J. B. Kaper, J. P. Nataro, and H. L. Mobley, Pathogenic Escherichia coli, Nature Reviews Microbiology, vol.63, issue.2, pp.123-140, 2004.
DOI : 10.1128/IAI.69.1.315-324.2001

E. Antão, L. H. Wieler, and C. Ewers, Adhesive threads of extraintestinal pathogenic Escherichia coli, Gut Pathogens, vol.1, issue.1, pp.10-1186, 2009.
DOI : 10.1186/1757-4749-1-22

K. Kjaergaard, H. Hasman, M. A. Schembri, and P. Klemm, Antigen 43-Mediated Autotransporter Display, a Versatile Bacterial Cell Surface Presentation System, Journal of Bacteriology, vol.184, issue.15, pp.4197-42044197, 2002.
DOI : 10.1128/JB.184.15.4197-4204.2002

URL : http://jb.asm.org/content/184/15/4197.full.pdf

G. C. Ulett, R. I. Webb, and M. A. Schembri, Antigen-43-mediated autoaggregation impairs motility in Escherichia coli, Microbiology, vol.152, issue.7, pp.2101-2110, 2006.
DOI : 10.1099/mic.0.28607-0

URL : http://mic.microbiologyresearch.org/deliver/fulltext/micro/152/9/2865.pdf?itemId=/content/journal/micro/10.1099/mic.0.29296-0&mimeType=pdf&isFastTrackArticle=

P. Klemm, R. M. Vejborg, and O. Sherlock, Self-associating autotransporters, SAATs: Functional and structural similarities, International Journal of Medical Microbiology, vol.296, issue.4-5, pp.187-195002, 2006.
DOI : 10.1016/j.ijmm.2005.10.002

URL : http://orbit.dtu.dk/en/publications/selfassociating-autotransporters-saats(e0e9d4b9-8759-49d5-9936-e31ee92182de).html

J. Valle, UpaG, a New Member of the Trimeric Autotransporter Family of Adhesins in Uropathogenic Escherichia coli, Journal of Bacteriology, vol.190, issue.12, pp.4147-416110, 2008.
DOI : 10.1128/JB.00122-08

URL : https://hal.archives-ouvertes.fr/pasteur-01380586

T. J. Wells, M. Totsika, and M. A. Schembri, Autotransporters of Escherichia coli: a sequence-based characterization, Microbiology, vol.156, issue.8, pp.2459-2469, 2010.
DOI : 10.1099/mic.0.039024-0

C. Korea, J. Ghigo, and C. Beloin, The sweet connection: Solving the riddle of multiple sugar-binding fimbrial adhesins in Escherichia coli, BioEssays, vol.7, issue.4, pp.300-31110, 2011.
DOI : 10.2174/138955707782795610

URL : https://hal.archives-ouvertes.fr/pasteur-01393506

A. Roux, C. Beloin, and J. M. Ghigo, Combined Inactivation and Expression Strategy To Study Gene Function under Physiological Conditions: Application to Identification of New Escherichia coli Adhesins, Journal of Bacteriology, vol.187, issue.3, pp.1001-1013, 2005.
DOI : 10.1128/JB.187.3.1001-1013.2005

C. Korea, R. Badouraly, M. Prevost, J. Ghigo, and C. Beloin, Escherichia coli K-12 possesses multiple cryptic but functional chaperone-usher fimbriae with distinct surface specificities, Environmental Microbiology, vol.93, issue.7, 1957.
DOI : 10.1128/jb.177.3.621-627.1995

URL : https://hal.archives-ouvertes.fr/pasteur-01393508

F. Larsonneur, Yad fimbriae reveals their potential role in environmental persistence, Environmental Microbiology, vol.113, issue.12, pp.5228-524810, 2016.
DOI : 10.1016/S0092-8674(03)00351-9

J. Grijpstra, J. Arenas, L. Rutten, and J. Tommassen, Autotransporter secretion: varying on a theme, Research in Microbiology, vol.164, issue.6, pp.562-582010, 2013.
DOI : 10.1016/j.resmic.2013.03.010

I. R. Henderson and J. P. Nataro, Virulence Functions of Autotransporter Proteins, Infection and Immunity, vol.69, issue.3, pp.1231-1243, 2001.
DOI : 10.1128/IAI.69.3.1231-1243.2001

