymal cells 
hinders the repair process and promotes muscle fibrosis (106). 
By generating reporter mice for ADAM12, our group showed that 
expression of ADAM12 identifies a distinct subset (<5%) of peri-
vascular PDGFRα+Sca1+ mesenchymal cells after cardiotoxin- 
induced (CX-induced) muscle injury (21). Inducible, tetracycline 
transactivator–based cell fate mapping demonstrated that injury- 

induced ADAM12+ cells were progenitors to a major fraction of 
myofibroblasts accumulating following CX muscle injury, which 
were eliminated after healing (21). Consistent with a functional 
role in scarring, diphtheria toxin–mediated ablation of ADAM12+ 
cells was sufficient to decrease injury-induced collagen accumu-
lation. Interestingly, ADAM12+ cells downregulated expression of 
type I collagen while acquiring expression of αSMA, suggesting 
that collagen production precede expression of αSMA during dif-
ferentiation toward a myofibroblastic phenotype. Injury-induced 
ADAM12+ cells, which are perivascular, expressed markers of 
MSCs such as PDGFRα, CD44, and CD29. However, the progeny 
of ADAM12+ cells was restricted to fibrogenic cells after muscle 
injury or fatty degeneration, suggesting that either ADAM12+ cells 
are a subset of resident MSC-like cells with a restricted differenti-
ation potential, or unidentified factors influence their fate. Consis-
tent with a role in pathological scarring, transgenic overexpression 
of ADAM12 under control of the muscle creatine kinase promoter 
aggravates fibrosis, a phenotype further amplified in the dystro-
phic background of mdx mice (107).

The heart
Excessive deposition of ECM in interstitial and perivascular car-
diac regions is common in diverse heart pathologies involving 
adverse remodeling of the myocardium, as observed after myo-
cardial infarction (MI) or pressure overload stress. During devel-
opment, heart fibroblasts are derived from epicardial progenitors 
expressing the transcription factor Tcf21 (108). A number of cell 
types, including BM-derived cells and endothelial cells, were 
suggested to contribute to heart disease by converting to a myo-
fibroblastic fate. However, several experimental approaches using 
BM chimeras, parabiosis, and lineage tracing of BM-derived cells 
with LysM-Cre (109), Kit-Cre (110), or Vav-Cre showed no signif-
icant contribution of BM-derived cells to the injury-responsive 
fibroblast population after MI or pressure overload stress (25, 111). 
Similarly, fate mapping of endothelial cells using different endo-
thelial Cre–expressing mouse lines, such as Cdh5-Cre, VE-cadherin- 
CreERT2, or Tie2-Cre mice, indicated that endothelial conversion 
to the mesenchymal type after heart injury is a rare event (25, 26, 
111). Periostin (POSTN) was described as a marker for myofibro-
blasts that is expressed in adult tissues only after injury (112). By 
generating a mouse model where tamoxifen-regulated mutated 
estrogen receptor–Cre (MCM) was inserted into the Postn locus, 
as well as other Cre lines, Kanisicack and colleagues showed that 
nearly all of the periostin-labeled myofibroblasts developing in 
the heart subjected to pressure overload, MI injury, or neuroen-
docrine stimulation arise from tissue-resident mesenchymal cells 
of the Tcf21 lineage. Using an inducible Cre-dependent strategy 
for ablating cells in vivo (PostnMCM;Rosa26fl-DTA mice), these cells 
were shown to be required for healing and scar formation after MI 
injury (26). These data support the hypothesis that resident mes-
enchymal cells derived from the epicardium during embryonic 
development are the major source of disease-associated myofi-
broblasts after cardiac injury.

Kidney
While the above study did not address the location of these 
progenitors with respect to the vasculature, Kramann and col-
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leagues used expression of Gli1, a transcription factor involved 
in the Hedgehog signaling pathway, to specifically mark perivas-
cular mesenchymal cells and adventitial cells in several organs, 
including the heart and kidney. Fate mapping of Gli1+ cells, which 
had characteristics of MSCs, indicated that these cells generate 
a majority of αSMA+ myofibroblasts in models for heart, renal, 
lung, and liver fibrosis (19). Genetic depletion of the Gli1+ lineage 
using a heritable cell-specific expression of the human diphthe-
ria toxin receptor (Gli1-CreER;iDTR) resulted in reduced fibrosis 
following unilateral ureteral obstruction (UUO) in the kidney and 
ascending aortic constriction in the heart. The Gli1+ population 
does not seem to be restricted to myofibroblasts, as depletion 
of Gli1+ cells leads to capillary rarefaction and increased tubu-
lar injury in the kidney, an effect attributed to loss of normal 
pericytes (113). BM transplantation and parabiosis experiments 
confirmed that Gli1+ cells are tissue-resident, not circulating 
cells. These results are consistent with initial observations that 
a majority of injury-induced myofibroblasts developing after 
UUO are derived from resident mesenchymal cells (114). How-
ever, whether all tissue-resident mesenchymal cells are equal 
in this process remains unclear, because of the lack of truly spe-
cific markers in the kidney mesenchyme (115). Fate mapping of 
embryonic mesenchymal cells expressing FoxD1, a transcription 
factor expressed during nephrogenesis, indicated that FoxD1+ 
cells give rise to PDGFRβ+ pericytes, fibroblasts, and mesangial 
cells of the kidney, which in turn generate αSMA+ myofibroblasts 
in renal fibrosis (18). These results suggest that embryonic seed-
ed kidney mesenchyme plays an essential role in the generation 
of collagen-producing fibroblasts in kidney disease. In addition 
to mesenchymal cells, tubular epithelial cells were suggested to 
generate myofibroblasts through epithelial-mesenchymal transi-
tion (EMT) in kidney disease (116). However, the use of various 
Cre lines to perform lineage tracing of different subsets of kidney 
epithelial cells showed only marginal progeny of epithelial cells 
in the pool of αSMA+ myofibroblasts after kidney injury (18, 117). 
Rather, EMT occurring in tubular epithelial cells following injury 
contributes to fibrosis mainly by altering the intracellular metab-
olism of epithelial cells and inducing cell cycle arrest (117).