G. C. Ulett, Functional Analysis of Antigen 43 in Uropathogenic Escherichia coli Reveals a Role in Long-Term Persistence in the Urinary Tract, Infection and Immunity, vol.75, issue.7, pp.3233-324410, 2007.
DOI : 10.1128/IAI.01952-06

URL : https://hal.archives-ouvertes.fr/pasteur-00331433

P. Luthje and A. Brauner, Ag43 Promotes Persistence of Uropathogenic Escherichia coli Isolates in the Urinary Tract, Journal of Clinical Microbiology, vol.48, issue.6, pp.2316-231710, 2010.
DOI : 10.1128/JCM.00611-10

M. Desvaux, N. J. Parham, and I. Henderson, Type V protein secretion: simplicity gone awry?, Current issues in molecular biology, vol.6, pp.111-124, 2004.

P. Oberhettinger, Intimin and Invasin Export Their C-Terminus to the Bacterial Cell Surface Using an Inverse Mechanism Compared to Classical Autotransport, PLoS ONE, vol.7, 2012.

J. C. Tsai, The Bacterial Intimins and Invasins: A Large and Novel Family of Secreted Proteins, PLoS ONE, vol.198, issue.12, 2010.
DOI : 10.1371/journal.pone.0014403.s017

L. Nicholls, T. H. Grant, and R. M. Robins-browne, Identification of a novel genetic locus that is required for in vitro adhesion of a clinical isolate of enterohaemorrhagic Escherichia coli to epithelial cells, Molecular Microbiology, vol.166, issue.2, pp.275-288, 2000.
DOI : 10.1093/infdis/166.4.797

J. C. Leo, The Intimin periplasmic domain mediates dimerisation and binding to peptidoglycan. Molecular microbiology 95, pp.80-10012840, 2015.

J. C. Leo, P. Oberhettinger, M. Schütz, and D. Linke, The inverse autotransporter family: Intimin, invasin and related proteins, International Journal of Medical Microbiology, vol.305, issue.2, pp.276-282, 2015.
DOI : 10.1016/j.ijmm.2014.12.011

C. Latasa, C. Solano, J. R. Penadés, and I. Lasa, Biofilm-associated proteins, Comptes Rendus Biologies, vol.329, issue.11, pp.849-857008, 2006.
DOI : 10.1016/j.crvi.2006.07.008

C. Cucarella, Bap, a Staphylococcus aureus Surface Protein Involved in Biofilm Formation, Journal of Bacteriology, vol.183, issue.9, pp.2888-2896, 2001.
DOI : 10.1128/JB.183.9.2888-2896.2001

I. Lasa, J. R. Penadés, and . Bap, Bap: A family of surface proteins involved in biofilm formation, Research in Microbiology, vol.157, issue.2, pp.99-107, 2006.
DOI : 10.1016/j.resmic.2005.11.003

A. Taglialegna, Staphylococcal Bap Proteins Build Amyloid Scaffold Biofilm Matrices in Response to Environmental Signals, PLOS Pathogens, vol.78, issue.6, 2016.
DOI : 10.1371/journal.ppat.1005711.s021

A. Toledo-arana, The Enterococcal Surface Protein, Esp, Is Involved in Enterococcus faecalis Biofilm Formation, Applied and Environmental Microbiology, vol.67, issue.10, pp.4538-45454538, 2001.
DOI : 10.1128/AEM.67.10.4538-4545.2001

S. M. Hinsa, M. Espinosa-urgel, J. L. Ramos, and G. A. O-'toole, Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein, Molecular Microbiology, vol.46, issue.4, pp.905-918, 2003.
DOI : 10.1094/MPMI-9-0600

M. Martínez-gil, F. Yousef-coronado, M. Espinosa-urgel, and . Lapf, the second largest Pseudomonas putida protein, contributes to plant ro ot colonizat ion and deter mines biof i lm archite c ture. Molecular microbiolog y 77, pp.549-561, 2010.

C. Wagner, Functional dissection of SiiE, a giant non-fimbrial adhesin of Salmonella enterica, Cellular Microbiology, vol.1461, issue.8, pp.1286-1301, 2011.
DOI : 10.1016/S0005-2736(99)00158-3

H. M. Goh, Molecular Analysis of the Acinetobacter baumannii Biofilm-Associated Protein Applied and environmental microbiology 79, pp.6535-654310, 2013.

B. Barlag and M. Hensel, The Giant Adhesin SiiE of Salmonella enterica, Molecules, vol.715, issue.1, pp.1134-1150, 2015.
DOI : 10.1107/S1744309111032039

C. Latasa, BapA, a large secreted protein required for biofilm formation and host colonization of Salmonella enterica serovar Enteritidis, Molecular Microbiology, vol.39, issue.5, pp.1322-1339, 2005.
DOI : 10.1007/978-94-010-0095-6

A. M. Krachler and K. Orth, Targeting the bacteria???host interface, Virulence, vol.13, issue.4, pp.284-29410, 2013.
DOI : 10.1007/s00249-011-0784-2

URL : http://www.tandfonline.com/doi/pdf/10.4161/viru.24606?needAccess=true

W. R. Pearson and D. J. Lipman, Improved tools for biological sequence comparison., Proceedings of the National Academy of Sciences, vol.85, issue.8, pp.2444-2448, 1988.
DOI : 10.1073/pnas.85.8.2444

URL : http://www.pnas.org/content/85/8/2444.full.pdf

O. Clermont, J. K. Christenson, E. Denamur, and D. M. Gordon, phylo-typing method revisited: improvement of specificity and detection of new phylo-groups, Environmental Microbiology Reports, vol.1, issue.1, pp.58-6510, 2013.
DOI : 10.1128/AEM.01262-09

M. A. Larkin, Clustal W and Clustal X version 2.0, Bioinformatics, vol.15, issue.1, pp.2947-2948, 2007.
DOI : 10.1093/bioinformatics/15.1.87

URL : https://hal.archives-ouvertes.fr/hal-00206210

A. Marchler-bauer, CDD: NCBI's conserved domain database. Nucleic acids research 43, pp.222-22610, 2014.
DOI : 10.1093/nar/gku1221

URL : https://academic.oup.com/nar/article-pdf/43/D1/D222/7330270/gku1221.pdf

L. A. Kelley, S. Mezulis, C. M. Yates, M. N. Wass, and M. J. Sternberg, The Phyre2 web portal for protein modeling, prediction and analysis, Nature Protocols, vol.1, issue.6, pp.845-858, 2015.
DOI : 10.1093/bioinformatics/btl677

A. Mitchell, The InterPro protein families database: the classification resource after 15 years. Nucleic acids research 43, pp.213-22110, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01222896

T. N. Petersen, S. Brunak, G. Von-heijne, and H. Nielsen, SignalP 4.0: discriminating signal peptides from transmembrane regions, Nature Methods, vol.6, issue.10, pp.785-786, 2011.
DOI : 10.1016/0005-2795(75)90109-9

M. J. Sullivan, N. K. Petty, and S. A. Beatson, Easyfig: a genome comparison visualizer, Bioinformatics, vol.24, issue.4, pp.1009-1010, 2011.
DOI : 10.1096/fj.09-144972

URL : https://academic.oup.com/bioinformatics/article-pdf/27/7/1009/624276/btr039.pdf

O. Rendueles, Screening of Escherichia coli Species Biodiversity Reveals New Biofilm-Associated Antiadhesion Polysaccharides, mBio, vol.2, issue.3, pp.43-54, 2011.
DOI : 10.1128/mBio.00043-11

H. Ochman and R. K. Selander, Standard reference strains of Escherichia coli from natural populations, Journal of bacteriology, vol.157, pp.690-693, 1984.

J. H. Miller, A short course in bacterial genetics: a laboratory manual and handbook for Escherichia coli and related bacteria, 1992.