Lung
Using inducible lineage tracing of alveolar epithelial cells of the 
lung with an Sftpc-CreERT2 knockin allele, Rock and colleagues 
found no evidence for EMT in the bleomycin model for pulmo-
nary fibrosis. Rather, multiple mesenchymal populations were 
activated and proliferated after injury, including NG2+ cells (pre-
sumably pericytes) and PDGFRα+ mesenchymal cells (118). Simi-
lar results were obtained by lineage tracing of fetal FoxD1+ progen-
itor-derived mesenchymal cells in the adult lung (119). Recently, 
lineage tracing analysis of different mesenchymal subsets of the 
lung using Axin2-CreERT2, Pdgfra-CreERT2, and Wnt2-CreERT2 lines 
showed that Axin2+PDGFRα– mesenchymal cells, primarily found 
surrounding blood vessels or airways, are major contributors to 
the pool of myofibroblasts developing after bleomycin-induced 
pulmonary fibrosis (120). In pulmonary, renal, and liver fibrosis, 
depletion of αv integrin from PDGFRβ lineage–derived mesenchy-
mal cells (using Pdgfrb-Cre × Itgavfl/fl mice) that were identified as 
myofibroblasts after injury improved fibrosis (121).

Liver
In the liver, lineage tracing studies have excluded the contribution 
of hepatocytes and cholangiocytes to the pool of myofibroblasts 
developing during fibrosis (122–124). The use of collagen-driven 
Cre or Wt1-Cre allowed the identification of the mesenchymal 
compartment as the major source for myofibroblasts after injury 
(125). Initial attempts to specifically trace hepatic stellate cells 
(HSCs), a subset of perivascular mesenchymal cells suspected to 
become major producers of collagen after liver injury (126), were 
based on Cre expression under the GFAP promoter, as GFAP is 
expressed by HSCs at steady state. However, lineage tracing stud-
ies using the human or murine GFAP promoter (hGFAP-Cre or 
mGfap-Cre mice) showed that bile ducts and cholangiocytes are 
marked much more efficiently than HSCs in this model (127, 128), 
thereby limiting interpretation. A novel lineage tracing strategy 
targeting Cre expression to Lrat (lecithin-retinol acyltransferase), 
also expressed by HSCs, showed that Lrat+ cells gave rise to up to 
95% of myofibroblasts in multiple models of liver injury (toxic, 
cholestatic, and fatty liver disease), confirming that Lrat+ HSCs 
are progenitors for myofibroblasts after injury.

Spinal cord
In a model of spinal cord injury, fate mapping studies using Glast-
CreER mice confirmed that mesenchymal cells surrounding the 
spinal cord blood vessels are a major source for injury-induced 
myofibroblasts after injury (20).

Summary
Recent research has provided compelling evidence that specific 
subsets of tissue-resident mesenchymal cells, rather than epitheli-
al cells, endothelial cells, or BM-derived cells, are the major source 
for injury-induced matrix-producing fibroblasts and myofibroblasts 
in multiple organs. Interestingly, the majority of these mesenchy-
mal progenitors are localized in proximity to blood vessels, and 
share several characteristics with pericytes and adventitial mesen-
chymal cells. These findings highlight a predominant role for the 
perivascular niche in the scarring process. They also raise a num-
ber of challenging questions. It is still unclear whether all pericyte/
adventitial mesenchymal cells have a similar ability to react to inju-
ry and acquire myofibroblastic features, or whether specific subsets 
are endowed with a profibrotic fate and function. As pericytes and 
adventitial cells are essential for vascular stability and function, and 
overall tissue homeostasis, the second hypothesis seems more like-
ly. It is also possible that myofibroblast progenitors belong to a dis-
tinct subset of mesenchymal cells also localized in the perivascular 
niche, related to MSCs. Even though MSCs can be generated in vitro 
from pericytes or adventitial cells, their precise identity and func-
tion in vivo remain unclear and will require further investigation.

While these findings hold great promise for potential novel 
therapeutic avenues in fibrotic diseases, a number of pitfalls must 
be considered. Notably, pericytes, adventitial cells, and other 
perivascular mesenchymal subsets such as MSCs are present in 
all organs and have essential vascular, immunomodulatory, and 
regenerative roles. Therefore, a major goal is to specifically target 
profibrotic subsets while preserving those essential for homeosta-
sis and repair. Also, a similar subset has most likely both beneficial 
and pathological roles in repair, depending on the time after injury 
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