O. 'toole, G. A. Kolter, and R. , biofilm development, Molecular Microbiology, vol.18, issue.2, pp.295-304, 1998.
DOI : 10.1111/j.1365-2958.1995.mmi_18030547.x

M. A. Schembri, K. Kjaergaard, and P. Klemm, Global gene expression in Escherichia coli biofilms, Molecular Microbiology, vol.413, issue.1, pp.253-267, 2003.
DOI : 10.1128/jb.178.4.1094-1098.1996

URL : http://onlinelibrary.wiley.com/doi/10.1046/j.1365-2958.2003.03432.x/pdf

H. Wehbi, The Peptidoglycan-Binding Protein FimV Promotes Assembly of the Pseudomonas aeruginosa Type IV Pilus Secretin, Journal of Bacteriology, vol.193, issue.2, pp.540-55001048, 1128.
DOI : 10.1128/JB.01048-10

D. M. Easton, ABSTRACT, Applied and Environmental Microbiology, vol.80, issue.23, pp.7337-734710, 2014.
DOI : 10.1128/AEM.02114-14

R. Da, S. Le-quere, B. Ghigo, J. M. Beloin, and C. , Tight modulation of Escherichia coli bacterial biofilm formation through controlled expression of adhesion factors, Applied and environmental microbiology, vol.73, pp.3391-3403, 2007.
URL : https://hal.archives-ouvertes.fr/pasteur-00331439

B. Picard, The link between phylogeny and virulence in Escherichia coli extraintestinal infection, Infection and immunity, vol.67, pp.546-553, 1999.

P. Escobar-paramo, A Specific Genetic Background Is Required for Acquisition and Expression of Virulence Factors in Escherichia coli, Molecular Biology and Evolution, vol.21, issue.6, pp.1085-1094, 2004.
DOI : 10.1128/JCM.40.11.3951-3955.2002

D. Skurnik, Effect of human vicinity on antimicrobial resistance and integrons in animal faecal Escherichia coli, Journal of Antimicrobial Chemotherapy, vol.57, issue.6, pp.1215-121910, 2006.
DOI : 10.1093/jac/dkl122

P. Escobar-páramo, Identification of forces shaping the commensal Escherichia coli genetic structure by comparing animal and human isolates, Environmental Microbiology, vol.165, issue.11, 1975.
DOI : 10.1093/infdis/165.1.46

G. Buist, A. Steen, J. Kok, and O. P. Kuipers, LysM, a widely distributed protein motif for binding to (peptido)glycans, Molecular Microbiology, vol.152, issue.4, pp.838-847, 2008.
DOI : 10.1104/pp.107.097097

A. Melillo, Identification of a Francisella tularensis LVS outer membrane protein that confers adherence to A549 human lung cells. FEMS microbiology letters 263, pp.102-108, 2006.

N. J. Oldfield, T-cell stimulating protein A (TspA) of Neisseria meningitidis is required for optimal adhesion to human cells, Cellular Microbiology, vol.135, issue.2, pp.463-478, 2007.
DOI : 10.1128/IAI.73.9.5554-5567.2005

B. Nesta, FdeC, a Novel Broadly Conserved Escherichia coli Adhesin Eliciting Protection against Urinary Tract Infections, mBio, vol.3, issue.2, pp.10-12, 2012.
DOI : 10.1128/mBio.00010-12

N. Sharon and H. Lis, The Structural Basis for Carbohydrate Recognition By Lectins, Advances in Experimental Medicine and Biology, pp.1-1610, 2001.
DOI : 10.1007/978-1-4615-1267-7_1

B. Scorza and F. , Proteomics characterization of outer membrane vesicles from the extraintestinal pathogenic Escherichia coli ?tolR IHE3034 mutant. Molecular & cellular proteomics, pp.473-48510, 2008.

D. J. Wurpel, D. G. Moriel, M. Totsika, D. M. Easton, and M. A. Schembri, Comparative analysis of the uropathogenic Escherichia coli surface proteome by tandem mass-spectrometry of artificially induced outer membrane vesicles, Journal of Proteomics, vol.115, pp.93-106005, 2015.
DOI : 10.1016/j.jprot.2014.12.005

D. J. Wurpel, Comparative proteomics of uropathogenic Escherichia coli during growth in human urine identify UCA-like (UCL) fimbriae as an adherence factor involved in biofilm formation and binding to uroepithelial cells, Journal of Proteomics, vol.131, pp.177-189, 2016.
DOI : 10.1016/j.jprot.2015.11.001

J. M. Andrade and C. M. Arraiano, PNPase is a key player in the regulation of small RNAs that control the expression of outer membrane proteins, RNA, vol.14, issue.3, pp.543-551, 2008.
DOI : 10.1261/rna.683308

T. Carzaniga, D. Antoniani, G. Dehò, F. Briani, and P. Landini, The RNA processing enzyme polynucleotide phosphorylase negatively controls biofilm formation by repressing poly-N-acetylglucosamine (PNAG) production in Escherichia coli C, BMC Microbiology, vol.12, issue.270, pp.10-1186, 2012.

J. Hacker and J. B. Kaper, Pathogenicity Islands and the Evolution of Microbes, Annual Review of Microbiology, vol.54, issue.1, pp.641-679, 2000.
DOI : 10.1146/annurev.micro.54.1.641

H. Schmidt and M. Hensel, Pathogenicity Islands in Bacterial Pathogenesis, Clinical Microbiology Reviews, vol.19, issue.1, pp.257-257, 2006.
DOI : 10.1128/CMR.19.1.257.2006

URL : http://cmr.asm.org/content/19/1/257.full.pdf

E. Carniel, I. Guilvout, and M. Prentice, Characterization of a large chromosomal "high-pathogenicity island" in biotype 1B Yersinia enterocolitica., Journal of Bacteriology, vol.178, issue.23, pp.6743-6751, 1996.
DOI : 10.1128/jb.178.23.6743-6751.1996

U. Gophna, T. A. Oelschlaeger, J. Hacker, and E. Ron, strains isolated from diverse hosts, FEMS Microbiology Letters, vol.33, issue.2, pp.57-60, 2001.
DOI : 10.1111/j.1574-6968.2001.tb10540.x

URL : https://academic.oup.com/femsle/article-pdf/196/1/57/19107576/196-1-57.pdf

J. Hu, B. Kan, Z. H. Liu, and S. Y. Yu, is involved in synthesis of siderophore yersiniabactin, World Journal of Gastroenterology, vol.11, issue.37, pp.5816-5820, 2005.
DOI : 10.1128/IAI.70.4.1832-1841.2002

H. Karch, A genomic island, termed high-pathogenicity island, is present in certain non-O157 Shiga toxin-producing Escherichia coli clonal lineages, Infection and immunity, vol.67, pp.5994-6001, 1999.

S. Schubert, B. Picard, S. Gouriou, J. Heesemann, and E. Denamur, Yersinia High-Pathogenicity Island Contributes to Virulence in Escherichia coli Causing Extraintestinal Infections, Infection and Immunity, vol.70, issue.9, pp.5335-5337, 2002.
DOI : 10.1128/IAI.70.9.5335-5337.2002

S. Schubert, A. Rakin, H. Karch, E. Carniel, and J. Heesemann, Prevalence of the " high-pathogenicity island " of Yersinia species among Escherichia coli strains that are pathogenic to humans, Infection and immunity, vol.66, pp.480-485, 1998.

L. P. Allsopp, UpaH Is a Newly Identified Autotransporter Protein That Contributes to Biofilm Formation and Bladder Colonization by Uropathogenic Escherichia coli CFT073, Infection and Immunity, vol.78, issue.4, pp.1659-166901010, 2010.
DOI : 10.1128/IAI.01010-09

L. P. Allsopp, Functional Heterogeneity of the UpaH Autotransporter Protein from Uropathogenic Escherichia coli, Journal of Bacteriology, vol.194, issue.21, pp.5769-578201264, 1128.
DOI : 10.1128/JB.01264-12

URL : https://hal.archives-ouvertes.fr/pasteur-01371661

I. R. Henderson, F. Navarro-garcia, M. Desvaux, R. C. Fernandez, and D. Ala-'aldeen, Type V Protein Secretion Pathway: the Autotransporter Story, Microbiology and Molecular Biology Reviews, vol.68, issue.4, pp.692-744, 2004.
DOI : 10.1128/MMBR.68.4.692-744.2004

URL : http://mmbr.asm.org/content/68/4/692.full.pdf

J. Arenas, The meningococcal autotransporter AutA is implicated in autoaggregation and biofilm formation, Environmental Microbiology, vol.72, issue.4, pp.1321-133710, 2015.
DOI : 10.1128/IAI.72.10.6132-6138.2004

G. A. Grassl, E. Bohn, Y. Müller, O. T. Bühler, and I. B. Autenrieth, Interaction of Yersinia enterocolitica with epithelial cells: invasin beyond invasion, International Journal of Medical Microbiology, vol.293, issue.1, pp.41-5410, 2003.
DOI : 10.1078/1438-4221-00243

S. Mesnage, Molecular basis for bacterial peptidoglycan recognition by LysM domains, Nature Communications, vol.4, issue.4269, pp.10-1038, 2014.
DOI : 10.1039/B511866B

URL : http://www.nature.com/articles/ncomms5269.pdf

G. Kizil, Identification and characterization of TspA, a major CD4(+) T-cell-and B-cell-stimulating Neisseria-specific antigen, Infection and immunity, vol.67, pp.3533-3541, 1999.

T. G. Kinscherf and D. Apirion, Polynucleotide phosphorylase can participate in decay of mRNA in Escherichia coli in the absence of ribonuclease II, MGG Molecular & General Genetics, vol.247, issue.4, pp.357-362, 1975.
DOI : 10.1007/BF00267975

B. K. Mohanty and S. R. Kushner, Genomic analysis in Escherichia coli demonstrates differential roles for polynucleotide phosphorylase and RNase II in mRNA abundance and decay, Molecular Microbiology, vol.20, issue.2, pp.645-658, 2003.
DOI : 10.1128/jb.173.8.2488-2497.1991

T. A. Cameron and N. De-lay, ABSTRACT, Journal of Bacteriology, vol.198, issue.24, pp.3309-331710, 2016.
DOI : 10.1128/JB.00624-16

J. Hu and M. J. Zhu, Defects in polynucleotide phosphorylase impairs virulence in Escherichia coli O157:H7, Frontiers in Microbiology, vol.7, issue.e31308, p.806, 2015.
DOI : 10.1371/journal.pone.0031308

J. Engman, Neisseria meningitidis Polynucleotide Phosphorylase Affects Aggregation, Adhesion, and Virulence, Infection and Immunity, vol.84, issue.5, pp.1501-151310, 2016.
DOI : 10.1128/IAI.01463-15

URL : http://iai.asm.org/content/84/5/1501.full.pdf

R. Chen, Polynucleotide Phosphorylase Regulates Multiple Virulence Factors and the Stabilities of Small RNAs RsmY/Z in Pseudomonas aeruginosa, Frontiers in Microbiology, vol.8, issue.81, p.247, 2016.
DOI : 10.1371/journal.ppat.1002945

A. R. Manges, Clonal Group, New England Journal of Medicine, vol.345, issue.14, pp.1007-101310, 2001.
DOI : 10.1056/NEJMoa011265

A. Reisner, J. A. Haagensen, M. A. Schembri, E. L. Zechner, and S. Molin, Development and maturation of Escherichia coli K-12 biofilms, Molecular Microbiology, vol.97, issue.4, pp.933-946, 2003.
DOI : 10.1128/jb.175.5.1375-1383.1993

O. Sherlock, M. A. Schembri, A. Reisner, and P. Klemm, Novel Roles for the AIDA Adhesin from Diarrheagenic Escherichia coli: Cell Aggregation and Biofilm Formation, Journal of Bacteriology, vol.186, issue.23, pp.8058-8065, 2004.
DOI : 10.1128/JB.186.23.8058-8065.2004

E. Martinez, B. Bartolome, and F. De-la-cruz, pACYC184-derived cloning vectors containing the multiple cloning site and lacZ?? reporter gene of pUC8/9 and pUC18/19 plasmids, Gene, vol.68, issue.1, pp.159-162, 1988.
DOI : 10.1016/0378-1119(88)90608-7

R. Lutz and H. Bujard, Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements, Nucleic Acids Research, vol.25, issue.6, pp.1203-1210, 1997.
DOI : 10.1093/nar/25.6.1203

U. Henning, I. Sonntag, and I. Hindennach, Mutants (ompA) Affecting a Major Outer Membrane Protein of Escherichia coli K12, European Journal of Biochemistry, vol.40, issue.2, pp.491-498, 1978.
DOI : 10.1016/0304-4157(75)90013-1